©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - CAMBRIDGE MATHS (KANNADA

ENGLISH)

MOST LIKELY QUESTION PAPER 8

Questions

1. $10 \sec ^{2} A-10 \tan ^{2} A=$
A. $\sec ^{2} A$
B. 10
C. 1
D. 0

Answer: A

D Watch Video Solution
2. The length of the tangent drawn to a circle of
radius 3 cm from 5 cm away from the centre is
A. 4 cm
B. 5 cm
C. 3 cm
D. 2 cm

Answer: C::D

- Watch Video Solution

3. A solid piece of copper of dimension
$24 \times 49 \times 33 \mathrm{~cm}$ is moulded and recast into a
sphere. The radius of the sphere formed is
A. 49 cm
B. 24 cm
C. 21 cm
D. 33 cm

Answer: A::B::C

D Watch Video Solution

4. The degree of the polynomial in the graph given
below is

A. 4
B. 3
C. 1
D. 2

Answer: D

- View Text Solution

5. The sum of the n terms of an AP is $2 n^{2}+5 n$ and its common difference is 6 , then its first term is
A. 0
B. 5
C. 2
D. 7

Answer:
6.
$\triangle P Q R, P R=12 \mathrm{~cm}, Q R=6 \sqrt{3} \mathrm{~cm}, P Q=6 \mathrm{~cm}$,
The angle Q is
A. 45°
B. 90°
C. 30°
D. 120°

Answer:

7. A cube numbered 1 to 6 is thrown once, the probability of getting a number divisible by 3 is

$$
\begin{aligned}
& \text { A. } \frac{2}{3} \\
& \text { B. } 0 \\
& \text { C. } \frac{1}{3} \\
& \text { D. } 1
\end{aligned}
$$

Answer: A::C

- Watch Video Solution

8.

Given
$g(x)=2 x+1, q(x)=\left(x^{3}+3 x^{2}-x+1\right), r(x)=0$
, Find $p(x)$
A.
B.
C.
D.

Answer: $2 x^{4}+7 x^{3}+x^{2}+x+1$

D View Text Solution
9. If the sum of first n odd natural number is 1225 , find the value of n.
A.
B.
C.
D.

Answer: $n=35$

- Watch Video Solution

10. In the flg. $\lfloor A O D$ is divided into 2 parts which are in A.P. the smallest angle $\left\lfloor A O B=20^{\circ}\right.$. Find the common difference between each angle.

A.
B.
C.
D.
11. In $\triangle A B C$, if $D E \| B C$, then,
$\frac{A B}{A D}=\frac{A C}{A E}=\frac{B C}{D E}$, state the theorem to justify this.

A.
B.
C.
D.

Answer:

- Watch Video Solution

12. Find the largest number which divides 650 and 1170.
A.
B.
C.
D.

Answer:

- Watch Video Solution

13. If $\sin \theta=\frac{7}{25}, \cos \theta=\frac{24}{25}$ find the value of $\sin ^{2} \theta+\cos ^{2} \theta$
A.
B.
C.
D.

Answer: 1

- Watch Video Solution

14.

Find
the
value
of $\cos 60^{\circ} \cos 30^{\circ}-\sin 60^{\circ} \sin 30^{\circ}$
A.
B.
C.
D.

- Watch Video Solution

15. The T.S.A of a solid hemisphere of radius 21 mm .
A.
B.
C.
D.

Answer: $4158 \mathrm{~mm}^{2}$
16. Prove that if x and y are odd positive integers, then $x^{2}+y^{2}$ is even but not divisible by 4 .
A.
B.
C.
D.

Answer: $x^{2}+y^{2}$ is even but not divisible by 4 .

- Watch Video Solution

17. Solve: $100 x+200 y=700$ $200 x+100 y=800$
A.
B.
C.
D.

Answer: $y=2$ $x=3$

- Watch Video Solution

18. Find the roots of the quadratic equation $3 x^{2}-2 \sqrt{6} x+2=0$ by formula method.
A.
B.
C.
D.

Answer: \therefore The roots of the quadratic equation are
$\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{3}$.

- Watch Video Solution

19. Find the value of x in which the points (1, -1) $(x, 1)$

 and $(4,5)$ are collinear.A.
B.
C.
D.

Answer: $x=2$

- Watch Video Solution

20. ABC is a right angled triangle, having $\left\lfloor B=90^{\circ}\right.$.

If $B D=D C$, show that $A C^{2}=4 A D^{2}-3 A B^{2}$

OR

Prove that area of the equilateral triangle described
on the side of a square is half the area of the equilateral triangle described on its diagonal.
A.
B.
C.
D.

