

MATHS

BOOKS - JEE MAINS & ADVANCED MATHS (HINDI)

सम्मिश्र संख्याएँ

बहुविकल्पीय प्रश्न।

1. सबसे छोटा धन पूर्णांक (positive integer) 'n' जिसके लिए

$$\left(rac{1+i}{1-i}
ight)^n=1$$
 होगा, है

A. 8

B. 16

C.12

D. इनमें से कोई नहीं

Answer: D

वीडियो उत्तर देखें

2. सम्मिश्र संख्या z=x+iy, जो समीकरण $\left|rac{z-5i}{z+i}
ight|=1$ को सन्तुष्ट करेगी, स्थित होगी

A. x - अक्ष पर

B. सरल रेखा y = 5 पर

C. मुलबिन्दु से जाने वाले वृत्त पर

D. उपरोक्त में से कोई नहीं

Answer: D

3. यदि
$$z=\left(rac{\sqrt{3}}{2}+rac{i}{2}
ight)^5+\left(rac{\sqrt{3}}{2}-rac{i}{2}
ight)^5$$
 , तब

A.
$$Re(z) = 0$$

$$B. Im(z) = 0$$

$$\mathsf{C.}\,Re(z)>0,Im(z)>0$$

D.
$$Re(z) > 0$$
, $Im(z) < 0$

Answer: B

वीडियो उत्तर देखें

4. निम्नलिखित में कौन - सा क्षेत्र असमीका |z-4|<|z-2| द्वारा प्रदर्शित

होगा ?

A.
$$Re(z) \geq 0$$

B.
$$Re(z) < 0$$

C.
$$Re(z) > 0$$

D. इनमें से कोई नहीं

Answer: C

5. यदि z=x+iy और $w=\dfrac{(1-iz)}{(z-i)}$, तब '|w|=1 सम्मिश्र तल में इंगित करता है कि

A. z काल्पनिक अक्ष पर स्थित है

B. z वास्तविक अक्ष पर स्थित है

C. z इकाई वृत्त पर स्थित है

D. उपरोक्त में से कोई नहीं

Answer: B

वीडियो उत्तर देखें

- **6.** बिन्दु $z_1,\,z_2,\,z_3,\,z_4$ क्रम से लेने पर सम्मिश्र तल में एक समान्तर चतुर्भुज के शीर्ष होंगे, यदि और केवल यदि
 - A. $z_1 + z_4 = z_2 + z_3$
 - B. $z_1 + z_3 = z_2 + z_4$
 - C. $z_1 + z_2 = z_3 + z_4$
 - D. इनमें से कोई नहीं

Answer: B

7. यदि सम्मिश्र संख्याएँ a,b,c और u,v,w दो त्रिभुजों के शीर्षों को प्रदर्शित करती है, जो इस प्रकार है कि c=(1-r)a+rb और w=(1-r)u+rv, जहाँ r एक सम्मिश्र संख्या है, तब दोनों त्रिभुज

- A. समान क्षेत्रफल वाले होंगे
- B. समरूप (similar) होंगे
- C. सर्वांगसम (congruent) होंगे
- D. उपरोक्त में से कोई नहीं

Answer: B

8.
$$\sum_{k=1}^{6}\left(\sin{rac{2\pi k}{7}}-i\cos{rac{2\pi k}{7}}
ight)$$
 का मान है -

$$A. - 1$$

B. 0

 $\mathsf{C.}-i$

D. i

Answer: D

9. यदि z_1 व z_2 दो अशून्य (non - zero) सम्मिश्र संख्याएँ इस प्रकार है कि

$$|z_1+z_2|=|z_1|+|z_2|$$
, तब

कोणांक $(z_1) - \;$ कोणांक (z_2) का मान होगा

A. π

$$B.-\frac{\pi}{2}$$

C.0

D. $\frac{\pi}{2}$

Answer: C

वीडियो उत्तर देखें

10. ${
m x}$ के किस मान के लिए सम्मिश्र संख्याएँ $\sin x + i\cos 2x$ और $\cos x - i$ एक - दूसरे की संयुग्मी (conjugate) होंगी ?

A. $x=n\pi$

B. x = 0

 $\mathsf{C.}\,x = \bigg(n + \frac{1}{2}\bigg)\pi$

D. x के किसी भी मान के लिए नहीं

Answer: D

11. यदि $\omega(\,
eq 1)$ इकाई का घनमूल है और $\left(1+\omega
ight)^7=A+B\omega$ हो, तो

A और B क्रमशः होंगे

A. 0,1

B. 1,1

C. 1,0

D. -1, 1

Answer: B

12. माना z और w दो अशून्य सम्मिश्र संख्याएँ इस प्रकार है कि |z|=|w| और कोणांक (z) + कोणांक $(w)=\pi$, तब z बराबर होगा |

A. w

B.-w

C. \overline{w}

D. $-\overline{w}$

Answer: D

वीडियो उत्तर देखें

13. माना z व w दो सम्मिश्र संख्यायें इस प्रकार हैं कि $|z| \leq 1$, $|w| \leq 1$ तथा

