©゙"doubtnut

MATHS

BOOKS - PREMIERS PUBLISHERS

ORDINARY DIFFERENTIAL EQUATIONS

Worked Example

1. Determine the order and degree (if exists) of the
following equations.
$\frac{d^{3} y}{d x^{3}}+\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{5}+4 y=0$
2. Determine the order and degree (if exists) of the following equations .
$\left(\frac{d^{4} y}{d x^{4}}\right)^{2}+4\left(\frac{d y}{d x}\right)^{10}+3 y=5 \sin x$

D Watch Video Solution

3. Determine the order and degree (if exists) of the
following equations.
$\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$
4. Determine the order and degree (if exists) of the following equations.
$\frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}$

- Watch Video Solution

5. Determine the order and degree (if exists) of the following equations .
$(1+y)^{2}=y^{2}$

- Watch Video Solution

6. Determine the order and degree (if exists) of the following equations.
$\frac{d^{2} y}{d x^{2}}=\left(3+\frac{d y}{d x}\right)^{\frac{1}{4}}$

- Watch Video Solution

7. Determine the order and degree (if exists) of the
following equations.
$d y+(x y-\sin x) d x=0$

- Watch Video Solution

8. Determine the order and degree (if exists) of the following equations.
$\frac{d y}{d x}+3 y+2 \frac{d x}{d y}=0$

- Watch Video Solution

9. Find the differential equation for the family of all straight lines passing through the origin

- Watch Video Solution

10. Form the differential equation by eliminating the arbitary constants A and B from $y=A \cos 2 x+B \sin 2 x$

- Watch Video Solution

11. Find the differential equation of the family of parabolas $y^{2}=4$ ax where a is an arbitrary constant.
12. Form the differential equation from $A x^{2}+B y^{2}=1$

- Watch Video Solution

13. Form the differential equation from
$y^{2}=4 a(x-a)$

- Watch Video Solution

14. Show that $y^{2}=4 a x$ is a solution of the differential equation $\frac{d y}{d x}=\frac{2 a}{y}$

Watch Video Solution

15. Show that $y=m x+\frac{3}{m}(m \neq 0)$ is a solution of differential equation.
$x y^{\prime}+3\left(y^{\prime}\right)-y=0$

- Watch Video Solution

16. Show that $y=\sin \left(m \sin ^{-1} x\right)$ is a solution of the differential equation
$\left(1-x^{2}\right) y^{\prime \prime}+x y^{\prime}+m^{2} y=0$

- Watch Video Solution

17. Show that $y=\left(\cos ^{-1} x\right)^{2}$ is a solution of the differential equation.
$\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}-2=0$

- Watch Video Solution

18. Solve
$\frac{d y}{d x}=\sqrt{\frac{4-y^{2}}{4-x^{2}}}$

- Watch Video Solution

19. Solve
$\left(1+x^{2}\right) d y=x y d x$ given that $y(0)=1$

- Watch Video Solution

20. Solve
$\frac{d y}{d x}=\cos (x+y)$

- Watch Video Solution

21. Solve
$\frac{d y}{d x}=\sqrt{2 x+y+1}$

(V) View Text Solution

22. Solve
$\frac{d y}{d x}=\frac{x+y+1}{2 x+2 y+5}$

- View Text Solution

23. Solve
$\frac{d y}{d x}=(3 x-y-1)^{2}$

D View Text Solution
24. Solve
$\left(x^{3}-3 x y^{2}\right) d x+2 x^{2} y d y=0$

- View Text Solution

25. Solve
$\frac{d y}{d x}=\frac{y}{x}+\tan \cdot \frac{y}{x}$

- Watch Video Solution

26. Solve
$x d y-y d y\left(\sqrt{x^{2}+y^{2}}\right) d x$

Watch Video Solution

27. Solve
$\frac{d y}{d x}=\frac{x y-2 y^{2}}{x^{2}-3 x y}$

D View Text Solution

28. Solve
$\sqrt{1-y^{2}} d x=\left[\sin ^{-1}(y-x)\right] d y$

D View Text Solution
29. Solve
$\frac{d y}{d x}+3 y \tan x=3 x^{2} \cos ^{3} x$

D View Text Solution

30. Solve
$y e^{y} d x=\left(y^{4}=3 x e^{y}\right) d y$

- View Text Solution

31. Solve
$\left(1+x^{3}\right) \frac{d y}{d x}+3 x^{2} y=\left(1+x^{3}\right)$

Watch Video Solution

32. Solve
$d y=x^{3} d y+3 x^{2} y d y-\sec (\sec x+\tan x) d x$

D View Text Solution

33. The rate at which the population of a city increases at any times is proportional to the population anticipated after 3 more years .
34. A radioactive substance disintegrates at a rate proportional to its mass. When its mass is 100 mgm , the rate of integration is 0.051 mgm per day
. How long will it take for the mass to be reduced from 100 mgm to 50 mgm

D Watch Video Solution

35. A cup of coffee at temperature $100^{\circ} C$ is placed in a room whose temperature is $20^{\circ} \mathrm{C}$ and it costs
to $60^{\circ} \mathrm{C}$ in 10 minutes find the temperature after a further interval of 10 minutes .
36. A tank contains 1000 litres of water in which 100
grams of salt is dissolved Salt solution runs at a
rate 10 litres per minute, each litre contains 5 grams of dissolved salt. The mixture of the tank is kept uniform by stirring. Salt solution runs out at 20 litres per minute. Find the amount of salt at any time .

