



## MATHS

## BOOKS - CAMBRIDGE MATHS (KANNADA ENGLISH)

## **MODEL QUESTION PAPER 7**



1. If the H.C.F. of 65 and 117 is expressible in the form of 65m -

117, then the value of m is

A. 4

B. 3

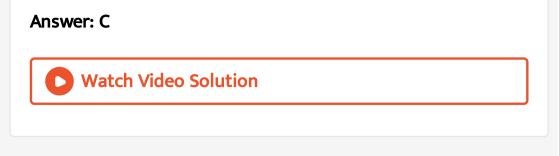
C. 11

D. 2

Answer: B

**Watch Video Solution** 

**2.** If  $\sin x = \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ$ , then the value


of  $\boldsymbol{x}$  is

A.  $0^{\circ}$ 

B.  $30^{\circ}$ 

C.  $45^{\circ}$ 

D.  $60^{\,\circ}$ 



**3.** The angle between the radius of a circle and the tangent drawn at the point of contact is

A.  $0^{\circ}$ 

B.  $60^{\circ}$ 

C.  $90^{\circ}$ 

D.  $30^{\circ}$ 

#### Answer:



**4.** The T.S.A. of a cuboid of dimension, l=30cm, b=20cm, c=10cm, is \_\_\_\_

A.  $600 cm^2$ 

 $\mathsf{B.}\,60cm^2$ 

 ${\rm C.}\,6000 cm^2$ 

 ${\rm D.}\,2200 cm^2$ 

#### Answer:

Watch Video Solution

5. Which of the following is a polynomial

A. 
$$x^2-5x+3\sqrt{x}$$

B.  $x^{1/2} + x^{1/2} - x + 1$ 

C. 
$$\sqrt{x}-rac{1}{\sqrt{x}}$$
  
D.  $x^2-4x+\sqrt{2}$ 

#### Answer: B::D



**6.** The value of p is x, 2x + p and 3x + 6 are in A.P.

A. p = 3

 $\mathsf{B.}\, p=2$ 

C. p = 1

D. p = 0

# Answer: C Watch Video Solution 7. In triangle PQR, The value of y is a, 12 R

B.  $6\sqrt{3}$ 

C.  $5\sqrt{3}$ 

D.  $\sqrt{3}$ 

#### Answer: C



**8.** When 2 unbiased coins are tossed at a time, the probability of getting 2 heads is \_\_\_\_\_

A. 
$$\frac{1}{4}$$
  
B.  $\frac{1}{2}$   
C. 1

D. 0

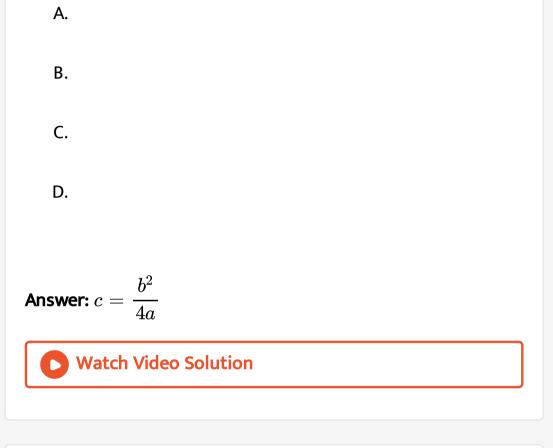
#### Answer: A::D



9. If the product of zeroes of polynomial f(y) $=ay^3-6y^2+11y-6$  is 4 then find the value of 'a'.

A.

Β.


C.

D.

Answer:  $a = \frac{3}{2}$ 

Watch Video Solution

10. What is the value of C, if  $ax^2 + bx + c = 0$  has equal roots ?



11. Find the second term if sum of the 'n' tem of an AP is  $2n^2 + 1$  .

| A. |  |  |  |
|----|--|--|--|
| В. |  |  |  |
| C. |  |  |  |

D.

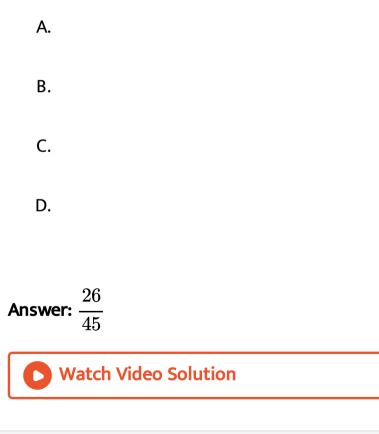
Answer: 6

Watch Video Solution

12. State converse of Pythagoras Theorem.

A.

Β.


C.

D.

#### Answer:



13. What is the 
$$rac{p}{q}(p,q\in z,q
eq 0)$$
 form of  $0.5ar{7}$  ?



14. If  $\sin \theta = rac{1}{3}$  , then find the value of  $\left(2\cot^2 \theta + 2
ight)$ A. B. C.

#### Answer: 18

#### **Watch Video Solution**

**15.** In 
$$\sin(A+B) = \frac{\sqrt{3}}{2}$$

and

 $\cos(A-B) = 1, 0 < A+B < 90^{\circ}, A \geq B.$ 

| ŀ | ł |    |  |
|---|---|----|--|
| L | , | ١, |  |
|   |   |    |  |
|   |   |    |  |

C.