Answer:

21. A box contains 90 dices which are numbered
from 1 to 90 . If one dise is drawn at random from
the box, find the probability that it bears
i) two digit number
ii) a perfect square number.
A.
B.
C.
D.

Answer: i) $\frac{9}{10}$
ii) $\frac{1}{10}$

- Watch Video Solution

22. Prove that $\frac{\tan \theta+\sin \theta}{\tan \theta-\sin \theta}=\frac{\sec \theta+1}{\sec \theta-1}$

OR
Prove that $(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
A.
B.
C.
D.

Answer:

- Watch Video Solution

23. The sum of the ages of A and B is 85 years. 5
years ago, the age of A was twice that of B. Find the present ages.

OR
A piece of work can be done by 2 men and 7 boys in
4 days. The same piece of work can be done by 4 men and 4 boys in 3 days. How long it would take to do the same work by one man of one boy?
B.
C.
D.

Answer: \therefore Present age of A is 55 years and $B=30$ years.

OR
Thus, one man can complete the work in 15 days and one boy can do the work in 60 days.

D Watch Video Solution

24. Find the zeroes of the polynomial $p(y)=y^{3}-5 y^{2}-2 y+24$ if it is given that Sum
of the two zeros is 7
A.
B.
C.
D.

Answer: \therefore When $\alpha-\beta=1$,
the values are $\alpha=4, \beta=3, r=-2$.
When $\alpha-\beta \equiv-1$,
The value are $\alpha=3, \beta=4, r=-2$.

- Watch Video Solution

25. The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of
the field.

OR
Sum of the areas of two squares is $468 m^{2}$. If the
difference of their perimeters is 24 m , find the sides
of two squares.
A.
B.
C.
D.

Answer: \therefore Shorter side $=90 m=B O=x$ Longer side $=x+30=90+30=120 m$

Diagonal $=x+60=90+60=150 m$
OR
$x=6+y=6+12=18 m$
The sides of two squares are 18 m and 12 m .

- Watch Video Solution

26. Show that the points $x(2,-2) y(-2,1)$ and
$z(5,2)$ are the vertices of a right angled triangle XYZ and also calculate its area.

OR

Find the values of k for which the points
$A(k+1,2 k) B(3 k, 2 k+3)$ and $C(5 k-1,5 k)$ are collinear.
A.
B.
C.
D.

Answer: 12.5 cm

OR

$k=2$, or $k=\frac{1}{2}$
27. Prove that the angle between the two tangents
drawn from an external point to a circle is supplementary to the angle subtended by the linesegment joining the points of contact at the centre.
A.
B.
C.
D.

Answer:

28. Find the area of the shaded region where a circular are of Radius 6 cm has been drawn with the vertex ' O ' of an equilateral Triangle OAB of side

12 cm as centre.

From each corner of a square of side 4 cm a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut as show in Fig, Find the area of the remaining portion of the square.

A.
B.
C.
D.

Answer: $=\left[\frac{600}{7}+36 \sqrt{3}\right]$ Sqcms
OR
68
sqcms

D View Text Solution

29. If the median of the distribution given below is
28.5. Find the values of x and y.

Class Interval	Frequency	Cumalative frequency
$0-10$	5	5
$10-20$	x	$5+\mathrm{x}$
$20-30$	20	$25+\mathrm{x}$
$30-40$	15	$40+\mathrm{x}$
$40-50$	y	$40+\mathrm{x}+\mathrm{y}$
$50-60$	5	$45+\mathrm{x}+\mathrm{y}$
Total	$\mathbf{6 0}$	

A.
B.
C.
D.

Answer: $x=8$

- View Text Solution

30. Solve the pair of equations graphically.
$x+y=3$ and $3 x-2 y=4$
A.
B.
C.
D.

Answer:

- Watch Video Solution

31. If the sum of first 8 terms of an Arithmetic progression is 136 and that of first 15 terms is 465 , then find the sum of first 25 terms.

OR

Ths sum of the 5 th and 9 th terms of an A.P. is 40
and the sum of the 8 th and 14 th term is 64 . Find the sum of the first 20 terms.
A.
B.
C.
D.

Answer: $S_{25}=1275$
OR
610
32. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.
A.
B.
C.
D.

Answer: Height of the ploes $=20 \sqrt{3} \mathbf{~ m}$

- Watch Video Solution

33. A circus tent is made of canvas and is in the form of a right circular cylinder and a right circular cone above it. The diameter and height of the cylindrical part of the tent are 126 m and 5 m respectively. The total height of the tent is 21 m .

Find the total cost of the canvas used to make the tent when the cost per m^{2} of the canvas is Rs. 15.
A.
B.
C.
D.

Answer: \therefore Cost of canvas $=R s .2,22,750$

- Watch Video Solution

