

MATHS

BOOKS - JEE MAINS & ADVANCED MATHS (HINDI)

सारणिक

बहुविकल्पीय प्रश्न।

1. माना A कोटि 3 के उन सरणिकों का समुच्चय है, जिनके अवयव 0 और 1 है। माना B,A का उपसमुच्चय है, जिनमे वे सरणिक है, जिनका मान 1 है। माना C,A का उपसमुच्चय है, जिनमे वे सरणिक है, जिनका मान -1 है, तब

A. C रिक्त समुच्चय होगा

B. B में अवयवों की संख्या C के समान होगी

$$\mathsf{C}.\,A = B \cup C$$

D. B में अवयवों की संख्या C से दुगुनी होगी

Answer: B

वीडियो उत्तर देखें

2. सारणिक

$$\left|egin{array}{cccc} xp+y & x & y \ yp+z & y & z \ 0 & xp+y & yp+z \end{array}
ight|=0$$
 होगा, यदि

A. x, y, z समांतर श्रेढ़ी में हो

 $\mathbf{B}.\,x,\,y,\,z$ गुणोत्तर श्रेढ़ी में हो

 ${\sf C.}\ x,\,y,\,z$ हरात्मक श्रेढ़ी में हो

D. xy, yz, zx समांतर श्रेढ़ी में हो

Answer: B

वीडियो उत्तर देखें

3. वह प्राचल (parameters) जिस पर सारणिक

A. a

B. p

C. d

D. x

Answer: B

4.

यदि

$$f(x) = egin{array}{cccc} 1 & x & (x+1) \ 2x & x(x-1) & (x+1)x \ 3x(x-1) & x(x-1)(x-2) & (x+1)x(x-1) \ \end{array} igg|,$$

तब f(100) बराबर होगा

A. 0

B. 1

C. 100

D. - 100

Answer: A

5. यदि निकाय के समीकरणों x-ky-z=0, kx-y-z=0 तथा

$$x+y-z=0$$
 का एक अशून्य हल है, तो k का संभावित मान होगा

$$A. -1, 2$$

$$D. -1, 1$$

Answer: D

वीडियो उत्तर देखें

6. समीकरण $\begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \end{vmatrix} = 0$ के अन्तराल $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$ में

विभिन्न वास्तविक मूल्यों की संख्या है -

- **A.** 0
- B. 2
- C. 1
- D. 3

Answer: B

वीडियो उत्तर देखें

के अनंत हल है, तब a का मान है

7. यदि समीकरण निकाय x+ay=0, ax+y=0 और ax+z=0

- A. 1
- B. 1
- $\mathsf{C}.0$

D. कोई वास्तविक मान नहीं

Answer: A और B

वीडियो उत्तर देखें

8. k के कितने मानों के लिए समीकरण निकाय

$$(k+1)x + 8y = 4k$$

$$kx + (k+3)y = 3k - 1$$

के अनंत हल होंगे ?

A. 0

B. 1

C. 2

D. अनंत

Answer: B

वीडियो उत्तर देखें

9.

दिया

है,

की

 $2x-y+2z=2, x-2y+z=-4, x+y+\lambda z=4$, तो λ

का वह मान, जिसके लिए समीकरण निकाय का कोई हल नहीं होगा, है

- A. 3
- B. 1
- C. 0
- D.-3

Answer: B

10. माना $\omega \neq 1$ इकाई के घनमूल है तथा S निम्न रूप के सभी व्युत्क्रमणीय आव्यूहों का समुच्चय है

$$\left[egin{array}{ccc} 1 & a & b \ \omega & 1 & c \ \omega^2 & \omega & 1 \end{array}
ight]$$

जहाँ प्रत्येक a, b तथा c या तो ω या ω^2 है, तो S में विभिन्न आव्यूहों की संख्या है

:

A. 2

B. 6

C. 4

D. 8

Answer: A

11. माना कि $P = ig[a_{ij}ig]$ एक 3 imes 3 आव्यूह है और $Q = ig[b_{ij}ig]$ जहाँ $b_{ij}=2^{i+j}a_{ij}$, जब $1\leq i,j\leq 3$ है। यदि P के सारणिक का मान 2 है, तो आव्यूहQ के सारणिक का मान निम्न है