D View Text Solution

1. Determine its order, degree (if exists)
$\frac{d y}{d x}+x y=\cot x$

- Watch Video Solution

2. Determine its order, degree (if exists)
$\left(\frac{d^{3} y}{d x^{3}}\right)^{\frac{2}{3}}-3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+4=0$

- Watch Video Solution

3. For each of the following differential equations, determine its order, degree (if exist)
$\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y^{2}}{d x}\right)^{2}=x \sin \left(\frac{d^{2} y}{d x^{2}}\right)$

D View Text Solution

4. Determine its order, degree (if exists)
$\sqrt{\frac{d y}{d x}}-4 \frac{d y}{d x}-7 x=0$

D Watch Video Solution

5. Determine its order, degree (if exists)
$y\left(\frac{d y}{d x}\right)=\frac{x}{\left(\frac{d y}{d x}\right)+\left(\frac{d y}{d x}\right)^{3}}$
6. Determine its order, degree (if exists)
$x^{2} \frac{d^{2} y}{d x^{2}}+\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{1}{2}}=0$

- Watch Video Solution

7. Determine its order, degree (if exists)
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}=\sqrt{1+\left(\frac{d y}{d x}\right)}$

- Watch Video Solution

8. Determine its order, degree (if exists)
$\frac{d^{2} y}{d x^{2}}=x y+\cos \left(\frac{d y}{d x}\right)$

D Watch Video Solution

9. Determine its order, degree (if exists)
$\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+\int y d x=x^{3}$

- Watch Video Solution

10. Determine its order, degree (if exists)
$x=e^{x y\left(\frac{d y}{d x}\right)}$

- Watch Video Solution

Solution To Exercise 102

1. Express each of the following physical statements in the form of differential equation.
(i) Radium decays at a rate proportional to the amount Q present.

- Watch Video Solution

2. Express each of the following physical statements in the form of differential equation.
(ii) The population P of a city increases at a rate proportional to the product of population and to the difference between 5,00,000 and the population.

- Watch Video Solution

3. Express each of the following physical statements in the form of differential equation.
(iii) For a certain substance, the rate of change of vapor pressure P with respect to temperature T is
proportional to the vapor pressure and inversely proportional to the square of the temperature.

D Watch Video Solution

4. Express each of the following physical statements in the form of differential equation.
(iv) A saving amount pays 8% interest per year, compounded continuously. In addition, the income
from another investment is credited to the amount continuoulsy at the rate of Rs. 400 per year.

5. Assume that a spherical rain drop evaporates at a

 rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
- Watch Video Solution

Solution To Exercise 103

1. Find the differential equation of the family of (i)
all non- vertical lines in a plane
2. Form the differential equation of all straight lines touching the circle $x^{2}+y^{2}=r^{2}$.

- Watch Video Solution

3. Find the differential equation of the family of circles passing through the origin and having their centres on the x - axis.
4. Find the differential equation of the family of all the parabolas with latus rectum $4 a$ and whose axes are parallel to the x -axis.

- Watch Video Solution

5. Find the differential equation of the family of parabolas with vertex at $(0,-1)$ and having axis along the y-axis.
6. Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin.

- Watch Video Solution

7. Find the differential equation corresponding to the family of curves represented by the equation $y=A e^{8 x}+B e^{-8 x}$, where A and B are arbitrary constants.
8. Find the differential equation of the curve represented by $x y=a e^{x}+b e^{-x}+x^{2}$.

- Watch Video Solution

Solution To Exercise 104

1. Show that each of the following expressions is a solution of the corresponding given differential equation.
(i) $y=2 x^{2} ; x y^{\prime}=2 y$

- Watch Video Solution

2. Show that each of the following expressions is a solution of the corresponding given differential equation.
(ii) $y=a e^{x}+b e^{-x} ; y^{\prime \prime}-y=0$

- Watch Video Solution

3. Find value of m so that the function $y=e^{m x}$ is a solution of the given differential equation.
$y^{\prime}+2 y=0$

- Watch Video Solution

4. Find value of m so that the function $y=e^{m x}$ is a solution of the given differential equation.
$y^{\prime \prime}-5 y^{\prime}+6 y=0$

- Watch Video Solution

5. The slope of the tangent to the curve at any point is the reciprocal of four times the ordinate at that point. The curve passes through (2,5). Find the equation of the curve.

- Watch Video Solution

6. Show that $y=e^{-x}+m x+n$ is a solution of
the differential equation $e^{x} \frac{d^{2} y}{d x^{2}}-1=0$.

- Watch Video Solution

7. Show that $y=a x+\frac{b}{x}, x \neq 0$ is a solution of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$.

- Watch Video Solution

8. Show what $y=a e^{-3 x}+b$, where a and b are arbitary constants, is a solution of the differential
equation $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}=0$

D Watch Video Solution

9. Show that the differential equation representing the family of curves $y^{2}=2 a\left(x+a^{\frac{2}{3}}\right)$ where a is positive parameter,

$$
\left(y^{2}-2 x y \frac{d y}{d x}\right)^{3}=8\left(y \frac{d y}{d x}\right)^{5}
$$

- Watch Video Solution

10. Show that $y=a \cos b x$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+b^{2} y=0$.

Solution To Exercise 105

1. If F is the constant force generated by the motor of an automobiles of mass M , its velocity V is given by $M \frac{d V}{d t}=F-k V$, where k is a constant. Express V in terms of t given that $\mathrm{V}=0$ when $\mathrm{t}=0$.

