

MATHS

BOOKS - CAMBRIDGE MATHS (KANNADA ENGLISH)

TRIANGLES

1. AC = AD and AB biseets A. show that $\Delta ABC \cong \Delta ABD$. What can you say about

BC and BD?

2. ABCD is a quadrilateral in which AD=BC and

 $\angle DAB = \angle CBA$. Prove that:

(i) $riangle ABD \cong riangle BAC$

(ii) BD = AC

(iii) $\angle ABD = \angle BAC$

3. AD and BC are equal perpendiculars to a line

segment AB. Show that CD bisects AB.

Watch Video Solution

4. I and m are two parallel lines intersected by another pair of parallel lines p and q. Show

that $riangle ABC\cong riangle CDA$

5. Line I is the bisector of an angle $\angle A$ and B is any point on Ii. BP and BQ are perpendicular forms B to the arms of $\angle A$. Show that:

$\triangle APB \cong \triangle AQB$ (ii) BP = BQ or B is equidisitant from the arms of $\angle A$. B A P

6. In given figure, AC=AE, AB=AD and $\angle BAD = \angle EAC$. Show that BC = DE.

7. AB is line segment and P is its mid point. D and E are points on the same side of AB such that BAD = ABE and EPA = DPB show that (i) $\Delta DAP \cong \Delta EBP$

(ii) AD = BE

8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that (i) $\triangle AMC \cong \triangle BMD$ (ii) $\angle DBC$ is a right angle.

(iii) $riangle DBC\cong riangle ACB$ (iv) $CM=rac{1}{2}AB$

Exercise 5 2

```
1. In an isosceles ABC, with AB = AC, the bisectors of \angle B and \angle C intersect each other at O. Joint A to O. Show that:
(ii) OB = OC
```

(ii) AO bisects $\angle A$

Watch Video Solution

2. In riangle ABC, AD is the perpendicular bisector of BC. Show that riangle ABC is an

isosceles triangle in which AB = AC.

3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides

AC and AB respectively. Show that these

altitudes are equal.

4. ABC is a triangle in which altitude BE and CF to sides AC and AB are equal. Show that

$\Delta ABE \cong \Delta ACF$

(ii) AB = AC, i.e., ABC is an isosceles triangle.

5. ABC and DBC are two isosceles triangles on

the same base BC. Show that,

$\triangle \ ABD = \angle ACD$

6. $\triangle ABC$ is an isosceles triangle in which AB= AC. Side BA is produced to D such that AD

= AB. Show that $\angle BCD$ is a right angle.

7. ABC is a right triangle in which $\angle A = 90^{\circ}$

and AB = AC. Find $\angle B$ and $\angle C$.

8. Show tht the angles of an equilateral triangle are 60° each.

Watch Video Solution

Exercise 5 3

1. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC. If AD is extended to intersect BC at P, show that: (i) $\triangle ABD \cong \triangle ACD$ (ii) $\triangle ABP \cong \triangle ACP$

(iii) AP bisects $\angle A$ as well as $\angle D$

(iv) AP is the perpendicular bisector of BC.

2. AD is an altiude of an isosceles triangle ABC

in which AB = AC. Show that

(i) AD bisects BC (ii) AD bisects A.

3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR. Show that $\Delta ABM \cong \Delta PQN$

(ii) $\Delta ABC \cong \Delta PQR$

4. BE and CF are two altitudes of a triangle ABC. Using RHS congruence rule, prove that

the triangle ABC is isosceles.

5. ABC is an isosceles triangle with AB = AC.

Draw $AP \perp BC$ to show that:

$\angle B = \angle C.$

Watch Video Solution

Exercise 5 4

1. Show that in a right angled triangle, the hypotenuse is the longest side.

2. In the given figure sides AB and AC of $\triangle ABC$, are extended to point P and Q respectively. Also $\angle PBC < \angle QCB$. Show that AC > AB.

3. In the given figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.

4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD. Show that $\angle A < \angle C$ and $\angle B > \angle D$.

5. In the given figure, PR > PQ and PS bisect

 $\angle QPR$. Prove that:

 $\angle PSR > \angle PSQ$

6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

1. ABC is a triangle . Locate a point in the interior of $\triangle ABC$ which is equidistant from all the vertices of $\triangle ABC$.

2. In a triangle, locate a point in its interior of which is equidistant from all the sides of triangle.

3. In a huge park, people are concentrated at three points.

A: where there are different slides and swings for children.

B: Near which a man-made lake is situated.

C: which is near to a larger parking and exit.

Where should an ice-cream parlour be set up

so that maximum number of persons can approach it?

(Hint: The parlour should be equidistant from

A,B and C.)

4. Complete the hexagonal and star shaped Rangolies, By filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case.

Which has more triangles.

