

BOOKS - CAMBRIDGE MATHS (KANNADA ENGLISH)

MOST LIKELY QUESTION PAPER 9

I In The Following Questions Four Choices Are Given For Each Question Choose And Write The Correct Answer Along With Its Alphabet 1. For some integer n every odd integer is of

the form

A. 2n + 1

B. n + 1

 $\mathsf{C}.\,2n$

D. n

Answer: A::B

2.	The	value	of			
$\sin^2 15^\circ + { m s}$	$\sin^2 25^\circ + \sin$	$265^{\circ} + \mathrm{si}$	n^275° is			
A. 0						
B. 1						
C. 2						
D. 3						
Answer: B						
Watch Video Solution						

3. If chord AB subtends an angle 50° at the centre of a circle then the angle between the tangents at A and B is

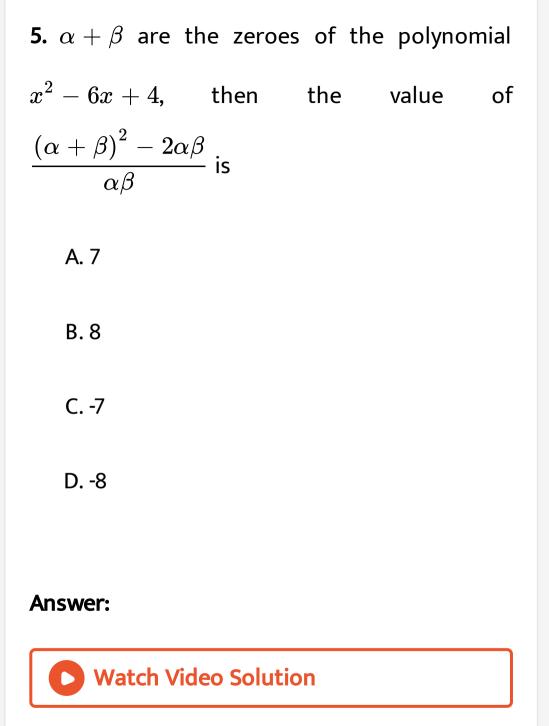
A. $40^{\,\circ}$

B. $100\,^\circ$

C. 130°

D. $120^{\,\circ}$

Answer: A::C


4. The formula used to find the volume of a

sphere

A.
$$\frac{4}{3}\pi r^{3}$$

B. $\frac{2}{3}\pi r^{3}$
C. $\frac{1}{3}\pi r^{3}$

D.
$$\pi r$$

Answer: C::D

6. If 29th term of an A.P is twice its 19th term,

then the 9th term is

A. -1

B. 0

C. 1

D. 2

Answer:

$\Delta ABC, AB = 6\sqrt{3}cm, AC = 12cm, BC = 6cm$

, The angle B is

A. $45^{\,\circ}$

B. 90°

 $\mathsf{C.}\,60^{\,\circ}$

D. $30^{\,\circ}$

Answer:

In

8. If the probability of an event is P(A) then the probability of its complimentary event will be

A.
$$1 + P(A)$$

B. $1 - P(A)$
C. $P(A) - 1$
D. $\frac{1}{P(A)}$

Answer: A

1. If α and β are the zeroes of the quadratic polynomial $2-3x-x^2$ then what is the value of lpha+eta+lphaeta?

A.

Β.

C.

D.

Answer: -5

2. What are the roots of the quadratic equation $x^2+\left(\sqrt{3}+1
ight)+\sqrt{3}=0?$

Α.

Β.

C.

D.

3. If the nth terms of the two AP 9, 7, 5,and

24, 21, 18,are same. Find n.

Β.

Α.

C.

D.

Answer: n = 16

4. Find the H.C.F. of 455 and 42 with the help of Euclid's division algorithm.

Β.

Α.

C.

D.

Answer: \therefore H.C.F. (455, 42) = 7

5. Find θ if $\sin(\theta + 56 = \cos \theta$, where θ and

(heta+56) are less than $90^\circ.$

Α.

Β.

C.

D.

Answer: $\theta = 17$

6. If $x = a \sin \theta$ and $y = b \tan \theta$, then find the

value of $\displaystyle rac{a^2}{x^2} - \displaystyle rac{b^2}{y^2}$

A.