- Watch Video Solution

2. The velocity v , of a parachute falling vertically satisfies the equation $v \frac{d v}{d x}=g\left(1-\frac{v^{2}}{k^{2}}\right)$, where g and k are constants. If v and x are both initially zero, find v in terms of x.

- Watch Video Solution

3. Find the equation of the curve whose slope is $\frac{y-1}{x^{2}+x}$ and which passes through the point $(1,0)$.

- Watch Video Solution

4. Solve the differential equations :
$\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$

D Watch Video Solution

5. Solve the differential equations :
$y d x+\left(1+x^{2}\right) \tan ^{-1} x d y=0$

- Watch Video Solution

6. Solve the differential equations :
$\sin . \frac{d y}{d x}=a, y(0)=1$
7. Solve the differential equations:
$\frac{d y}{d x}=e^{x+y}+x^{3} e^{y}$

- Watch Video Solution

8. Solve the differential equations :
$\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$

- Watch Video Solution

9. Solve the differential equations :
$(y d x-x d y) \cot \left(\frac{x}{y}\right)=n y^{2} d x$

- Watch Video Solution

10. Solve the differential equations:
$\frac{d y}{d x}-x \sqrt{25-x^{2}}=0$

- Watch Video Solution

11. Solve the differential equations:
$x \cos y d y=e^{x}(x \log x+1) d x$

Watch Video Solution

12. Solve the differential equations:
$\tan y \cdot \frac{d y}{d x}=\cos (x+y)+\cos (x-y)$

- Watch Video Solution

13. Solve the differential equations :
$\frac{d y}{d x}=\tan ^{2}(x+y)$

- Watch Video Solution

1. Solve the differential equations :

$\left[x+y \cos \left(\frac{y}{x}\right)\right] d x=x \cos \left(\frac{y}{x}\right) d y$

D Watch Video Solution

2. Solve the differential equations:
$\left(x^{3}+y^{3}\right) d y-x^{2} y d x=0$

- Watch Video Solution

3. Solve the differential equations:
$y e^{\frac{x}{y}} d x=\left(x e^{\frac{x}{y}}+y\right) d y$
4. Solve the differential equations :
$2 x y d x+\left(x^{2}+2 y^{2}\right) d y=0$

- Watch Video Solution

5. Solve the differential equations :
$\left(y^{2}-2 x y\right) d x=\left(x^{2}-2 x y\right) d y$

- Watch Video Solution

6. Solve the following differential equations :
$x \frac{d y}{d x}=y-x \cos ^{2}\left(\frac{y}{x}\right)$

D Watch Video Solution

7. $\left(1+3 e^{\frac{y}{x}}\right) d y+3 x^{\frac{y}{x}}\left(1-\frac{y}{x}\right) d x=0$, given that $y=0$ and $x=1$

- Watch Video Solution

8. $\left(x^{2}+y^{2}\right) d y=x y d x$. It is given that $y(1)=1$ and $y\left(x_{0}\right)=e$. Find the vale of x_{0}.

Solution To Exercise 107

1. Solve the following Linear differential equations :
$\cos x \frac{d y}{d x}+y \sin x=1$

- Watch Video Solution

2. $\left(1-x^{2}\right) \frac{d y}{d x}-x y=1$
(Watch Video Solution
3. $\frac{d y}{d x}+\frac{y}{x}=\sin x$

- Watch Video Solution

4. $\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=\sqrt{x^{2}+4}$
(D) Watch Video Solution
5. $\left(2 x-10 y^{3}\right) d y+y d x=0$
(Watch Video Solution
6. $x \sin x \frac{d y}{d x}+(x \cos x+\sin x) y=\sin x$

- Watch Video Solution

7. $\left(y-e^{\sin ^{-1} x}\right) \frac{d y}{d x}+\sqrt{1-x^{2}}=0$.

- Watch Video Solution

8. Solve the following linear differential equation $\frac{d y}{d x}+\frac{y}{(1-x) \sqrt{x}}=1-\sqrt{x}$
9. $\left(1+x+x y^{2}\right) \frac{d y}{d x}+\left(y+y^{3}\right)=0$

- Watch Video Solution

10. $\frac{d y}{d x}+\frac{y}{x \log x}=\frac{\sin 2 x}{\log x}$
(Watch Video Solution
11. $(x+a) \frac{d y}{d x}-2 y=(x+a)^{4}$

- Watch Video Solution

12. $\frac{d y}{d x}=\frac{\sin ^{2} x}{1+x^{3}}-\frac{3 x^{2}}{1+x^{3}} y$

- Watch Video Solution

13. $x \frac{d y}{d x}+y=x \log x$

- Watch Video Solution

14. $x \frac{d y}{d x}+2 y-x^{2} \log x=0$

- Watch Video Solution

15. $\frac{d y}{d x}+\frac{3 y}{x}=\frac{1}{x^{2}}$, given that $\mathrm{y}=2$ when $\mathrm{x}=1$.