 $|z-iw|=|z-i\overline{w}|=2$, तब z का मान है

- A. 1 या i
- B. i या -i
- C. 1 या -i
- D. i या -1

Answer: C

14. घन पूर्णांक n_1 व n_2 के लिए व्यंजक

$$(1+i)^{n_1}+\left(1+i^3
ight)^{n_1}+\left(1-i^5
ight)^{n_2}+\left(1+i^7
ight)^{n_2}$$
 ,

 $i = \sqrt{-1}$, का मान वास्तविक होगा, यदि और केवल यदि

जहाँ

A.
$$n_1 = n_2 + 1$$

B.
$$n_1 = n_2 - 1$$

 $C. n_1 = n_2$

D. $n_1 > 0, n_2 > 0$

Answer: D

वीडियो उत्तर देखें

15. यदि ω इकाई का एक काल्पनिक घनमूल है, तो $\left(1+\omega-\omega^2
ight)^7$ का मान होगा

A. 128ω

 $B.-128\omega$

 $\mathsf{C}.\,128\omega^2$

D. $-128\omega^{2}$

Answer: D

16.
$$\sum_{n=1}^{13} \left(i^n+i^{n+1}
ight)$$
, जहाँ $i=\sqrt{-1}$, का मान होगा

A. i

B.
$$i-1$$

$$\mathsf{C.}-i$$

Answer: B

17. यदि
$$egin{array}{c|ccc} 6i & -3i & 1 \ 4 & 3i & -1 \ 20 & 3 & i \end{array} = x+iy$$
, तब

A.
$$x = 3, y = 1$$

B.
$$x = 1, y = 1$$

C.
$$x = 0, y = 3$$

D.
$$x = 0, y = 0$$

Answer: D

18. यदि $I=\sqrt{-1}$, तब $4+5igg(-rac{1}{2}+rac{I\sqrt{3}}{2}igg)^{334}+3igg(-rac{1}{2}+rac{i\sqrt{3}}{2}igg)^{365}$ का मान होगा

A. $1 - i\sqrt{3}$

B. $-1 + i\sqrt{3}$

C.
$$i\sqrt{3}$$

D.
$$-i\sqrt{3}$$

Answer: C

वीडियो उत्तर देखें

19. यदि कोणांक (z) < 0, तब कोणांक (-z) - कोणांक (z) बराबर होगा

A. π

 $B.-\pi$

 $\mathsf{C.} - \pi/2$

D. $\pi/2$

Answer: A

20. यदि z_1,z_2 और z_3 सम्मिश्र संख्याएँ इस प्रकार है कि $|z_1|=|z_2|=|z_3|=\left|rac{1}{z_1}+rac{1}{z_2}+rac{1}{z_3}
ight|=1$ तब $|z_1+z_2+z_3|$ है

- A. 1 के बराबर
- B. 1 से छोटा
- C. 3 से बड़ा
- D. 3 के बराबर

Answer: A

वीडियो उत्तर देखें

21. माना z_1 व z_2 इकाई के n वें मूल है, जोकि मुलबिन्दु पर समकोण बनाते है, तब n निम्न प्रकार का होना चाहिए |

A.
$$4k + 1$$

$$\mathsf{B.}\,4k+2$$

$$\mathsf{C.}\,4k+3$$

D. 4k

Answer: D

22. सम्मिश्र संख्या z_1, z_2 और z_3 संतुष्ट करता है। $\dfrac{z_1 - z_3}{z_2 - z_3} = \dfrac{1 - i\sqrt{3}}{2}$

जो उस त्रिभुज के शीर्ष है जो कि:

A. शून्य क्षेत्रफल वाला होगा

B. समकोण समद्विबाहु होगा

C. समबाहु होगा

D. अधिक कोण समद्विबाहु होगा

Answer: C

वीडियो उत्तर देखें

23. माना
$$\omega=-rac{1}{2}+irac{\sqrt{3}}{2}$$
, तो सारणिक $egin{array}{c|c}1&1&1\\1&-1-\omega^2&\omega^2\\1&\omega^2&\omega\end{array}$ का

मान है

A. 3ω

B. $3\omega(\omega-1)$

C. $3\omega^2$

D. $3\omega(1-\omega)$

Answer: B

24. सभी सम्मिश्र संख्याओं
$$z_1, z_2$$
, जो $|z_1| = 12$ और

$$|z_2 - 3 - 4i| = 5$$
 को सन्तुष्ट करती है, के लिए $|z_1 - z_2|$ का न्यूनतम

मान है

A. 0

B. 2

C. 7

D. 17

Answer: B

25. यदि
$$|z|=1$$
 और $w=rac{z-1}{z+1}$ (जहाँ $z
eq-1$), तब Re (w) है

A. 0

B.
$$\frac{1}{\left|z+1\right|^{2}}$$
C.
$$\left|\frac{1}{z+1}\right| \cdot \frac{1}{\left|z+1\right|^{2}}$$
D.
$$\frac{\sqrt{2}}{\left|z+1\right|^{2}}$$

