

MATHS

BOOKS - PREMIERS PUBLISHERS

MODEL QUESTION PAPER-1

Part I

1. If A
$$\begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$
 then rank of $A \mathbf{A}^T$ is :

A. 3

B. 2

C. 1

D. 9

Watch Video Solution

2. If A $\begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix}$ then (Adj A) . A is :

$$A. \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathsf{B.}\begin{pmatrix}10 & 0\\ 0 & 10\end{pmatrix}$$

$$\mathsf{C.} \left(\begin{array}{cc} \frac{1}{10} & 0 \\ 0 & \frac{1}{10} \end{array} \right)$$

D.
$$\begin{pmatrix} -10 & 0 \\ 0 & -10 \end{pmatrix}$$

Answer:

Watch Video Solution

3. Simplify: $\left(\frac{1+\cos\theta-i\sin\theta}{1+\cos\theta+i\sin\theta}\right)^5$

A.
$$\cos 5\theta$$

B.
$$\cos 5\theta - i \sin 5\theta$$

C.
$$\sin 5 \theta + i \cos 5 heta$$

D.
$$\sin 5\theta - i \cos 5\theta$$

Watch Video Solution

4. Find the value of $\left(\dfrac{-1-i\sqrt{3}}{2} \right)^{21}$

A. 1

B. - 1

 $\mathsf{C.}\,\omega$

D. ω^2

Watch Video Solution

5. The curve $y=ax^3+bx^2+cx+d$ has a point of inflexion at x=1 , then :

$$\mathsf{A.}\,a+b=0$$

$$B. a + 3b = 0$$

$$\mathsf{C.}\,3a+b=0$$

D.
$$3a + b = 1$$

Answer:

Watch Video Solution

6. The percentage error in the 10^{th} root of 38 is approximately

Times the percentage error in 38.

- A. $\frac{1}{38}$
- B. $\frac{1}{10}$
- **C**. 10
- D. 38

Answer:

Watch Video Solution

7. The length of the latus rectum of an ellipse in $\frac{1}{3}$ of its major axis.

Its eccentricity is:

$$\frac{2}{5}$$

8. The focus of the parabola $x^2-2x+8y+17=0$ is :

B. $\sqrt{\frac{2}{3}}$ C. $\frac{1}{\sqrt{3}}$ D. $\frac{1}{\sqrt{2}}$

Answer:

D. (-2,0)

Answer:

vater video solution

9. The volume of the parallelepiped whose edges are represented by $-12\hat{i}+\lambda\hat{k},3\hat{j}-\hat{k},2\hat{I}+\hat{j}-15\hat{k}$ is 546 cubic units. Find the value of λ

$$A.-2$$

$$B.-3$$

D. 2

Answer:

Watch Video Solution

10. The equation of the plane through the point whose position vecot ris $2\hat{I}-\hat{j}+\hat{k}$ and perpendicular to the vector is

$$4\hat{i} + 2\hat{j} - 3\hat{k}$$
 is $4x + 2y - 3z = k$ then k is :
A. 5

C. 3

11.

A. 2a + 2b

B. $\frac{ab}{2}$

C. $\frac{a+b}{2}$

Answer:

Using Rolle's theorrem

 $f(x)=(x-a)(b-x), a\leq x\leq ba
eq b$

find c

if

D.
$$\frac{a-b}{2}$$

Watch Video Solution

12. Evaluate : $\lim_{x\to 0} \frac{\sin x}{x}$

A. ∞

B.-1

C. 0

D. 1

Answer:

Watch Video Solution

D.
$$-1$$

Answer: b

Watch Video Solution

13. If $z=\log rac{x^2+y^2}{x+y}$ then $xrac{\partial z}{\partial x}+yrac{\partial z}{\partial y}$ is :

14.
$$\int_0^{\frac{\pi}{2}} \frac{\sin x dx}{1 + \cos^2 x}$$
 is

A.
$$\pi$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{2}$$

D.
$$\frac{\pi}{4}$$

Watch Video Solution

- 15. The area of the region bounded by the line
- 3x 5y 15 = 0, x = 1 and x = 4 is:
 - $\mathsf{A.} \; \frac{3}{2}$
 - $\mathsf{B.}\,\frac{5}{2}$
 - $\mathsf{C.}\,\frac{7}{2}$
 - D. $\frac{9}{2}$

Answer:

Watch Video Solution

16. If (m,n) are the order and degree of $\dfrac{d^2y}{dx^2}=\left[4\left(\dfrac{dy}{dx}\right)^2\right]^{\frac{3}{4}}$ then

value of (2m+n) is :

B. 6

C. 4

D. 2

Answer:

Watch Video Solution

17. The solution of $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$ is :

A.
$$\frac{x}{y} + \log x = c$$

$$\mathsf{B.}\,\frac{y}{x} + \log x = c$$

$$\mathsf{C.}\,\frac{x}{y} - \log x = c$$

$$\mathsf{D.}\,\frac{y}{x} - \log x = c$$

Watch Video Solution

18. A random variable x has the following distribution .

Then its mean is:

$$\mathsf{A.}\ \frac{17}{10}$$

B.
$$\frac{27}{10}$$

c.
$$\frac{19}{10}$$

D.
$$\frac{29}{10}$$

Answer:

Watch Video Solution	
----------------------	--

19. If a compound statement involves 3 simple statements, then the number of rows in the truth table is

- A. 8
- B. 6
- C. 4
- D. 2

Answer:

20. The mean of a binomial distrution 5 and SD is 2, Then the value of n and p are :

A.
$$\left(\frac{4}{5}, 25\right)$$

$$\mathsf{B.}\left(25,\frac{4}{5}\right)$$

$$\mathsf{C.}\left(\frac{1}{5},25\right)$$

D. $\left(25, \frac{1}{5}\right)$

Answer:

Part li

- **1.** Find the rank of the matrix $\begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7 \end{bmatrix}$
 - Watch Video Solution

- **2.** If (1 + i)(1 + 2i)(1 + 3i)...(1 + ni) = x + iy, then 2.5.10... $(1 + n^2)$ is
- Watch Video Solution

- **3.** Find the equation of the parabola of the curve is open downwards vertex (2,0) and the distance between the latus rectum and directrix is 2.
 - Watch Video Solution

- **4.** Show that for any three vectors \overrightarrow{a} , \overrightarrow{b} and $\overrightarrow{c} \left[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a} \right] = 2 \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \right]$.
 - **Watch Video Solution**

5. Using differentials find the value of $\sqrt{105}$.

6. The value of
$$\int_0^\infty e^{-3x} x^2 dx$$
 is

7. Solve
$$rac{dy}{dx}+rac{y}{x}=x^2.$$

8. A continuous random variable k follows the probability law

$$f(x) = egin{cases} kx(1-x)^{10} & 0 < x < 1 \ & & ext{find} k. \ 0 & ext{otherwise} \end{cases}$$

- **9.** Show that $(p \wedge \neg q) \vee (\neg p \vee q)$ is a tautology.
 - Watch Video Solution

Part lii

- 1. Solve x+y+z=4, x-y+z=2, 2x+y-z=1 using Crammer's rule.
 - Watch Video Solution

·

2. Find the square root of -8-6i .

Watch Video Solution

3. Solve : $\frac{x}{x-1} + \frac{x+1}{x} = \frac{13}{6}$.

4. Prove that the sum of the focal distance of any point on the ellipse is constant and is equal to the length of the major axis.

5. Solve
$$\frac{dy}{dx}=rac{2x+3y-1}{3x-2y+5}$$

Part Iv

1. By using Gaussian elimination method, balance the chemical reaction equation:

$$C_2H_6+O_2
ightarrow H_2O+CO_2.$$

2. Solve :
$$6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0$$

3. If $x+iy=rac{3}{2+\cos heta+i\sin heta}$ prove that $x^2+y^2=4x-3$

4. The arch of a bridge is the shape of a semi ellipse having a horizontal span of 40 m and 16 m highest the centre. How high is the arch, 10m from the right/left of the centre.

5. If $u=\tan^{-1}\Bigl(\frac{x^4+y^4}{x^2-y^2}\Bigr)$ show that $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=\sin 2u.$

6. Find the area between the curve $y=x^2-x-2, x$ axis and the lines x=-2 and x=4.

7. A sphere is made of ice having radius 10 cm. Its radius decreases

from 10 cm to 9.8 cm. Find approximations for the following:

- (i) change in the volume
- (ii) change in the surface area

- **8.** A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:
- (i) change in the volume
- (ii) change in the surface area
 - 0

Watch Video Solution

- **9.** If a discrete random variable can take only the values 0,1,2,3, the probability mass function is given by $f(x)=\begin{cases}k\big(x^2+x+1\big),& \text{$x=0,1,2,3$}\\0,& \text{otherwise}\end{cases}$ Find K
 - Watch Video Solution

10. If a discrete random variable can take only the values 0,1,2,3, the probability mass function is given by

12. If a discrete random variable can take only the values 0,1,2,3, the probability function mass

distribution.

 $f(x) = \begin{cases} k(x^2 + x + 1), & \text{x=0,1,2,3} \\ 0, & \text{otherwise} \end{cases}$

probability mass function is
$$f(x) = egin{cases} kig(x^2+x+1ig), & ext{x=0,1,2,3} \ 0, & ext{otherwise} \end{cases}$$
 Find K

11. If a discrete random variable can take only the values 0,1,2,3, the

Find

is

Find

cumulative

given

given

Mean

of

by

by

the

mass

 $f(x) = \begin{cases} k(x^2 + x + 1), & \text{x=0,1,2,3} \\ 0, & \text{otherwise} \end{cases}$

Watch Video Solution

distribution function

probability

13. Let S=Q-(-1) and is defined in S as a*b=a+b-ab for all $a,b,\ \in G.$ Verify Closure.

14. Let S=Q-(-1) and is defined in S as a*b=a+b-ab for all $a,b,\ \in G.$ Verify COmmutativity.

15. Let S=Q-(-1) and is defined in S as a*b=a+b-ab for all $a,b,\ \in G.$ Verify Associativity.

16. Let S=Q-(1) and is defined in S as a*b=a+b-ab for all $a,b,\ \in G.$ Verify existence of identity .

17. Let S=Q-(-1) and is defined in S as a*b=a+b-ab for all $a,b,\ \in G.$ Verify Inverse in S.

18. At what points on the curve $x^3-12x+18=0$ the tangent is parallel to X axis.

19. At what points on the curve $x^2+y^2-2x-4y+1=0$ the tangent is parallel to Y-axis.

20. Show that the lines
$$\overrightarrow{r}=\hat{i}+\hat{j}+tig(\hat{i}-\hat{j}+3\hat{k}ig) ext{ and } \overrightarrow{r}=2\hat{i}+\hat{j}-\hat{k}+sig(\hat{i}+2\hat{j}-\hat{k}ig)$$

Watch Video Solution

intersect. Find the point of intersection.