D.

Answer:  $A=30^\circ$  ,  $B=30^\circ$ 



**16.** The surface area of a sphere is same as the C.S.A of a right circular cylinder whose height and diameter are 4 cm each. Find the radius of the sphere.

A.

Β.

C.

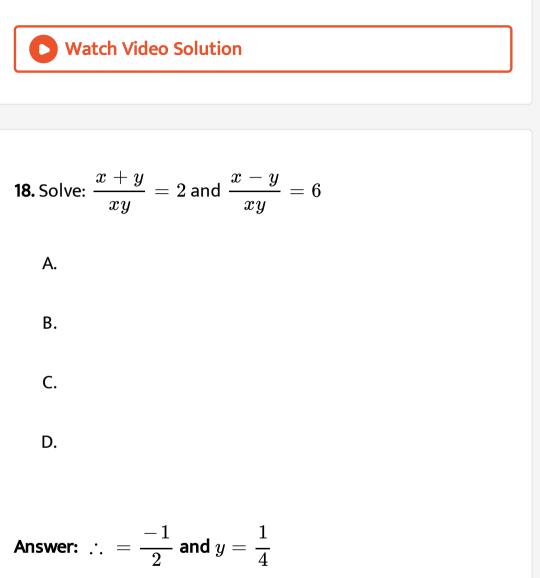
D.

Answer:  $\therefore$  Radius of the sphere = 2cm.



17. By Euclid's division lemma, show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.

A.


Β.

C.

D.

Answer: 3m+1, where  $m=3q^2+4q+1$ 

#### Hence, it is proved.



#### Watch Video Solution

19. Solve : 
$$y^2-ig(\sqrt{3}+1ig)y+\sqrt{3}=0$$

| A. |  |  |  |
|----|--|--|--|
| Β. |  |  |  |
| C. |  |  |  |
| D. |  |  |  |

Answer: 
$$y = \sqrt{3}$$
 and  $y = 1$ 

**20.** Show that the points (3, 2) (-2, -3) and (2, 3) are collinear

or non-collinear.

| C. |  |  |
|----|--|--|
|    |  |  |
| D. |  |  |

Β.

#### Answer: ∴ They are non - collinear.



21. In the given fig  $\Delta DGH \sim \Delta DEF$ , DH = 8cm, DF = 12cm, DG = (3x - 1)cm and DE = (4x + 2)cm, Find the lengths of DG and DE. OR D is a point on the side BC of  $\Delta ABC$  such that  $\lfloor ADC = \lfloor BAC$ . Prove that  $\frac{CA}{CD} = \frac{CB}{CA}$ .

A. Β. C.

D.

Answer:  $\therefore DG = 3x - 1 = 3 \times 7 - 1 = 21 - 1 = 20$  $DE = 4x + 2 = 4 \times 7 + 2 = 28 + 2 = 30$ 

Watch Video Solution

**22.** A card is drawn at random from a box containing 21 cards numbered 1 to 21. Find the probability that the card drawn is a) Prime number

b) Divisible by 3.

| В.                                                       |  |
|----------------------------------------------------------|--|
| С.                                                       |  |
| D.                                                       |  |
| <b>Answer: a)</b> $\frac{8}{21}$ <b>b)</b> $\frac{2}{7}$ |  |
| <b>Vatch Video Solution</b>                              |  |
|                                                          |  |

23. Draw a circle of radius 3cms. Construct a pair of tangents

to it, from a point 5cm away from the circle.

A.

Β.

C.

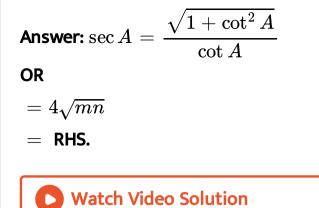
D.

**Answer:** r = 3cm d = 3 + 5 = 8cm

### Watch Video Solution

24. Express sinA and sec A in terms of cot A.

OR


A.

Β.

C.

D.

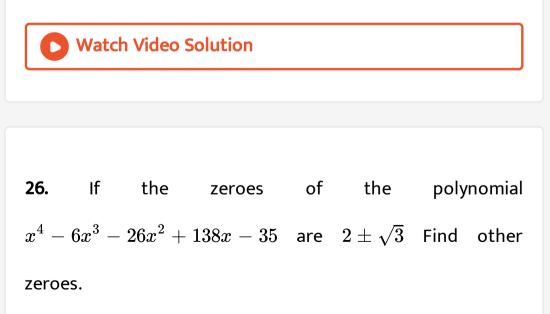
If 
$$an heta+\sin heta=m$$
 and  $an heta-\sin heta=n$ , S.T $m^2-n^2=4\sqrt{mn}$ 



**25.** The sum of the numerator and decominator of a fraction is 24. If 4 is subtracted from the numerator and 5 from its denominator, then it reduces to  $\frac{1}{4}$ . Find the fraction.