Answer: A

26. यदि
$$\omega(
eq 1)$$
 इकाई का एक घनमूल है $\left(1+\omega^2\right)^n=\left(1+\omega^4\right)^n$, तब n का सबसे छोटा मान है

और

A. 2

- B. 3
- C. 5
- D. 6

Answer: B

वीडियो उत्तर देखें

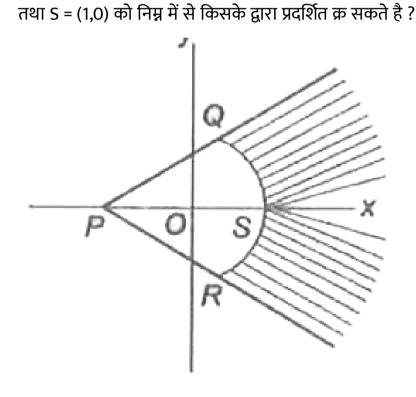
27. यदि ω इकाई का घनमूल हो लेकिन 1 के बराबर हो, तब $\left|a+b\omega+c\omega^2
ight|$

का न्यूनतम मान (जहाँ a, b, c पूर्णांक है लेकिन सभी बराबर नहीं) है:

- A. $\sqrt{3}$
- B. 1/2
- **C.** 1
- D. 0

Answer: C

वीडियो उत्तर देखें


28.

छायांकित

क्षेत्र,

जहाँ

 $P=(\,-1,0), Q=ig(\,-1+\sqrt{2},\sqrt{2}ig), R=ig(\,-1+\sqrt{2},\,-\sqrt{2}ig)$

A.
$$|z+1|>2, |$$
 कोणांक $(z+1)\mid < rac{\pi}{4}$

B.
$$|z+1| < 2, |$$
 कोणांक $(z+1) \mid \ < rac{\pi}{2}$

C.
$$|z+1|>2, |$$
 कोणांक $(z+1)\mid > rac{\pi}{4}$

D.
$$|z-1| < 2, |$$
 कोणांक $(z+1) \mid \ > rac{\pi}{2}$

Answer: A

29. यदि
$$w=lpha+ieta$$
 जहाँ $eta
eq 0$ तथा $z
eq 1$ हैं तथा $\left(rac{w-\overline{w}z}{1-z}
ight)$

पूर्णतः वास्तविक हैं तब z के मानों का समुच्चय है

A.
$$|z|=1,z
eq 2$$

B.
$$|z|=1,z
eq 1$$

$$C.z = z$$

D. इनमें से कोई नहीं

Answer: B

वीडियो उत्तर देखें

30. एक व्यक्ति, मूलबिन्दु से उत्तरपूर्व (N 45° E) दिशा में 3 इकाई की दूरी तक चलता है। तत्पश्चात् उत्तर पश्चिम दिशा (N 45° W) में 4 इकाई की दूरी तक चलकर बिन्दु P पर पहुँचता है। आर्गण्ड समतल में बिन्दु P की स्थिति है

- A. $3e^{i\pi/4}+4i$
- B. $(3-4i)e^{i\pi/4}$
- C. $(4+3i)e^{i\pi/4}$
- D. $(3+4i)e^{i\pi/4}$

Answer: D

31. यदि
$$|z|=1$$
 और $z
eq \pm 1$, तब $\dfrac{z}{1-z^2}$ के सभी मान स्थिति है

A. रेखा पर, जो मूलबिन्दु से नहीं गुजरती है

B.
$$|z|=\sqrt{2}$$
 पर

C. x - अक्ष पर

D. y - अक्ष पर

Answer: D

वीडियो उत्तर देखें

32. एक कण P, बिन्दु $z_0=1+2i$ से प्रारंभ होता है, जहाँ $i=\sqrt{-1}$ सर्वप्रथम यह मूल बिन्दु से क्षैतिज में 5 इकाई दूर जाता है तत्पश्चात् मूल बिन्दु से

ऊर्ध्वाधर 3 इकाई की दूरी पर बिन्दु z_1 पर पहुँचता है। अब कण, z_1 से सदिश $\hat{i}+\hat{j}$ की दिशा में $\sqrt{2}$ इकाई जाता है तथा तब ये एक वृत्त जिसका केन्द्र मूल बिन्दु है, पर वामावर्त दिशा में $\frac{\pi}{2}$ कोण से घूम जाता है और एक बिन्दु z_2 पर पहुँचता है, तब बिन्दु z_2 है।

$$\mathsf{A.}\,6+7i$$

B.
$$-7 + 6i$$

$$\mathsf{C.}\,7+6i$$

D.
$$-6 + 7i$$

Answer: D

33. माना $z=\cos heta+i\sin heta$ है, तो $heta=2^\circ$ पर $\sum_{m=1}^{15} Imig(z^{2m-1}ig)$ का