D Watch Video Solution

Solution To Exercise 108

1. The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given that the number triples in 5 hours, find how many bacteria will be present after

10 hours?
2. Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 3,00,000 to 4,00,000.

- Watch Video Solution

3. The equation of electromotive force for an electric circuit containing resistance and self inductance is $E=R i+L \frac{d i}{d t}$, where E is the electromotive force is given to the circuit, R the
resistance and L, the coefficient of induction. Find the current i at time t when $\mathrm{E}=0$.

- Watch Video Solution

4. The engine of a motor boat moving at $10 \mathrm{~m} / \mathrm{s}$ is
shut off. Given that the restardation at any subsequent time (aftere shutting off the engine) equal to the velocity at that time. Find the velocity after 2 seconds of switching off the engine.
5. Suppose a person deposits 10,000 Indian rupees in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later?

- Watch Video Solution

6. Assume that the rate at which radioactive nuclei decay is proportioanl to the number of such nuclei
that are present in a given sample. In a certain sample 10% of the original number of radioactive nuclei have undergone disintegration in a period of

100 years. What percentage of the original radioactive nuclei will remain after 1000 years.?

- Watch Video Solution

7. Water at temperature $100^{\circ} \mathrm{C}$ cools in 10 minutes to $80^{\circ} C$ in a room temperature of $25^{\circ} C$.

Find
(i) The temperature of water after 20 minutes

$$
\left[\log _{e} \cdot \frac{11}{15}=-0.3101, \log _{e} 5=1.609\right]
$$

- Watch Video Solution

8. Water at temperature $100^{\circ} \mathrm{C}$ cools in 10 minutes
to $80^{\circ} \mathrm{C}$ in a room temperature of $25^{\circ} \mathrm{C}$.
Find
(i) The temperature of water after 20 minutes
(ii) The time when the temperature is $40^{\circ} \mathrm{C}$

$$
\left[\log _{e} \frac{11}{15}=-0.3101, \log _{e} 5=1.6094\right]
$$

- Watch Video Solution

9. At 10.00 A.M. a woman took a cup of hot instant
coffe from her microwave oven and placed it on a nearby Kitchen counter to cool. At this instant the
temperature of the coffee was $180^{\circ} \mathrm{F}$, and 10
minutes later it was $160^{\circ} \mathrm{F}$. Assume that constant temperature of the kitchen was $70^{\circ} \mathrm{F}$.
(i) What was the temperature of the coffee at 10.15
A.M. ?

- Watch Video Solution

10. At 10.00 A.M. a woman took a cup of hot instant coffe from her microwave oven and placed it on a nearby Kitchen counter to cool. At this instant the temperature of the coffee was $180^{\circ} \mathrm{F}$, and 10 minutes later it was $160^{\circ} \mathrm{F}$. Assume that constant temperature of the kitchen was $70^{\circ} \mathrm{F}$.

The woman likes to drink coffe when its
temperature is between $130^{\circ} \mathrm{F}$ and $140^{\circ} \mathrm{F}$. between what time should she have drunk the coffee?

D Watch Video Solution

11. A pot of boiling water at $100^{\circ} \mathrm{C}$ is removed from a stove at time $t=0$ and left to cool in the kitchen.

After 5 minutes, the water temperature has decreased to $80^{\circ} C$, and another 5 minutes later it has dropped to $65^{\circ} \mathrm{C}$. Determine the temperature of the kitchen.
12. A tank initially contains 50 litres of pure water.

Starting at time $\mathrm{t}=0$ a brine containing with 2 grams of dissolved salt per litre flows into the tank at the rate of 3 litres per minutes. The mixture is kept uniform by stirring and the well - stirred mixture simultaneously flows out of the tank at the
same rate. Find the amount of salt present in the tank at any time $t>0$.

- Watch Video Solution

1. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{\frac{1}{3}}+x^{\frac{1}{4}}=0$ are respectively.
A. 2,3
B. 3,3
C. 2,6
D. 2,4

Answer: A

- Watch Video Solution

2. The differential equation representing the family of curves $y=A \cos (x+B)$, where A and B are parameters, is

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}-y=0 \\
& \text { B. } \frac{d^{2} y}{d x^{2}}+y=0 \\
& \text { C. } \frac{d^{2} y}{d x^{2}}=0 \\
& \text { D. } \frac{d^{2} x}{d y^{2}}=0
\end{aligned}
$$

Answer: B
3. The order and degree of the different equation
$\sqrt{\sin x}(d x+d y)=\sqrt{\cos x}(d x-d y)$ is
A. 1,2
B. 2,2
C. 1,1
D. 2,1

Answer: C

- Watch Video Solution

4. The order of the differential equation of all circles with centre at (h, k) and radius 'a' is
A. 2
B. 3
C. 4
D. 1

Answer: A

- Watch Video Solution

5. The differential equation of the family of curves
$y=A e^{x}+b e^{-x}$, where A and B are arbitrary
constant is

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}+y=0 \\
& \text { B. } \frac{d^{2} y}{d x^{2}}-y=0 \\
& \text { C. } \frac{d y}{d x}+y=0 \\
& \text { D. } \frac{d y}{d x}-y=0
\end{aligned}
$$

