© 'doubtnut

MATHS

BOOKS - CAMBRIDGE MATHS (KANNADA

ENGLISH)

MODEL QUESTION PAPER 7

Questions

1. If the H.C.F. of 65 and 117 is expressible in the form of $65 \mathrm{~m}-$

117 , then the value of m is
A. 4
B. 3
C. 11
D. 2

Answer: B

Watch Video Solution

2. If $\sin x=\sin 60^{\circ} \cos 30^{\circ}-\cos 60^{\circ} \sin 30^{\circ}$, then the value of x is
A. 0°
B. 30°
C. 45°
D. 60°

Answer: C

(D) Watch Video Solution

3. The angle between the radius of a circle and the tangent drawn at the point of contact is
A. 0°
B. 60°
C. 90°
D. 30°

Answer:
4. The T.S.A. of a cuboid of dimension,
$l=30 \mathrm{~cm}, b=20 \mathrm{~cm}, c=10 \mathrm{~cm}$, is
A. $600 \mathrm{~cm}^{2}$
B. $60 \mathrm{~cm}^{2}$
C. $6000 \mathrm{~cm}^{2}$
D. $2200 \mathrm{~cm}^{2}$

Answer:

- Watch Video Solution

5. Which of the following is a polynomial
A. $x^{2}-5 x+3 \sqrt{x}$
B. $x^{1 / 2}+x^{1 / 2}-x+1$
C. $\sqrt{x}-\frac{1}{\sqrt{x}}$
D. $x^{2}-4 x+\sqrt{2}$

Answer: B::D

- View Text Solution

6. The value of p is $x, 2 x+p$ and $3 x+6$ are in A.P.
A. $p=3$
B. $p=2$
C. $p=1$
D. $p=0$

Answer: C

- Watch Video Solution

7. In triangle PQR, The value of y is

R
A. $4 \sqrt{3}$
B. $6 \sqrt{3}$
C. $5 \sqrt{3}$
D. $\sqrt{3}$

Answer: C

- View Text Solution

8. When 2 unbiased coins are tossed at a time, the probability of getting 2 heads is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. 0

Answer: A::D

(Watch Video Solution

9. If the product of zeroes of polynomial $f(y)$ $=a y^{3}-6 y^{2}+11 y-6$ is 4 then find the value of ' a '.
A.
B.
C.
D.

Answer: $a=\frac{3}{2}$
10. What is the value of C, if $a x^{2}+b x+c=0$ has equal roots?
A.
B.
C.
D.

Answer: $c=\frac{b^{2}}{4 a}$

D Watch Video Solution

11. Find the second term if sum of the ' n ' tem of an AP is $2 n^{2}+1$.
A.
B.
C.
D.

Answer: 6

D Watch Video Solution

12. State converse of Pythagoras Theorem.
A.
B.
C.
D.

Answer:

(D) Watch Video Solution

13. What is the $\frac{p}{q}(p, q \in z, q \neq 0)$ form of $0.5 \overline{7}$?
A.
B.
C.
D.

Answer: $\frac{26}{45}$

D Watch Video Solution
14. If $\sin \theta=\frac{1}{3}$, then find the value of $\left(2 \cot ^{2} \theta+2\right)$
A.
B.
C.
D.

Answer: 18

- Watch Video Solution

15.

$$
\begin{equation*}
\sin (A+B)=\frac{\sqrt{3}}{2} \tag{and}
\end{equation*}
$$

$\cos (A-B)=1,0<A+B<90^{\circ}, A \geq B$.
A.
B.
C.
D.

Answer: $A=30^{\circ}, B=30^{\circ}$

- Watch Video Solution

16. The surface area of a sphere is same as the C.S.A of a right circular cylinder whose height and diameter are 4 cm each. Find the radius of the sphere.
A.
B.
C.
D.

Answer: \therefore Radius of the sphere $=2 \mathrm{~cm}$.

D Watch Video Solution

17. By Euclid's division lemma, show that the square of any positive integer is either of the form $3 m$ or $3 m+1$ for some integer m .
A.
B.
C.
D.

Answer: $3 m+1$, where $m=3 q^{2}+4 q+1$

Hence, it is proved.

- Watch Video Solution

18. Solve: $\frac{x+y}{x y}=2$ and $\frac{x-y}{x y}=6$
A.
B.
C.
D.

Answer: $\therefore=\frac{-1}{2}$ and $y=\frac{1}{4}$

D Watch Video Solution

19. Solve : $y^{2}-(\sqrt{3}+1) y+\sqrt{3}=0$
A.
B.
C.
D.

Answer: $y=\sqrt{3}$ and $y=1$

D Watch Video Solution
20. Show that the points $(3,2)(-2,-3)$ and $(2,3)$ are collinear or non-collinear.
A.
B.
C.
D.

Answer: \therefore They are non-collinear.

- Watch Video Solution

21.

In
the
given
fig
$\Delta D G H \sim \Delta D E F, D H=8 c m, D F=12 c m, D G=(3 x-1)$
cm and $D E=(4 x+2) \mathrm{cm}$, Find the lengths of DG and DE.

OR

D is a point on the side BC of $\triangle A B C$ such that
$\lfloor A D C=\lfloor B A C$. Prove that
$\frac{C A}{C D}=\frac{C B}{C A}$.
A.
B.
C.
D.