मान है

A.
$$\frac{1}{\sin 2^{\circ}}$$

B.
$$\frac{1}{3\sin 2^{\circ}}$$

C.
$$\frac{1}{2\sin 2^{\circ}}$$

D.
$$\frac{1}{4\sin 2^{\circ}}$$

Answer: D

34. माना z=x+iy एक ऐसी सम्मिश्र संख्या है जिसमें x व y पूर्णांक है।

उस आयत का क्षेत्रफल जिसके शीर्ष बिन्दु समीकरण $zar{z}^3 + ar{z}z^3 = 350$ के

मूल है, निम्न है

A. 48 वर्ग इकाई

B. 32 वर्ग इकाई

C. 40 वर्ग इकाई

D. 80 वर्ग इकाई

Answer: A

वीडियो उत्तर देखें

$a=z^2+z+1$ वास्तविक है | तब वह मान, जो a नहीं ले सकता निम्न है

35. माना z एक सम्मिश्र संख्या है, जिसका काल्पनिक भाग शून्य नहीं है और

$$A.-1$$

 $\mathsf{B.}\;\frac{1}{3}$

 $\mathsf{C.}\ \frac{1}{2}$

D. $\frac{3}{4}$

Answer: D

36. यदि z एक ऐसी सम्मिश्र संख्या है जिसका मापक एक इकाई है तथा कोणांक

$$heta$$
 है, कोणांक $\left(rac{1+z}{1+ar{z}}
ight)$ बराबर है

$$\mathbf{A.}-\boldsymbol{\theta}$$

B.
$$\frac{\pi}{2}-\theta$$

$$\mathsf{C}.\,\theta$$

D.
$$\pi - \theta$$

Answer: C

37. माना कि सम्मिश्र संख्याऐं lpha तथा $\dfrac{1}{lpha}$ क्रमशः वृत्त $(x-x_0)^2+(y-y_0)^2=r^2$ तथा

$$\left(x-x_{0}
ight)^{2}+\left(y-y_{0}
ight)^{2}=4r^{2}$$
 पर स्थित हैं। यदि $z_{0}=x_{0}+iy_{0}$

समीकरण $2|{z_0}|^2=r^2+2$ को संतुष्ट करता है तब |lpha|=

A.
$$\frac{1}{\sqrt{2}}$$
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{7}}$
D. $\frac{1}{3}$

Answer: C

38. मानािक $w=rac{\sqrt{3}+i}{2}$ तथा $P=\{w^n\!:\!n=1,2,3,\dots\}$. इसके

अतिरिक्त $H_1=\left\{z\in C\!:\!Rez>rac{1}{2}
ight\}$ तथा

 $H_2=\left\{z\in C\colon Rez<rac{1}{2}
ight\}$, जहाँ C सम्मिश्र संख्याओं का समुच्चय है।

यदि
$$z_1 \in P \cap H_1, z_2 \in P \cap H_2$$
 तथा O मूलबिन्दु प्रदर्शित करता है, तब

$$\angle z_1 O z_2$$
=

A.
$$\frac{\pi}{2}$$
B. $\frac{2\pi}{2}$

c.
$$\frac{5\pi}{6}$$

D. A, B व C

Answer: D

39. यदि z एक ऐसी सम्मिश्र संख्या है कि $|z| \geq 2$ है, तो $\left|z + \frac{1}{2}\right|$ का न्युनतम मान है

- A. $\frac{5}{2}$ से निरन्तर बड़ा है
- B. अन्तराल (1, 2) में स्थित है
- C. $\frac{5}{2}$ के बराबर है
- D. $\frac{3}{2}$ से निरन्तर बड़ा है परन्तु $\frac{5}{2}$ से कम है

Answer: B

40. एक सम्मिश्र संख्या ${\bf z}$ को एकांक मापांक कहेगे, यदि |z|=1 हो। माना z_1 तथा z_2 सम्मिश्र संख्याएँ इस प्रकार है की $\dfrac{z_1-2z_2}{2-z_1\bar{z}_2}$ एकांक मापक है एवं z_2 एकांक मापांक नहीं। तब बिंदु z_1 स्थित होगा

- A. X अक्ष से समान्तर सरल रेखा पर
- B. Y अक्ष से समान्तर सरल रेखा पर
- C. त्रिज्या (2) के वृत्त पर
- D. त्रिज्या $(\sqrt{2})$ के वृत्त पर

Answer: C

41.
$$heta$$
 का वह एक मान जिसके लिए $\dfrac{2+3i\sin heta}{1-2i\sin heta}$ पूर्णतः काल्पनिक है, है

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{6}$$

$$\mathsf{C.}\sin^{-1}\!\left(rac{\sqrt{3}}{4}
ight)$$
 $\mathsf{D.}\sin^{-1}\!\left(rac{1}{\sqrt{3}}
ight)$

D.
$$\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

Answer: D

वीडियो उत्तर देखें

बहुविकल्पीय प्रश्न ॥

1. यदि $z_1=a+ib$ तथा $z_2=c+id$ सम्मिश्र संख्याएँ इस प्रकार है कि $|z_1|=|z_2|=1$ तथा $Re(z_1ar z_2)=0$, तब सम्मिश्र संख्याओं $w_1=a+ic$ तथा $w_2=b+id$ का युग्म निम्न में से किसे संतुष्ट करेगा