Β.

C.

D.

Answer: 1

7. Calculate the height of a right circular cone where C.S.A. and base radius are $12320cm^2$ and 56 cms, respectively .

С.

Α.

Β.

D.

Answer: h=14 imes 3=42 cm

View Text Solution

1. Show that any positive odd integer is of the form 6q+1, or 6q+3, or 6q+5, where q is some integer.

A.

Β.

C.

D.

Answer: $\Rightarrow 6q+1, 6q+3, 6q+5$ are the

positive odd integers.

2. Solve :
$$2x + 3y = 9$$

3x + 4y = 5

A.

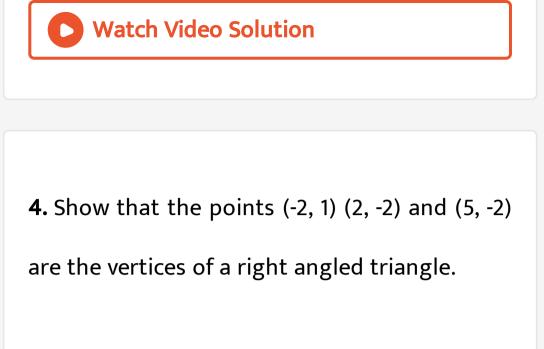
Β.

С.

D.

Answer:
$$x = \frac{-42}{2} = -21$$

3. Solve :
$$(x-2)^2 + 1 = 2x - 3$$


Α.

Β.

С.

D.

Answer: x = 4 or x = 2

A.

Β.

C.

D.

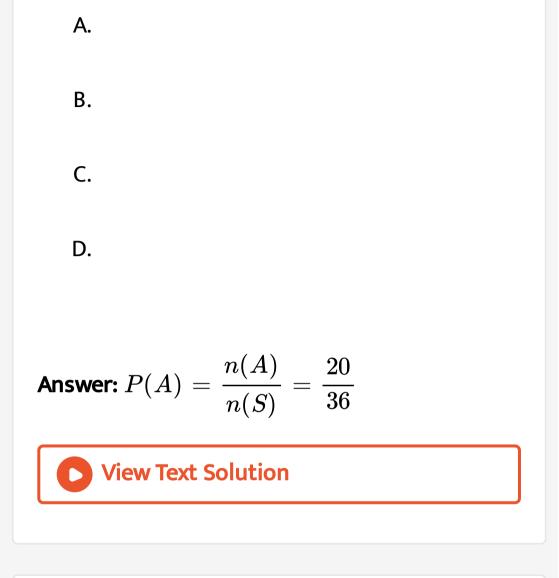
Answer: $\therefore \Delta ABC$ is a right angled triangled at B.

5. The equilateral triangles are drawn on the sides of a right triangle. Show that the area of the triangle on the hypotenuse is equal to the sum of the areas of the triangles on the other two sides.

OR

In the given figure, PA, QB and RC are each perpendicular to AC. Prove that $\frac{1}{x} + \frac{1}{z} = \frac{1}{y}$

Β.


C.

D.

Answer: \therefore Area of $\Delta XAB +$ Area of $\Delta YBC =$ Area of ΔZAC

6. Two dice are thrown simultaneously . Find the probability that the sum of the numbers on the faces is neither divisible by 4 nor by 5.

7. Draw a circle of radius 3 cm. Take a point P outside the circle without using the centre of

the circle, draw to tangents to the circle from

an external point P.

Β.

A.

C.

D.

Answer:

8. Prove that $\left(\cos e c \theta - \cot \theta\right)^2 = rac{1 - \cos \theta}{1 + \cos \theta}$

If $\sin heta+\cos heta=\sqrt{2}\sin(90- heta)$ determine $\cot heta$

A.

Β.

C.

D.

Answer: $\therefore \cot \theta = \sqrt{2} + 1$

Iv Answer The Following Questions

1. Asha is 5 times as old as her daughter Usha, 5 years later Asha will be 3 times as old as her daughter Usha. Find the present ages of Asha and Usha.

Or

The sum of 2 digits of a 2 digit number is 12 the number obtained by interchanging the digits exceeds by the given number by 18. Find

the number.

A.

Β.

C

D.