- A. 2^{10}
- B. 2^{11}
- $C. 2^{12}$
- $D. 2^{13}$

Answer: D

तथा

ित्या
$$egin{array}{c|cccc} 3&1+f(1)&1+f(2)\ 1+f(1)&1+f(2)&1+f(3)\ 1+f(2)&1+f(3)&1+f(4) \end{array} = K(1-lpha)^2(1-eta)^2(lpha-eta)^2$$
 है, तब K का मान है

13. λ के सभी मानों का समुच्चय जिनके लिए रैखिक समीकरणों के निकाय

$$2x_1 - 3x_2 + 2x_3 = \lambda x_2$$

 $2x_1 - 2x_2 + x_3 = \lambda x_1$

$$-x_1+2x_2=\lambda x_3$$
 का एक अतुच्छ हल है,

- A. एक रिक्त समुच्चय
- B. एकांकी समुच्चय
- C. जिसमे दो अवयव हो
- D. जिसमे दो से अधिक अवयव हो

Answer: C

वीडियो उत्तर देखें

14. रैखिक समीकरण निकाय $x + \lambda y - z = 0, \, \lambda x - y - z = 0, \, x + y - \lambda z = 0$ का एक अतुच्छ हल होने के लिए

- A. λ के अनंत मान है
- B. λ का तथ्यतः एक मान है
- C. λ के तथ्यतः दो मान है
- D. λ के तथ्यतः तीन मान है

Answer: D

बहुविकल्पीय प्रश्न Ii

1. यदि
$$egin{array}{ccc} a & b & lpha a + b \ b & c & b lpha + c \ lpha a + b & b lpha + c & 0 \ \end{array} egin{array}{ccc} = 0 \ तब \ \end{array}$$

A. a, b, c समांतर श्रेढ़ी में है

B. a,b,c गुणोत्तर श्रेढ़ी में है

 $\mathsf{C}.\,a,\,b,\,c$ हरात्मक श्रेढ़ी में है

D. $(x-lpha), ax^2+2bx+c$ का एक गुणनखंड है

Answer: B::D

2. α के निम्नलिखित मानो में कौन-सा (से) मान समीकरण

को संतुष्ट करता (करते) है (है)?

$$A.-4$$

B. 9

C. - 9

D. B और C विकल्प

Answer: D

वीडियो उत्तर देखें

रिक्त स्थानों की पूर्ति कीजिये

1. माना

$$p\lambda^4+q\lambda^3+r\lambda^2+s\lambda+t=\left|egin{array}{cccc} \lambda^2+3\lambda & \lambda-1 & \lambda+3 \ \lambda+1 & -2\lambda & \lambda-4 \ \lambda-3 & \lambda+4 & 3\lambda \end{array}
ight|, \lambda$$

की एक सर्वसमिका है, जहाँ p, q, r, s और t नियतांक है । तब t का मान..... है।

2. समीकरण
$$\begin{vmatrix} 1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^2 \end{vmatrix}$$
 के हलो का समुच्चय है।

🕞 वीडियो उत्तर देखें

3. समीकरण निकाय
$$\lambda x + y + z = 0$$

$$-x + \lambda y + z = 0$$

$$-x - y + \lambda z = 0$$

का एक शूनयेत्तर (non-zero) हल होगा, यदि λ का वास्तविक मान..... होगा।

4. यदि
$$x=-9$$
, सरणिक $egin{array}{c|c} x & 3 & 7 \ 2 & x & 2 \ 7 & 6 & x \ \end{array} = 0$ का एक मूल है, तो इसके शेष

दो मूल..... और..... है।

A.
$$-2, -7$$

 $\mathsf{B.}\,2,\,7$

C. -2, 7

D. 2, -7

Answer: B

5. सरणिक
$$egin{array}{c|ccc} 1 & a & a^2-bc \ 1 & b & b^2-ca \ 1 & c & c^2-ab \ \end{array}$$
 का मान..... है।

- **6.** धनात्मक संख्याओं x,y और z के लिए सारणिक
 - - वीडियो उत्तर देखें

सत्य असत्य

1. सरणिक
$$\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$$
 और $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$ एकसमान नहीं है।

दृढकथन कारण प्रकार

1. माना कि एक निकाय के समीकरण निम्न है।

$$x - 2y + 3z = -1$$

$$-x+y-2z=k$$

$$x - 3y + 4z = 1$$

कथन-1 : $k \neq 3$ के लिए समीकरण निकाय का कोई हल नहीं है।

कथन-2 :
$$k
eq 3$$
 के लिए सारणिक $egin{bmatrix} 1 & 3 & -1 \ -1 & -2 & k \ 1 & 4 & 1 \end{bmatrix}
eq 0$