A.
$$|w_1| = 1$$

B.
$$|w_2|=1$$

C.
$$Re(w_1\overline{w}_2)=0$$

D. इनमें से कोई नहीं

Answer: A::B::C

- **2.** माना सम्मिश्र संख्याएँ z_1 और z_2 इस प्रकार है कि $z_1 \neq z_2$ और $|z_1| = |z_2|$ है | यदि z_1 का वास्तिवक भाग धनात्मक है और z_2 का काल्पिनक भाग ऋणात्मक है, तो $\dfrac{z_1+z_2}{z_1-z_2}$ है
 - A. शून्य
 - B. वास्तविक और धनात्मक
 - C. वास्तविक और ऋणात्मक
 - D. शुद्ध काल्पनिक

Answer: D

3. माना कि z_1 तथा z_2 दो भिन्न सम्मिश्र संख्याऐं हैं तथा किसी वास्तविक संख्या t जहां 0 < t < 1, के लिए $z = (1-t)z_1 + tz_2$ है। यदि किसी शून्येत्तर सिमिश्र संख्या w के लिए Arg(w), w के प्रमुख कोणांक को दर्शाता है तो

A.
$$|z-z_1|+|z-z_2|=|z_1-z_2|$$

B.
$$arg(z-z_1)=arg(z_2-z_1)$$

$$\left.\mathsf{C.}\left|egin{array}{ccc} z-z_1 & ar{z}-ar{z}_1 \ z_2-z_1 & ar{z}_2-ar{z}_1 \end{array}
ight|=0$$

D. A::B::C

Answer: D

4. माना कि $a,b,\ \in R$ और $a^2+b^2
eq 0$ है। मान लीजिए कि S =

$$\left\{z\in C\!:\!z=rac{1}{a+ibt},t\in R,t
eq0
ight\}$$
, जहाँ $i=\sqrt{-1}$ है। यदि z

= x + iy और $z \in S$ है, तब (x, y)

A. उस वृत्त पर है जिसकी त्रिज्या $\frac{1}{2a}$ और केन्द्र बिन्दु $\left(\frac{1}{2a},0\right)$ है जब

B. Y - अक्ष पर है, जब a=0, b
eq 0

C. X - अक्ष पर है, जब a
eq 0, b = 0

D. A::B::C

Answer: D

1. यदि व्यंजक (expression)

$$rac{\left[\sin\!\left(rac{x}{2}
ight)+\cos\!\left(rac{x}{2}
ight)-i an x
ight]}{\left[1+2i\sin\!\left(rac{x}{2}
ight)
ight]}$$

A.
$$x=2n\pi+2lpha, lpha= an^{-1}k$$
, সहाँ $k\in(1,2)$

B.
$$x=2n\pi+2lpha,\,lpha= an^{-1}k$$
, जहाँ $k\in(1,3)$

C.
$$x=2n\pi+lpha, lpha= an^{-1}k$$
, जहाँ $k\in(1,2)$

D.
$$x=2n\pi+lpha,lpha= an^{-1}k$$
, जहाँ $k\in(1,3)$

Answer: A

2. सम्मिश्र संख्याओं z_1 व z_2 तथा वास्तविक संख्याओं a व b के लिए

$$\left| az_{1} - bz_{2}
ight|^{2} + \left| bz_{1} + az_{2}
ight|^{2} =$$

3. यदि वास्तविक संख्यायें a तथा b,0 तथा 1 के मध्य इस प्रकार है कि बिंदु $z_1=a+i, z_2=1+bi$ तथा $z_3=0$ समबाहं त्रिभुज बनाते है तो a तथा b बराबर होंगे

4. सचतुर्भुज (rhombus) ABCD के विकर्ण AC और BD एक - दूसरे को बिन्दु M पर काटते है और BD = 2AC को सन्तुष्ट करते है | यदि बिन्दु D और M क्रमशः सम्मिश्र संख्याओं 1+i और 2-i को प्रदर्शित करते है, तो A सम्मिश्र संख्या ____ या ____ को प्रदर्शित करेगा |

5. माना z_1,z_2 व z_3 वृत्त |z|=2 के अन्दर स्थित समबाहु त्रिभुज के शीर्ष (vertex) है | यदि $z_1=1+i\sqrt{3}$, तो $z_2=$ _____, $z_3=$ _____

6. In a survey of 60 people, it was found that 25 people read newspaper H. 26 read newspaper T, 26 read newspaper 1, 9 read both H and I. 11 read both H and T, 8 read both T and I, 3 read all three newspapers. Find: (i) the number of people who read at least one of the newspapers. (ii) the number of people who read exactly one newspaper

1. सम्मिश्र संख्याओं $z_1=x_1+iy_1$ और $z_2=x_2+iy_2$ के लिए हम $z_1\cap z_2$ लिखते है, यदि $x_1\le x_2$ और $y_1\le y_2$, तब सभी सम्मिश्र संख्याओं z, जिनके लिए $1\cap z$ दिया है, हमें $\dfrac{1-z}{1+z}\cap 0$ मिलेगा |