Answer: .[.]. The present age of Asha is 25 years.

The present age of Usha is 5 years.

OR

57

2. Find the other two zeroes of the polynomial $y^4+y^3-9y^2-3y+18$ if the zeroes are $\sqrt{3}$ and $-\sqrt{3}$

A.

Β.

C.

D.

Answer: The four zeros of polynomial are $\sqrt{3}, -\sqrt{3}, -3\&2$

Watch Video Solution

3. Solve for x.

 $rac{1}{a+b+x}=rac{1}{a}+rac{1}{b}+rac{1}{x}$ (Where a
eq 0,b
eq 0,x
eq 0,x
eq 0,x
eq -a,-b)OR

The diagonal of a rectangular field is 60m more than the shorter side. If the larger side is 30m more than the shorter side, find the sides of the field. Β.

C.

D.

Answer: $\Rightarrow x = -a, x = -b$ Or

 \therefore The shorter side = x = 90m

The longer side = x + 30 = 90 + 30 = 120 m.

4. If the points (7, -2) (5, 1) and (3, k) are collinear. Find the value of k.

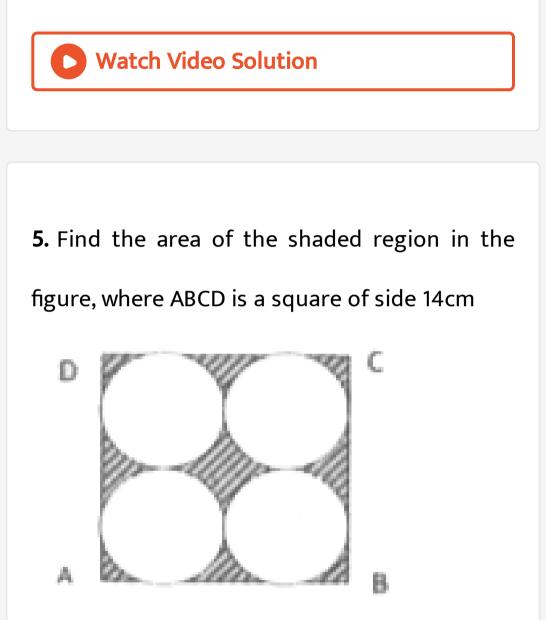
OR

Find the area of Rhombus if its vertices are (3,

0) (4, 5) (-2, -1) taken in order.

A.

Β.


C.

D.

Answer: k = 4

OR

24 sq. units

Find the area of the shaded regions. Given

PQRS a square of sides 14 cm.

A.

Β.

C.

D.

Answer: $42cm^2$

OR

 $42cm^2$

6. The distribution below gives the weights of

30 students of a , class . Find the median

weight of the students.

Weight (in kg)						
40-45	45-50	50-55	55-60	60-65	65-70	70-75
No. of students						
2	3	8	6	6	3	2

A.

Β.

C.

D.

Answer: Median = 56.66

V Answer The Following Questions

1. Solve the pair of equations graphically.

x+y=8 and x-y=-2

A.

Β.

Answer:

Watch Video Solution

2. Devide 20 into four parts which are in arithmetic progression and such that the product of first and fourth is to the product of second and third in the ratio 2:3.

The angles of a quadrilateral are in AP such

that the greatest is double the least calculate

all the angles of the quadrilateral .

В.

С.

A.

D.

Answer: Hence the four parts are (2, 4, 6, 8) or (8, 6, 4, 2) Or 60° , 80° , 100, 120`

View Text Solution

3. A person on the lighhouse of height 100 m above the sea level observes that the angle of depression of a ship sailing towards the light house changes from 30° to 45° . Calculate the distance travelled by the ship during the period of observation. (Take $\sqrt{3} \approx 1.73$)

Α.

Β.

C.

D.

Answer: Therefore, the distance travelled = 73.2 m

4. Prove that " the ratio of areas of two similar

triangles is equal to the square of the ratio of

their altitudes.

A.

Β.

С.

D.

Answer:

Watch Video Solution

Vi Answer The Following Questions

 The radii of the circular ends of the frustrum of height -6cm are 14 cm and 6cm respectively.
 Find the lateral surface area and total surface area of frustrum.

A.

C.

D.

Answer: $1357.71cm^2$