## The women and five men can together finish an embroidary work in 4 days. While three women and 6 men can finish in 3 days. Find the time taken by one women alone and also that taken by one man alone.

| в. |  |
|----|--|
| C. |  |


Α.

D.

Answer:  $\therefore$  The fraction is  $\frac{x}{y} = \frac{7}{17}$ 

OR

Thus, 1 woman alone can finish the embroidery in 18 days and 1 man alone can finish it in 36 days.



| A. |  |  |  |
|----|--|--|--|
| Β. |  |  |  |
| C. |  |  |  |

Answer:  $\therefore$  The other two zeroes are 7, -5.

Watch Video Solution

**27.** A two digit number is such that the product of its digits is 18. when 63 is subtracted from the number, the digits interchange their places. Find the number.

OR

D.

A plane left 30 minutes later than the scheduled time and in order to reach its destination 1500 km away in time it has to increase its spedd by 250 km/hr from its usual speed. Find its usual speed.

A. B. C.

D.

Answer: 92

OR

Hence, the usual speed of the plane  $\,=\,750$  km/hr.



28. If the co - ordinates of the mid points of  $\Delta ABC$  are  $D(1,2)E(0,\,-1)$  and F(2, -1). Find the respective co -

ordinates of  $\Delta ABC$ .

#### OR

Find the length of the median through the vertex A(5, 1) drawn to the triangle ABC where other two vertices are B(1, 5) and C(-3, -1)

A. B. C.

D.

Answer:  $\therefore A(x_1y_1) = A(4, -1)$   $B(x_2y_2) = B(0, -1)$   $C(x_3y_3) = C(0, -1)$ OR

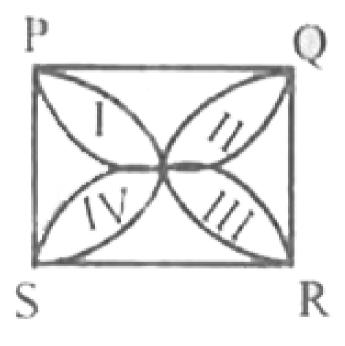
 $\therefore$  Length of median  $=\sqrt{37}$ 

#### 29. Prove that the tangents drawn from an external point are

equal.

A. B. C.

D.


#### Answer:



**30.** If a chord of circle of radius 10cm subtend an angle of  $60^{\circ}$  at the centre of the circle. Find the area of the

#### OR

Find the area of the shaded region where PQRS is a square of side 10cms and semicircles are drawn with each side of square as diameter.



Β.

C.

D.

Answer:  $9.83cm^2$ 

OR

 $43 cm^2$ 

View Text Solution

**31.** Find the mean of the following frequency distribution.

Classes :0 - 2020 - 4040 - 6060 - 8080 - 100Frequency :1518212917

A.

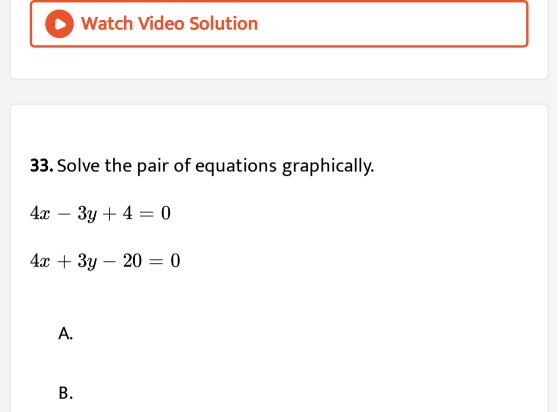
Β.

С.

#### Answer: Mean = 50 + 3 = 53



**32.** Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are  $\frac{2}{3}$  of the corresponding sides of the first triangle.


A.

Β.

C.

D.

Answer:



**Answer:** 

C.

D.

Watch Video Solution

**34.** How many terms of the series 93 + 90 + 87 + ..... amounts to 975. Find also the last term.

OR

If m times the  $m^{th}$  term of an A.P is equal to n times its  $n^{th}$  term, show that  $\left(m+n
ight)^{th}$  term is zero.

Β.

A.

C.

D.

**Answer:**  $T_{13} = 57$ 

OR

 $m=n, T_{m+n}=0$ But m
eq n

**35.** A tower is 50cm high. Its shadow is x mtrs shorter when the suns altitude is  $45^{\circ}$  than when it is  $30^{\circ}$ . Find the value of x.

A. B. C.

**Answer:** 36.6*m* 

D.



**36.** In a right angled triangle , square on the hypotenuse is equal to sum of the squares on the other sides. Prove the statement.

В. С.

D.

A.

#### Answer:



37. The height of cone is 20m. A small cone is cut off from it

at its top by the plane parallel to the base. If the volume of

small cone is  $\frac{1}{1000}$  th of the volume of given conc, at what

height above the base the section is made.

A. B. C.

Answer: 18 m

D.