2. यदि सम्मिश्र संख्याएँ $z_1,\,z_2$ व z_3 एक समबाहु त्रिभुज के शीर्षों को प्रदर्शित करती है तथा $|z_1|=|z_2|=|z_3|$, तो $z_1+z_2+z_3=0$ होगा $|z_1|=|z_2|=|z_3|$

3. जब इकाई के घनमूलों को आर्गेण्ड चित्र (argand diagram) द्वारा प्रदर्शित किया जाता है, तो वे एक समबाहु त्रिभुज के शीर्ष बनाते है |

1. माना A, B, C सम्मिश्र संख्याओं के तीन समुच्चय है जो निम्न प्रकार से

परिभाषित है।

$$A=\{z\!:\!Imz\geq 1\}$$

$$B = \{z \colon |z - 2 - i| = 3\}$$

$$C = \{z : Re(1-i)z\} = \sqrt{2}\}$$

समुच्चय $A\cap B\cap C$ में अवयवों की संख्या है

A. 0

B. 1

C. 2

D. अनन्त

Answer: B

2. माना A, B, C सम्मिश्र संख्याओं के तीन समुच्चय है जो निम्न प्रकार से

$$A = \{z \colon Imz \ge 1\}$$

$$B = \{z\!:\!|z-2-i| = 3\}$$

$$C = \{z : Re(1-i)z\} = \sqrt{2}\}$$

माना
$$z,A\cap B\cap C$$
 का कोई एक बिन्दु है। तब

$$|z+1-i|^2+|z-5-i|^2$$
 निम्न के बीच स्थित है

A. 25 व 29 के मध्य

B. 30 व 34 के मध्य

C. 35 व 39 के मध्य

D. 40 व 44 के मध्य

Answer: C

3. माना A,B,C सिम्मश्र संख्याओं के तीन समुच्चय है जो निम्न प्रकार से परिभाषित

हैं

$$A = \{z : Imz \ge 1\}$$

$$B = \{z : |z - 2 - i| = 3\}$$

$$C = \left\{z \colon Re((1-i)z) = \sqrt{2}\right\}$$

माना $z,A\cap B\cap C$ में कोई एक बिंदु है तथा $\omega,|\omega-2-i|<3$ को संतुष्ट करने वाला कोई वाला कोई बिंदु है। तब $|z|-|\omega|+3$ निम्न के बीच

स्थित है

 $\mathsf{A.}-6$ व 3 के मध्य

 $\mathrm{B.}-3$ व 6 के मध्य

 $\mathsf{C.}-6$ व 3 के मध्य

D. -3 व 9 के मध्य

Answer: D

वीडियो उत्तर देखें

4. माना कि a, b और c ऐसी तीन वास्तविक संख्याएँ है जो

$$\begin{bmatrix} a & b & c \end{bmatrix} egin{bmatrix} 1 & 9 & 7 \ 8 & 2 & 7 \ 7 & 3 & 7 \end{bmatrix} = egin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$
(E)

को संतुष्ट करती हैं।

माना कि ω , समीकरण $x^3-1=0$ का हल है, जहाँ $Im(\omega)>0$ है। यदि a=2 और संगत संख्याऐं b और c समीकरण (E को संतुष्ट करती हैं तो $rac{3}{\omega^a}+rac{1}{\omega^b}+rac{3}{\omega^c}$ का मान है - (i) -2 (ii) 2 (iii) 3 (iv) -3

$$A.-2$$

$$D.-3$$

Answer: A

वीडियो उत्तर देखें

तथा $S_3=\{z\in C\colon Rez>0\}$

5.

S का क्षेत्रफल =

A. $\frac{10\pi}{3}$

B. $\frac{20\pi}{3}$

C. $\frac{16\pi}{3}$

D. $\frac{32\pi}{3}$

माना कि $S=S_1\cap S_2\cap S_3$, जहाँ

 $S_1 = \{z \in C\!:\! |z| < 4\}, S_2 = \left\{z \in C\!:\! Im iggl[rac{z-1+\sqrt{3}i}{1-\sqrt{3}i} > 0
ight\}.$

Answer: B

6. माना कि
$$S=S_1\cap S_2\cap S_3$$
, जहाँ

$$\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3, \qquad \mathbb{Z}_5$$

$$S_1 = \{z \in C\!:\! |z| < 4\}, S_2 = \left\{z \in C\!:\! Im iggl[rac{z-1+\sqrt{3}i}{1-\sqrt{3}i} > 0
ight\}$$