Answer: B
6. The general solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}$ is
A. $x y=k$
B. $y=k \log x$
C. $y=k x$
D. $\log y=k x$

Answer: C

- Watch Video Solution

7. The solution of the differential equation
$2 x \frac{d y}{d x}-y=3$ represents
A. straight lines
B. circles
C. parabola
D. ellipse

Answer: C

- Watch Video Solution

8. The solution of $\frac{d y}{d x}+p(x) y=0$ is

$$
\text { A. } y=c e^{\int p d x}
$$

B. $y=c e^{-\int p d x}$
C. $x=c e^{-\int p d y}$
D. $x=c e^{\int p d y}$

Answer: B

- Watch Video Solution

9. The integrating factor of the differential equation $\frac{d y}{d x}+y=\frac{1+y}{x}$ is
A. $\frac{x}{e^{\lambda}}$
B. $\frac{e^{\lambda}}{x}$
C. λe^{x}
D. e^{x}

Answer: C

- Watch Video Solution

10. The integrating factor of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ is x , then $P(x)$
A. x
B. $\frac{x^{2}}{2}$
C. $\frac{1}{x}$
D. $\frac{1}{x^{2}}$

Answer: C

- Watch Video Solution

11. The degree of the differential equation $y(x)=1+\frac{d y}{d x}+\frac{1}{1.2}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{1.2 .3}\left(\frac{d y}{d x}\right)^{3}+\ldots$ is
A. 2
B. 3
C. 1
D. 4

Answer: C

12. If p and q are the oder and degree of the differential
equation
$y \frac{d y}{d x}+x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)+x y=\cos x$, when
A. $p<q$
B. $p=q$
C. $p>q$
D. p exists and q does not exist

Answer: C
13. The solution of the differential equation $\frac{d y}{d x}+\frac{1}{\sqrt{1-x^{2}}}=0$ is
A. $y+\sin ^{-1} x=c$
B. $x+\sin ^{-1} y=0$
C. $y^{2}+2 \sin ^{-1} x=c$
D. $x^{2}+2 \sin ^{-1} y=0$

Answer: A

- Watch Video Solution

14. The solution of the differential equation

$$
\frac{d y}{d x}=2 x y \text { is }
$$

$$
\text { A. } y=c e^{x^{2}}
$$

$$
\text { B. } y=2 x^{2}+c
$$

$$
\text { C. } y=C e^{-x^{2}}+c
$$

$$
\text { D. } y=x^{2}+c
$$

Answer: A

- Watch Video Solution

15. The general solution of the differential equation $\log \left(\frac{d y}{d x}\right)=x+y$ is
A. $e^{x}+e^{y}=c$
B. $e^{x}+e^{-y}=c$
C. $e^{-x}+e^{y}=c$
D. $e^{-x}+e^{-y}=c$

Answer: B

- Watch Video Solution

16. The solution of $\frac{d y}{d x}=2^{y-x}$ is

$$
\begin{aligned}
& \text { A. } 2^{x}+2^{y}=c \\
& \text { B. } 2^{x}-2^{y}=c \\
& \text { C. } \frac{1}{2^{x}}-\frac{1}{2^{y}}=c \\
& \text { D. } x+y=c
\end{aligned}
$$

Answer: C

- Watch Video Solution

17. The solution of the differential equation

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)} \text { is }
$$

$$
\text { A. } x \phi\left(\frac{y}{x}\right)=k
$$

B. $\phi\left(\frac{y}{x}\right)=k x$
C. $y \phi\left(\frac{y}{x}\right)=k$
D. $\phi\left(\frac{y}{x}\right)=k y$

Answer: B
18. If $\sin x$ is the integrating factor of the linear differential equation $\frac{d y}{d x}+P y=Q$, then P is
A. $\log \sin x$
B. $\cos x$
C. $\tan x$
D. $\cot x$

Answer: D

- Watch Video Solution

19. The number of arbitrary constants in the general solutions of order n and $n+1$ are respectively

$$
\begin{aligned}
& \text { A. } n-1, n \\
& \text { B. } n, n+1 \\
& \text { C. } n+1, n+2 \\
& \text { D. } n+1, n
\end{aligned}
$$

Answer: B
20. The number of arbitrary constants in the particular solution of a differential equation of third order is
A. 3
B. 2
C. 1
D. 0

Answer: D

- Watch Video Solution

21. Integrating factor of the differential equation is

$$
\frac{d y}{d x}=\frac{x+y+1}{x+1} \text { is }
$$

A. $\frac{1}{x+1}$
B. $x+1$
C. $\frac{1}{\sqrt{x+1}}$
D. $\sqrt{x+1}$

Answer: A

- Watch Video Solution

22. The population P in any year t is such that the rate of increase in the population is proportional to the population. Then

$$
\begin{aligned}
& \text { A. } P=c e^{k t} \\
& \text { В. } P=c e^{-k t} \\
& \text { C. } P=c k t \\
& \text { D. } P=c
\end{aligned}
$$