A. वक्तव्य । सत्य है, वक्तव्य ॥ सत्य है : वक्तव्य ॥, वक्तव्य । का सही

स्पष्टीकरण है

B. वक्तव्य । सत्य है, वक्तव्य ॥ सत्य है : वक्तव्य ॥, वक्तव्य । का सही

स्पष्टीकरण नहीं है

C. वक्तव्य । सत्य है, वक्तव्य ॥ असत्य है

D. वक्तव्य । असत्य है, वक्तव्य ॥ सत्य है

Answer: B

वीडियो उत्तर देखें

विश्लेषणात्मक प्रश्ल

1. माना a, b,c घनात्मक है परन्तु सभी समान नहीं है। दिखाइए कि सरणिक

$$\left| egin{array}{c|c} a & b & c \\ b & c & a \\ c & a & b \end{array} \right|$$
 का मान ऋणात्मक है।

2. यदि
$$\begin{vmatrix} x^2+x & x+1 & x-2 \ 2x^2+3x-1 & 3x & 3x-3 \ x^2+2x+3 & 2x-1 & 2x-1 \ \end{vmatrix} = Ax-1$$
2, तो A का

मान है

3. सिद्ध कीजिये की समीकरणों के निकाय

$$3x - y + 4z = 3, x + 2y - 3z = -2$$
 तथा

$$6x+5y+\lambda z=-3$$
का λ के किसी भी वास्तविक मान के लिए कम से कम एक हल है तथा $\lambda=-5$ के हलो का समुच्चय भी ज्ञात कीजिये।

4. यदि lpha, द्विघात समीकरण f(x)=0 का पुनरावृत्ति वाला मूल है और $A(x),\,B(x)$ और C(x) क्रमशः कोटि 3, 4 और 5 के बहुपद है, तो दिखाइए

$$\begin{vmatrix} A(x) & B(x) & C(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{vmatrix}$$

f (x) से भाज्य है, जहाँ अवकल गुणांक प्रदर्शित करता है।

5. दिखाइए

कि

6. x,y,z के समीकरण निकाय $(\sin 3 heta)x-y+z=0$

$$(\cos 2\theta)x + 4y + 3z = 0$$

$$2x + 7y + 7z = 0$$

पर विचार कीजिए। θ के वे मान ज्ञात कीजिए। जिनके लिए इस निकाय के अतुच्छ (non-trivial) हल होंगे।

A.
$$n\pi, \quad n\pi + (-1)^n\pi/6, n \in Z$$

B.
$$2n\pi, \quad 2n\pi + \pi/6, n \in Z$$

 $\mathsf{C}.\,n\pi$

D. इनमे से कोई नहीं

Answer: A

7. माना
$$\Delta_a = egin{array}{c|ccc} a-1 & n & 6 \ \left(a-1
ight)^2 & 2n^2 & 4n-2 \ \left(a-1
ight)^3 & 3n^2 & 3n^2-3n \end{array}$$
 तो $\sum\limits_{a=1}^n \Delta_a = \,$

$$A. - 1$$

- B.0
- **C**. 1
- D. इनमे से कोई नहीं

Answer: B

वीडियो उत्तर देखें

8. माना त्रिअंकीय संख्यायें A2B ,3B9 तथा 62C एक निश्चित पूर्णांक C से पूर्णतः

विभाजित हैं जहाँ A,B तथा C, O व 9 के मध्य पूर्णांक हैं ।तब दर्शाइये कि

सारणिक
$$egin{array}{c|cccc} A & 3 & 6 \\ 8 & 9 & C \\ 2 & B & 2 \end{array}$$
 भी K से विभाजित है।

. यदि
$$a
eq p$$
,

9. यदि
$$a \neq p$$
, $b \neq q$, $c \neq r$ और $\begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix} = 0$, तो

$$rac{p}{p-a}+rac{q}{q-b}+rac{r}{r-c}$$
 का मान ज्ञात कीजिये।

🔼 वीडियो उत्तर देखें

10. माना λ और lpha वास्तविक हैं। λ के उन सभी वास्तविक मानों का समुच्चय

ज्ञात कीजिए. जिनके लिए रेखीय समीकरण निकाय

$$\lambda x + (\sin \alpha)y + (\cos \alpha)z = 0$$

$$x + (\cos \alpha)y + (\sin \alpha)z = 0$$

$$-x + (\sin \alpha)y - (\cos \alpha)z = 0$$

का एक अतुच्छ हल होगा।

$$\lambda=1$$
 के लिए, a के मान क्या होंगे?