तथा
$$S_3=\{z\in C\!:\!Rez>0\}$$

$$z \in S(\mathrm{Min})|1-3i-z| =$$

$$z \in \mathcal{D}(\text{min})[1 - 3t - z] =$$

B.
$$\frac{2+\sqrt{3}}{2}$$

A. $\frac{2 - \sqrt{3}}{2}$

D.
$$\frac{3+\sqrt{3}}{2}$$

Answer: B

वीडियो उत्तर देखें

मैट्रिक्स सुमेल प्रकार

1. कॉलम । में दिए गए वक्तव्यों का कॉलम ॥ में दिए वक्तव्यों से सुमेल करें |

[नोट : z सम्मिश्र तल में मान लेता है एवं lm (z) तथा Re (z) क्रमशः z के काल्पनिक एवं वास्तविक भागों को दर्शाते है |]

			-	
कॉलम I		कॉलम II		
Α.	z - i z = z + i z को सन्तुष्ट करने वाले z का समुख्य अन्तर्विष्ट या बराबर है	p.	उल्केन्द्रता 4/5 वाला दीर्घवृत्त	
В.	z + 4 + z ~ 4 = 10 को सन्तुष्ट करने वाले z का समुख्यय अन्तर्विष्ट या बराबर है	q.	lm (z)= 0 को सन्तुष्ट करने वाले सनी z का समुख्यय	
C.	यदि $ w =2$, तो ऐसे सभी z का समुख्यय कि $z=w-\frac{1}{w}$ अन्तर्विष्ट या बराबर है	r.	im z ≤ 1 को सन्तुष्ट करने वाले सभी z का समुख्यय	
D.	यदि $ w =1$, तो $z=w+\frac{1}{w}$ को सन्तुष्ट करने वाले सभी z का समुख्यय अन्तर्विष्ट या बराबर है	1.	Res ≤2 को सन्तुष्ट करने वाले समी s का समुख्यय	
		t.	z ≤3 को सन्तुष्ट करने वाले समी z का समुख्यय	

2. माना $z_k = \cos \left(rac{2k\pi}{10}
ight) + i \sin \left(rac{2k\pi}{10}
ight), \, k=1,2,\ldots,9$

		सूची 🏻	
P.	प्रत्येक z_k के लिए एक ऐसा z_j है जिसके लिए	1.	सत्य
	$z_k \cdot z_j = 1$		
Q.	$\{1,2,,9\}$ में एक ऐसा k है कि $z_1 \cdot z = z_k$ का कोई हल z सम्मिन्न संख्याओं (complex numbers) में नहीं है	2.	असत्य
R.	$\frac{ 1-z_1 1-z_2 \dots 1-z_9 }{10}$ का मान है	3.	1
S.	$1 - \sum_{k=1}^{9} \cos\left(\frac{2k\pi}{10}\right)$ का मान है	4.	2

A. P-1, Q-2, R-4, S-3

B. P-2, Q-1, R-3, S-4

C. P-1, Q-2, R-3, S-4

D. P-2, Q-1, R-4, S-3

Answer: C

वीडियो उत्तर देखें

विश्लेषणात्मक प्रश्न

1. यदि n, 3 से बड़ा एक विषम पूर्णांक है, लेकिन n, 3 का गुणज नहीं है | तब सिद्ध कीजिए कि $x^3+x^2+x,\,(x+1)^n-x^n-1$ का एक गुणनखण्ड है |

2. ${\sf x}$ और ${\sf y}$ के वे वास्तविक मान ज्ञात कीजिए, जो समीकरण $\dfrac{(1+i)x-2i}{3+i}+\dfrac{(2-3i)y+i}{3-i}=i$ को सन्तुष्ट करते है |

3. माना सम्मिश्र संख्याएँ $z_1,\,z_2$ और z_3 एक समबाहु त्रिभुज के शीर्ष है तथा z_0 त्रिभुज का परिकेन्द्र (circumcentre) है, तो सिद्ध कीजिए कि $z_1^2+z_2^2+z_3^2=3z_0^2$

4. सम्मिश्र संख्याओं के समुच्चय पर एक सम्बन्ध z_1Rz_2 द्वारा परिभाषित है यदि और केवल यदि $(z_1-z_2)\,/\,(z_1+z_2)$ वास्तविक है , तब सम्बन्ध R है

5. सिद्ध कीजिए कि सम्मिश्र संख्याएँ z_1, z_2 और मुलबिन्दु एक समबाहु त्रिभुज बनाते है, यदि $z_1^2+z_2^2-z_1z_2=0$

6. यदि $1,a_1,a_2,\ldots,a_{n-1}$ इकाई के n मूल है, तो दिखाइए कि $(1-a_1)(1-a_2)(1-a_3)\ldots(1-a_{n-1})=n$

7. दिखाइए कि सम्मिश्र संख्याओं z, iz और z+iz द्वारा बने त्रिभुज के आर्गेण्ड चित्र का क्षेत्रफल $\frac{1}{2}|z|^2$ है |

8. सम्मिश्र संख्याएँ z_1, z_2, z_3 क्रमशः एक समकोण त्रिभुज, जोिक C पर समकोण है, के शीर्ष A, B व C है | दिखाइए कि $(z_1-z_2)^2=2(z_1-z_3)(z_3-z_2)$

9. माना $z_1=10+6i$ और $z_2=4+6i$ यदि सम्मिश्र संख्या z इस प्रकार

है कि
$$\dfrac{(z-z_1)}{(z-z_2)}$$
 का कोणांक $\dfrac{\pi}{4}$ है, तो सिद्ध कीजिए कि

 $|z-7-9i|=3\sqrt{2}$.