Answer: $\therefore D G=3 x-1=3 \times 7-1=21-1=20$
$D E=4 x+2=4 \times 7+2=28+2=30$

D Watch Video Solution

22. A card is drawn at random from a box containing 21 cards numbered 1 to 21 . Find the probability that the card drawn is
a) Prime number
b) Divisible by 3 .
A.
B.
C.
D.

Answer: a) $\frac{8}{21}$
b) $\frac{2}{7}$
(D) Watch Video Solution
23. Draw a circle of radius 3 cms . Construct a pair of tangents
to it, from a point 5 cm away from the circle.
A.
B.
C.
D.

Answer: $r=3 \mathrm{~cm} \quad d=3+5=8 \mathrm{~cm}$

- Watch Video Solution

24. Express $\sin A$ and $\sec A$ in terms of $\cot A$.

OR

If $\tan \theta+\sin \theta=m \quad$ and $\quad \tan \theta-\sin \theta=n, \quad$ S.T $m^{2}-n^{2}=4 \sqrt{m n}$
A.
B.
C.
D.

Answer: $\sec A=\frac{\sqrt{1+\cot ^{2} A}}{\cot A}$
OR
$=4 \sqrt{m n}$
$=$ RHS.

- Watch Video Solution

25. The sum of the numerator and decominator of a fraction is 24 . If 4 is subtracted from the numerator and 5 from its denominator, then it reduces to $\frac{1}{4}$. Find the fraction. OR

The women and five men can together finish an embroidary work in 4 days. While three women and 6 men can finish in 3 days. Find the time taken by one women alone and also that taken by one man alone.
A.
B.
C.
D.

Answer: \therefore The fraction is $\frac{x}{y}=\frac{7}{17}$ OR

Thus, 1 woman alone can finish the embroidery in 18 days and 1 man alone can finish it in $\mathbf{3 6}$ days.

- Watch Video Solution

26. If the zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$ Find other zeroes.
A.
B.
C.
D.

Answer: \therefore The other two zeroes are 7, -5.

D Watch Video Solution

27. A two digit number is such that the product of its digits is 18 . when 63 is subtracted from the number, the digits interchange their places. Find the number.

OR

A plane left 30 minutes later than the scheduled time and in order to reach its destination 1500 km away in time it has to
increase its spedd by $250 \mathrm{~km} / \mathrm{hr}$ from its usual speed. Find its usual speed.
A.
B.
C.
D.

Answer: 92
OR
Hence, the usual speed of the plane $=750 \mathrm{~km} / \mathrm{hr}$.

- Watch Video Solution

28. If the co - ordinates of the mid points of $\triangle A B C$ are $D(1,2) E(0,-1)$ and $\mathrm{F}(2,-1)$. Find the respective co -
ordinates of $\triangle A B C$.

OR

Find the length of the median through the vertex $A(5,1)$ drawn to the triangle $A B C$ where other two vertices are $B(1$,
5) and $C(-3,-1)$
A.
B.
C.
D.

Answer: $\therefore A\left(x_{1} y_{1}\right)=A(4,-1)$
$B\left(x_{2} y_{2}\right)=B(0,-1)$
$C\left(x_{3} y_{3}\right)=C(0,-1)$
OR
\therefore Length of median $=\sqrt{37}$
29. Prove that the tangents drawn from an external point are equal.
A.
B.
C.
D.

Answer:

D Watch Video Solution

30. If a chord of circle of radius 10 cm subtend an angle of 60° at the centre of the circle. Find the area of the
corresponding segment of the circle. (Take
$p=3.14, \sqrt{3}=1.7)$

OR

Find the area of the shaded region where PQRS is a square of side 10 cms and semicircles are drawn with each side of square as diameter.

R
A.
B.
C.
D.

Answer: $9.83 \mathrm{~cm}^{2}$
OR
$43 \mathrm{~cm}^{2}$

- View Text Solution

31. Find the mean of the following frequency distribution.

Classes : $\quad 0-20 \quad 20-40 \quad 40-60 \quad 60-80 \quad 80-100$
$\begin{array}{llllll}\text { Frequency : } & 15 & 18 & 21 & 29 & 17\end{array}$
A.
B.
C.
D.

Answer: Mean $=50+3=53$

D Watch Video Solution

32. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.
A.
B.
C.
D.

Answer:

- Watch Video Solution

33. Solve the pair of equations graphically.
$4 x-3 y+4=0$
$4 x+3 y-20=0$
A.
B.
C.
D.

Answer:

34. How many terms of the series $93+90+87+\ldots . .$. amounts to 975 . Find also the last term.

OR
If m times the $m^{\text {th }}$ term of an A.P is equal to n times its $n^{t h}$ term, show that $(m+n)^{t h}$ term is zero.
A.
B.
C.
D.

Answer: $T_{13}=57$
OR
$m=n, T_{m+n}=0$
But $m \neq n$
35. A tower is 50 cm high. Its shadow is x mtrs shorter when the suns altitude is 45° than when it is 30°. Find the value of x.
A.
B.
C.
D.

Answer: $36.6 m$
36. In a right angled triangle, square on the hypotenuse is equal to sum of the squares on the other sides. Prove the statement.
A.
B.
C.
D.

Answer:

- Watch Video Solution

37. The height of cone is 20 m . A small cone is cut off from it at its top by the plane parallel to the base. If the volume of
small cone is $\frac{1}{1000}$ th of the volume of given conc, at what height above the base the section is made.
A.
B.
C.
D.

Answer: 18 m

(D) Watch Video Solution