Answer: A
23. P is the amount of certain substanc left in after time t. If the rate of evaporation of the substance is proportional to the amount remaining, then
A. $P=c e^{k t}$
B. $P=c e^{-k t}$
C. $P=c k t$
D. $P t=c$

Answer: B

- Watch Video Solution

24. If the solution of the differential equation $\frac{d y}{d x}=\frac{a x+3}{2 y+f}$ represents a circle, then the value of a is :
A. 2
B. -2
C. 1
D. -1

Answer: B

- Watch Video Solution

25. The slope at any point of a curve $y=f(x)$ is
given by $\frac{d y}{d x}=3 x^{2}$ and it passes through $(-1,1)$
.Then the equation of the curve is

$$
\begin{aligned}
& \text { A. } y=x^{3}+2 \\
& \text { B. } y=3 x^{2}+4 \\
& \text { C. } y=3 x^{3}+4 \\
& \text { D. } y=x^{3}+5
\end{aligned}
$$

Answer: A

D Watch Video Solution

1. The order and degree of $\left(\frac{d y}{d x}\right)^{3}+5 y^{\frac{1}{3}}=x^{\frac{2}{3}}$ are :
A. $(1,3)$
B. $(2,6)$
C. $(1,2)$
D. $(3,3)$

Answer: A

- Watch Video Solution

2. The intergrating function of $\frac{d x}{d y}+P x=Q$ is :
A. $\int P d y$
B. $e^{\int P d y}$
C. $e^{\int P d x}$
D. $\int Q d y$

Answer: B

D Watch Video Solution

3. If $y=a x^{2}+b x+c=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are arbitrary

$$
\text { A. } y^{\prime \prime \prime}+y^{\prime \prime}=0
$$

B. $y^{\prime}=2 a$
C. $y^{\prime \prime}=0$
D. $y^{\prime \prime}-y=0$

Answer: C

- Watch Video Solution

4. $y=c e^{k x}$ is the solution of the differential equation :
A. $\frac{d x}{d y}=-k x$
B. $\frac{d x}{d y}=k x$
c. $\frac{d y}{d x}=-k x$
D. $\frac{d y}{d x}=k y$

Answer: D

- Watch Video Solution

5. The order and degree of the differential equation $\sin x(d x+d y)=\cos x(d x-d y)$ are :
A. $(0,0)$
B. $(2,1)$
C. $(1,2)$
D. $(1,1)$

Answer: D

- Watch Video Solution

6. The order and degree of the differential equation
$\sin ^{3} x(d x+d y)=\cos ^{3} x(d x-d y)$ is :
A. $(1,1)$
B. $(2,1)$
C. $(2,2)$
D. $(1,2)$

Answer: C

D Watch Video Solution

7. The differential equation for which solution is

$$
y=a e^{3 x}+b e^{-3 x} \text { is : }
$$

A. $\frac{d^{2} y}{d x^{2}}-3 y=0$
B. $\frac{d^{2} y}{d x^{2}}-9 y=0$
C. $\frac{d^{2} y}{d x^{2}}+9 y=0$
D. $\frac{d^{2} y}{d x^{2}}+3 y=0$

Answer: B

D View Text Solution

8. The integrating factor of $\frac{d y}{d x}+\frac{1}{x \log x} y=\frac{2}{x^{2}}$ is :
A. $\log x$
B. e^{x}
C. $\frac{1}{x}$
D. $\log \log x$

(Watch Video Solution

9. The degree of the differential equation

$$
\left(y^{\prime}-2 y^{\prime \prime}\right)^{2}=\left(y^{\prime}\right)^{4}:
$$

A. 2
B. 3
C. 4
D. 8

Answer: A

- Watch Video Solution

10. If $f^{\prime}(x)=\sqrt{x}$ and $\mathrm{f}(1)=2$ then $\mathrm{f}(\mathrm{x})$ is:

$$
\begin{aligned}
& \text { A. } \frac{2}{3}(x \sqrt{x}+2) \\
& \text { B. } \frac{2}{3}(x \sqrt{x}+2) \\
& \text { C. } \frac{3}{2}(x \sqrt{x}+2) \\
& \text { D. }-\frac{2}{3}(x \sqrt{x}+2)
\end{aligned}
$$

Answer: B
11. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}-y\left(\frac{d y}{d x}+\frac{d^{3} y}{d x^{3}}\right)=0$
A. $(2,3)$
B. $(2,2)$
C. $(3,1)$
D. $(3,2)$

Answer: C

- Watch Video Solution

12. The differential equation of the family of lines
$y=m x$ is :

$$
\begin{aligned}
& \text { A. } \frac{d y}{d x}=0 \\
& \text { B. } \frac{d^{2} y}{d x^{2}}=0
\end{aligned}
$$

C. $y d x+x d y=0$
D. $y d x-x d y=0$

Answer: D

- Watch Video Solution

13. If $\frac{d y}{d x}=\frac{x-y}{x+y}$ then its solution is:
A. $2 x y+y^{2}+x^{2}=c$
B. $x^{2}+y^{2}-x+y=c$
C. $x^{2}+y^{2}-2 x y=c$
D. $x^{2}-y^{2}-2 x y=c$

Answer: D

- Watch Video Solution

14. The integrating factor $\frac{d y}{d x}-2 y \tan x=\cos x$ is :
A. $\cot ^{2} x$
B. $\tan ^{2} x$
C. $\cos ^{2} x$
D. $\sin ^{2} x$

