

MATHS

BOOKS - CAMBRIDGE MATHS (KANNADA ENGLISH)

POLYNOMIALS

1. (i) The graphs of y p(x) are given in Fig. below, for some polynomials p(x). Find the

number of zeroes of p(x), in each case.

Watch Video Solution

1. (i)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $x^2 - 2x - 8$

(ii)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

 $4s^2 - 4s + 1$

(iii)(Find the zeroes of the following quadratic polynomials and verify the relationship

between the zeroes and the coefficients.

$$6x^2 - 3 - 7x$$
)

(iv)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4u^2 + 8u$ (v)Find the zeroes of the following quadratic polynomials and verify the relationship

between the zeroes and the coefficients.

 $t^2 - 15$

(vi)Find the zeroes of the following quadratic polynomials and verify the relationship

between the zeroes and the coefficients.

$$3x^2 - x - 4$$

Watch Video Solution

2. (i) Find a quadratic polynomial each with the

given numbers as the sum and product of its zeroes respectively.

$$rac{1}{4},\ -1$$

(ii) Find a quadratic polynomial each with the

given numbers as the sum and product of its

zeroes respectively.

 $\sqrt{2}, \frac{1}{3}$

(iii) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

 $0,\sqrt{5}$

(iv) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

1, 1

(v) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

 $-rac{1}{4},rac{1}{4}$

(vi) Find a quadratic polynomial each with the

given numbers as the sum and product of its

zeroes respectively.

4, 1

Exercise 93

1. (i) Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

 $p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2$ (ii) Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: $p(x) = x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 - x$

(iii) Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

$$p(x) = x^4 - 5x + 6, g(x) = 2 - x^2$$

Watch Video Solution

2. (i) Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: $t^2 - 3, 2t^4 + 3t^3 - 2t^2 - 9t - 12$ (ii) Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial $x^2 + 3x + 1, \, 3x^4 + 5x^3 - 7x^2 + 2x + 2$ (iii) Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: $x^3 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$

Watch Video Solution

polynomial g(x), the quotient and remainder

were x-2 and -2x+4, respectively. Find g(x).

Watch Video Solution

5. (i) Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and deg p(x) = deg q(x)(ii) Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and deg q(x)=deg r(x)

(iii) Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and deg r(x)=0

Watch Video Solution

Exercise 94

1. (i) Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in this case:

$$2x^2+x^2-5x+2,rac{1}{2},1,\ -2$$

(ii) Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in this case:

$$x^3-4x^2+5x-2,2,1,1$$

Watch Video Solution

2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a

time, and the product of its zeroes as 2, -7, -14

respectively.

4. If the zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3}$ Find other zeroes.

Watch Video Solution

5. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$, is divided by another polynomial $x^2 - 2x + k$, the reminder comes out to be x + a, find k and a.

Watch Video Solution