11. A, B, C और P, Q, R के सभी मानो के लिए,

$$egin{array}{cccc} \cos(A-P) & \cos(A-Q) & \cos(A-R) \ \cos(B-P) & \cos(B-Q) & \cos(B-R) \ \cos(C-P) & \cos(C-Q) & \cos(C-R) \ \end{array} =$$

12. यदि $a>0,\, d>0$, तो सरणिक

$$\begin{vmatrix} \frac{1}{a} & \frac{1}{a(a+d)} & \frac{1}{(a+d)(a+2d)} \\ \frac{1}{a+d} & \frac{1}{(a+d)(a+2d)} & \frac{1}{(a+2d)(a+3d)} \\ \frac{1}{a+2d} & \frac{1}{(a+2d)(a+3d)} & \frac{1}{(a+3d)(a+4d)} \end{vmatrix}$$

का मान है

A.
$$\dfrac{4d^4}{a(a+d)^2(a+2d)^2(a+3d)^2}$$

B.
$$\dfrac{4d^4}{a(a+d)^2(a+2d)^2(a+3d)^2(a+4d)}$$
C. $\dfrac{1}{a(a+d)(a+2d)(a+3d)(a+4d)}$

D. इनमे से कोई नहीं

Answer: B

13. माना f(x) एक फलन है जो निम्न प्रतिबंधो को संतुष्ट करता है

(i)
$$f(0) = 2$$
, $f(1) = 1$

(ii)
$$x=rac{5}{2}$$
 पर f का मान निम्नतम है तथा

$$f'(x) = egin{array}{ccccc} 2ax & 2ax-1 & 2ax+b+1 \ b & b+1 & -1 \ 2(ax+b) & 2ax+2b+1 & 2ax+b \end{array}$$

जहाँ a,b और c नियतांक है।

नियतांक a व b के मान है

14. $'\theta'$ के सभी मानो के लिए

15. माना a,b व c वास्तविक संख्याएँ हैं, जिनके लिए $a^2+b^2+c^2=1$, तब समीकरण

$$egin{array}{|c|c|c|c|c|} ax-by-c & bx+ay & cx+a \\ bx+ay & -ax+by-c & cy+b \\ cx+a & cy+b & -ax-by+c \end{array} = 0$$
 निरूपित

करता है

B. सरल रेखा

C. परवलय

D. इनमे से कोई नहीं

Answer: B

एकल पूर्णांक प्रश्न

1. माना कि
$$\omega=\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}$$
 एक सम्मिश्र संख्या है, तो $\begin{vmatrix}z+1&\omega&\omega^2\\\omega&z+\omega^2&1\\\omega^2&1&z+\omega\end{vmatrix}=0$ को संतुष्ट करने वाली विभिन्न सम्मिश्र

संख्याओं z की संख्या है।

- A. एक
- B. दो
- C. अनंत
- D. इनमे से कोई नहीं

Answer: A

2. माना कि k एक धनात्मक वास्तविक संख्या है तथा

$$A = egin{bmatrix} 2k - 1 & 2\sqrt{k} & 2\sqrt{k} \ 2\sqrt{k} & 1 & -2k \ -2\sqrt{k} & 2k & -1 \ \end{bmatrix} \ B = egin{bmatrix} 0 & 2k - 1 & \sqrt{k} \ 1 - 2k & 0 & 2\sqrt{k} \ -\sqrt{k} & -2\sqrt{k} & 0 \ \end{bmatrix}$$

यदि det (adj + A) + det (adj B) = 10^6 , तो [k] का मान है।

एव

[नोट adj M किसी वर्ग आव्यूह M का adjoint तथा [k] अधिकतम पूर्णांक जो k से कम या समान है।]

3. ऐसे सभी भिन्न (distinct) $x \in R$, जिनके लिए

$$egin{array}{c|ccc} x & x^2 & 1+x^3 \ 2x & 4x^2 & 1+8x^3 \ 3x & 9x^2 & 1+27x^3 \ \end{array} = 10$$
 है, की कुल संख्या है