10. यदि
$$iz^3+z^2-z+i=0$$
 हो ,तो दर्शाइए कि $|z|=1$

11. यदि
$$|z| \leq 1, |w| \leq 1,$$
 तो दिखाइए कि $|z-w|^2 \leq \left(|z|-|w|
ight)^2$ +

$$\{ (z) - (w) \}^{(2)}$$

12. सभी अशून्य सम्मिश्र संख्याओं को ज्ञात कीजिए, जो $\bar{z}=iz^2$ को सन्तुष्ट करती है |

13. z_1 व z_2 समीकरण $z^2+pz+q=0$ के मूल हैं जहाँ गुणांक p व q सम्मिश्र संख्याएँ हो सकती हैं। A तथा B सम्मिश्र तल में z_1 व z_2 को प्रदर्शित करते हैं। यदि $\angle AOB=a\neq 0$ तथा OA=OB जहाँ O मूलबिन्दु है, तब कौन-सा कथन सत्य है?

14. माना $\bar{b}z+b\bar{z}=c,$ $b\neq 0$, सम्मिश्र तल में एक रेखा है, जहाँ $\bar{b},$ b का सम्मिश्र संयुग्मी है | यदि बिन्दु z_1 , बिन्दु z_2 का रेखा द्वारा बनाया गया प्रतिबिम्ब हो, तो दिखाइए कि $c=\bar{z}_1b+z_2\bar{b}$.

15. सम्मिश्र संख्याओं z तथा ω के लिए सिद्ध कीजिए कि $\left|z\right|^2\omega-\left|\omega\right|^2z=z-\omega$ होगा यदि $z=\omega$ या $z\overline{\omega}=1$ हो।

16. माना सम्मिश्र संख्या $lpha, lpha \neq 1$ समीकरण $z^{p+q}-z^p-z_q+1=0$ का मूल है जहां p,q असमान अभाज्य संख्यायें हैं दर्शाइए कि या तो $1+lpha+lpha^2+\ldots\ldots=lpha^{p-1}=0$ या

$$1+lpha+lpha^2+\ldots\ldots+lpha^{q-1}=0$$
 परंतु दोनों एक साथ नहीं
है।

17. यदि दो सम्मिश्र संख्याएँ z_1 और z_2 इस प्रकार है कि $|z_1|<1<|z_2|$, तो सिद्ध कीजिए कि $\Big|rac{1-z_1ar{z}_2}{z_1-z_2}\Big|<1$.

18. सिद्ध कीजिए कि ऐसी कोई सम्मिश्र संख्या सम्भव नहीं है, जिसके लिए

$$|z|<rac{1}{3}$$
 और $\sum_{r=1}^{n}a_{r}z^{r}=1$, जहाँ $|a_{r}|<2$ हो |

19. $\dfrac{|z-\alpha|}{|z-\beta|}=K(K1=1)$ जहां lpha और eta अचर सम्मिश्र संख्यायें इस प्रकार है कि $lpha=lpha_1+ilpha_2$ तथा $eta=eta_1+ieta_2$ है तो z=x+iy, के द्वारा प्रदर्शित संबंध का केंद्र व त्रिज्या ज्ञात कीजिए।

20. यदि वृत्त $|z-1| = \sqrt{2}$ के परिगत खींचे गए वर्ग का एक शीर्ष

 $2+\sqrt{3}i$ हो तो वर्ग के अन्य शीर्ष ज्ञात कीजिए।

एकल पूर्णांक प्रश्न

1. मान लीजिए कि z कोई सम्मिश्र संख्या (complex number) है जिसके लिए

$$|z-3-2i| \leq 2$$
 सत्य है, तो $|2z-6+5i|$ का न्यूनतम मान है _____

2. मान लीजिए $\omega = e^{\iota \frac{\pi}{3}}$ और a,b,c,x,y,z शून्येतर (non-zero) सिम्मिश्र (complex) संख्याएँ है जिनके लिये

a+b+c=x

$$a + b\omega + c\omega^2 = y$$

$$a + b\omega^2 + c\omega = z$$

मान्य है, तो $\frac{{{{{\left| x \right|}^2} + {{\left| y \right|}^2} + {{\left| z \right|}^2}}}{{{{{\left| a \right|}^2} + {{\left| b \right|}^2} + {{\left| c \right|}^2}}}$ का मान है

3. किसी भी पूर्णांक \mathbf{k} के लिए $a_k=\cos\left(\frac{k\pi}{7}\right)+i\sin\left(\frac{k\pi}{7}\right)$, जहाँ $i=\sqrt{-1}$ है। तब व्यंजक $\dfrac{\sum_{k=1}^{12}|lpha_{k+1}-lpha_k|}{\sum_{k=1}^{3}|lpha_{4k-1}-lpha_{4k-2}|}$ का मान है