Answer: C

- Watch Video Solution

15. The integrating factor of $\frac{d y}{d x}+2 \frac{y}{x}=e^{4 x}$ is:
A. x^{-2}
B. x^{2}
C. x
D. x^{3}

Answer: B

D Watch Video Solution

16. Which of the following is a solution of $\frac{d^{2} y}{d x^{2}}+y=0$:
A. $A \cos x+B \sin x$
B. $(A x+B) e^{x}$
C. $(A+B x) e^{-x}$
D. $(A x+B) e^{2 x}$

Answer: A

- Watch Video Solution

17. The differential equation formed by eliminating

A and B for the relation $y=e^{x}(A \cos x+B \sin x)$
is :
A. $y^{\prime \prime}-2 y^{\prime}+2 y=0$
B. $y^{\prime \prime}-y^{\prime}=0$
C. $y_{2}-2 y_{1}-2 y=0$
D. $y^{\prime}+y^{\prime}=0$

Answer: A

- View Text Solution

18. If $x y=a^{2}$ where a is arbitrary constant then :
A. $x y^{\prime \prime}-x=0$
B. $x y^{\prime}+y=0$
C. $y^{\prime \prime} x+1=0$
D. $y^{\prime \prime}=0$

Answer: B
19. The order and degree of the differential equation $y^{\prime \prime}\left(y-\left(y^{\prime}\right)^{3}\right)^{\frac{2}{3}}$ are :
A. $(3,2)$
B. $(2,2)$
C. $(2,3)$
D. $(3,3)$

Answer: C
20. The degree of the differential equation

$$
\rho=\frac{\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{\frac{3}{2}}}{\frac{d^{2} y}{d x^{2}}} \text { where } \rho \text { is a constant is : }
$$

A. -2
B. 1
C. 3
D. 2

Answer: D

- Watch Video Solution

21. The order and degree of the differential equation $\left(\frac{d y}{d x}\right)^{2}=x+\frac{d^{2} y}{d x^{2}}$ are :
A. $(2,1)$
B. $(1,1)$
C. $(1,2)$
D. $(2,1)$

Answer: D

- Watch Video Solution

22. The solution of the equation $\frac{d x}{d y}+P x=Q$ where P and Q are function of y is :

$$
\begin{aligned}
& \text { A. } y(I . F)=\int(I . F) Q d x+c \\
& \text { B. } x(I F)=\int(I . F) P d y+c \\
& \text { C. } x(I . F)=\int(I . F) Q d y+c \\
& \text { D. } x(I F)=\int(I . F) Q d x+c
\end{aligned}
$$

Answer: C
23. The degree of the differential equation $\frac{d^{2} y}{d x^{2}} x=\sqrt{y+\frac{d y}{d x}}$ is :
A. 0
B. 2
C. 1
D. 3

Answer: B
24. If $y^{2}=4 a x$ where a is constant then the differential equation formed is :

$$
\begin{aligned}
& \text { A. } y^{\prime}=\frac{y}{2 x} \\
& \text { B. } y^{\prime}=\frac{2 y}{x} \\
& \text { C. } y^{\prime \prime}=0 \\
& \text { D. } y^{\prime}=\frac{x}{y}
\end{aligned}
$$

Answer: A

- Watch Video Solution

25. The differential equation formed if $y=(A-B x) e^{-2 x}$ is :
A. $y^{\prime}+4 y=0$
B. $y^{\prime \prime}+4 y^{\prime}+4 y=0$
C. $y^{\prime \prime}-4 y=0$
D. $y^{\prime \prime}-4 y^{\prime}+4 y=0$

Answer: B

- Watch Video Solution

26. The differential equation that will represent the family of all circle having centre on the axis is and the radius units is :

$$
\begin{aligned}
& \text { A. } y\left(y^{\prime}+1\right)^{2}=1 \\
& \text { B. } y^{2}\left(y^{\prime}+1\right)^{2}=1 \\
& \text { C. } y^{2}\left(y^{\prime 2}+1\right)=1 \\
& \text { D. } y y^{\prime}+y^{2}=0
\end{aligned}
$$

Answer: C
27. Solve $\left(x^{2}-y\right) d x+\left(y^{2}-x\right) d y=0$, if it passes through origin :

$$
\begin{aligned}
& \text { A. } x^{3}+y^{3}=3 x y \\
& \text { B. } x^{3}+y^{3}+3 x y=0 \\
& \text { C. } x^{2}+y^{2}=3 x y \\
& \text { D. } x^{2}+y^{2}+3 x y=0
\end{aligned}
$$

Answer: A

- Watch Video Solution

28. The differential equation representing the family of curve $y=A \sin (x+B)$ where A and B are parametres is :

$$
\begin{aligned}
& \text { A. } y^{\prime \prime}-y=0 \\
& \text { B. } \frac{d^{2} x}{d y^{2}}=1 \\
& \text { C. } y^{\prime \prime}=0 \\
& \text { D. } y^{\prime \prime}+y=0
\end{aligned}
$$

Answer: D
29. The order and degree of the differential equation $\sin ^{3} x(d x+d y)=\cos ^{3} x(d x-d y)$ is:
A. $(2,2)$
B. $(2,1)$
C. $(1,2)$
D. $(1,1)$

Answer: D

- Watch Video Solution

30. The general solution of $\frac{d y}{d x}+\frac{y}{x}=0$ is:
A. $y=k x$
B. $\log x=k y$
C. $x y=k$
D. $\log y=k x$

Answer: C

- Watch Video Solution

31. If I.F of $\frac{d y}{d x}+P(x) y=Q(x)$ is $\cos ^{2} x$ then $\mathrm{P}(\mathrm{x})$ $=$
A. $-2 \tan x$
B. $2 \tan x$
C. $2 \cot x$
D. $-2 \cot x$

Answer: A

- Watch Video Solution

32. The solution of $\frac{d y}{d x}+\frac{1}{x^{2}+1}=0$ is
A. $y=\tan ^{-1} x+c$
B. $y+\tan ^{-1} x=c$
C. $y=\tan ^{-1} y+c$
D. $x+\tan ^{-1} y=c$

Answer: B

- Watch Video Solution

33. The solution of $\frac{d y}{d x}=2^{y-x}$ is
A. $3^{x}+3^{y}=c$
B. $3^{x}-3^{y}=c$
C. $\frac{1}{3^{x}}-\frac{1}{3^{y}}=c$
D. $x+y=c$

Answer: C

- Watch Video Solution

34. If $\sin ^{3} x$ is the integrating factor of the differential equation $\frac{d y}{d x}+P y=Q$:
A. $\tan ^{3} x$
B. $\cos t^{3} x$
C. $3 \tan x$
D. $3 \cot x$

- Watch Video Solution

35. The number of arbitrary constant in the particular solution of a differential equation of order 2 is :
A. 0
B. 1
C. 2
D. -1

Answer: A
36. The slope at any point of the curve $y=f(x)$ is given by $\frac{d y}{d x}=2 x$ it passes through $(1,-1)$ then the equation of the curve is :

$$
\begin{aligned}
& \text { A. } y=x^{2} \\
& \text { B. } y=x^{2}-2 \\
& \text { C. } y=x^{2}+1 \\
& \text { D. } y=x^{2}+2
\end{aligned}
$$

Answer: B
37. The degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=\sqrt{1+\left(\frac{d y}{d x}\right)}$ is :
A. 1
B. 2
C. 4
D. 6

Answer: C

- Watch Video Solution

38. The solution of the differential equation $\frac{d y}{d x}+y=x$ is :

$$
\text { A. } e^{-x}(y-x+1)=c
$$

B. $e^{-x}(x+y+1)=c$
C. $e^{x}(y+x+1)=c$
D. $e^{x}(y-x+1)=c$

Answer: D

- Watch Video Solution

1. Find the order and degree of the following differential equation
$y^{\prime \prime}=\left(2+y^{\prime}\right)^{\frac{3}{4}}$

- Watch Video Solution

2. Find the order and degree of the following differential equation
$\left(1+y^{\prime \prime}\right)^{2}=\left(y^{\prime \prime}\right)^{2}$

- Watch Video Solution

3. Find the order and degree of the following differential equation
$\rho=\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}$

- Watch Video Solution

4. Form the differential equation from the following

$$
y=e^{-2 x}(A x+B)
$$

5. Form the differential equation from the following

$$
y=e^{x}(A \cos 2 x+B \sin 2 x)
$$

- Watch Video Solution

6. Form the differential equation from the following

$$
y=e^{-2 x}(A x+B)
$$

- Watch Video Solution

7. Find the diferential equation for the following

$$
y=e^{m x}
$$

8. Find the differential equation for the following $y=e^{3 x}(A \cos 2 x+B \sin 2 x)$

- Watch Video Solution

9. Solve
$(x+y)^{2} \frac{d y}{d x}=a^{2}$

- Watch Video Solution

10. Solve

$x d y=\left(y+4 x^{5} e^{x^{4}}\right) d x$

- Watch Video Solution

11. $\frac{d y}{d x}=e^{2 x-y}+x^{3} e^{-y}$

- Watch Video Solution

12. $\cos ^{2} x d y+y e^{\tan x} d x=0$

- Watch Video Solution

13. Solve: $y x^{2} d x=e^{-x} d y$

- Watch Video Solution

14. $\frac{d y}{d x}=\sin (x+y)$
(D) Watch Video Solution
15. Solve : $\frac{d y}{d x}=(4 x+y+1)^{2}$

- Watch Video Solution

16. $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x y}$

- Watch Video Solution

17. Solve the differential equation
$x y \frac{d y}{d x}=x^{2}+2 y^{2}-$

- Watch Video Solution

18. $\left(1+x^{2}\right) \frac{d y}{d x}=1-y$

- Watch Video Solution

19. $\left(1+x^{3}\right) \frac{d y}{d x}+3 x^{2} y=\cos ^{2} x$

- Watch Video Solution

20. $d x+x d y=e^{-y} \sec ^{2} y d y$

- Watch Video Solution

21. $\frac{d y}{d x}+2 y \tan x=\sin x$

- Watch Video Solution

22. $\frac{d y}{d x}+y \cot x=2 \cos x$
(D) Watch Video Solution
