© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

AREA OF PARALLELOGRAMS AND TRIANGLES

Others

1. In $A B C, D$ is the mid-point of $A B, P$ is any point of $B C, C Q| | P D$ meets $A B$ in Q. Show that $\operatorname{ar}(B P Q)=\frac{1}{2} \operatorname{ar}(A B C)$. TO PROVE : $\operatorname{ar}(B P Q)=\frac{1}{2} \operatorname{ar}(A B C)$ CONSTRUCTION : Join CD.

D Watch Video Solution
2. $A B C D$ is a parallelogram, G is the point on $A B$ such that $A G=2 G B, E$ is a point of $D C$ such that $C E=2 D E$ and F is the point on $B C$ such that $B F=2 F C$. Prove that: $\operatorname{ar}(\triangle E G B)=\frac{1}{6} \operatorname{ar}(A B C D)$

D Watch Video Solution

3. The side $A B$ of a parallelogram $A B C D$ is produced to any point P. A line through A parallel to $C P$ meets $C B$ produced in Q and the parallelogram $P B Q R$ completed. Show that $\operatorname{ar}(\operatorname{llgm} A B C D)=\operatorname{ar}(\operatorname{llgm} B P R Q) \cdot$ CONSTRUCTION $: J o i n ~ A C$ and PQ. TO PROVE : $\operatorname{ar}(\operatorname{llgm} A B C D)=\operatorname{ar}(\operatorname{llgm} B P R Q)$

D Watch Video Solution

4. In a $\triangle A B C$, If L and M are points on $A B$ and $A C$ respectively such that $L M|\mid B C$. Prove that: $\operatorname{ar}(\triangle L O B)=\operatorname{ar}(\triangle M O C)$

D Watch Video Solution

5. D is the mid-point of side $B C$ of $\triangle A B C$ and E is the mid-point of $B D$. If O is the mid-point of $A E$, prove that $\operatorname{ar}(\triangle B O E)=\frac{1}{8} \operatorname{ar}(\triangle A B C)$.

D Watch Video Solution

6. In Fig. 9.30, D and E are two points on $B C$ such that
 now answer the question that you have left in the Introduction of this chapter, whether the field of Budha has been actually divided into three parts of equal area?
7. A villager Itwari has a plot of land of the shape of a quadrilateral.

The Gram Panchayat of the village decided to take over some portion of plot from one of the corners to construct a health centre. Itwari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how his proposal will be implemented.

(D) Watch Video Solution

8. In parallelogram $A B C D, A B=10 \mathrm{~cm}$. The altitudes corresponding to the sides $A B$ and $A D$ are respectively 7 cm and $8 c m$. Find $A D$.
9. D, E, F are the mid points of side $A B, B C, A C$ prove that $B D E F$ is a parallelogram whose area is half that of $\Delta \mathrm{ABC}$

D Watch Video Solution

10. If the medians of a $\triangle A B C$ intersect at G, show that $\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle B G C)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$.
GIVEN : $\triangle A B C$ such that its medians $A D, B E$ and $C F$ intersect at
G. TO PROVE
$\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle B G C)=\operatorname{ar}(\triangle A G C)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$

- Watch Video Solution

11. Prove that the area of an equilateral triangle is equal to $\frac{\sqrt{3}}{4} a^{2}$, where a is the side of the triangle. GIVEN : An equilateral triangle
$A B C$ such that $A B=B C=C A=a$. TO PROVE : $\operatorname{ar}(\triangle A B C)=\frac{\sqrt{3}}{4} a^{2}$. CONSTRUCTION $:$ Draw $A D \perp B C$.

D Watch Video Solution

12. In a parallelogram $A B C D, E, F$ are any two points on the sides $A B$ and $B C$ respectively. Show that $\operatorname{ar}(\triangle A D F)=\operatorname{ar}(\triangle D C E)$.

D Watch Video Solution

13. The diagonals of a parallelogram $A B C D$ intersect at O. A line through O meets $A B$ in X and $C D$ in Y. Show that $\operatorname{ar}(A X Y D)=\frac{1}{2}\left(A R^{g m} A B C D\right)$

D Watch Video Solution

14. Show that the segment joining the mid-points of a pair of opposite sides of a parallelogram, divides it into two equal parallelograms. GIVEN : A parallelogram $A B C D, E$ and F are the mid-points of opposite sides $A B$ and $C D$ respectively. TO PROVE : $\operatorname{ar}\left(\left|\left.\right|^{g m} A E F D\right)=\operatorname{ar}\left(| |^{g m} E B C F\right)\right.$ CONSTRCUTION : Join $E F$.

D Watch Video Solution

15. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid C D$ intersect each other at O. Prove that $\operatorname{ar}(\triangle A O D)=a r(\triangle B O C)$.

D Watch Video Solution

16. In Figure, $A B C D$ is a quadrilateral and $B E|\mid A C$ and also $B E$ meets $D C$ produced at E. Show that area of $\triangle A D E$ is equal to the area of the quadrilateral $A B C D$.
17. If a triangle and a parallelogram are on the same base and between the same parallels lines, then the area of the triangle is equal to half that of the parallelogram. GIVEN : A $\triangle A B C$ and $\left|\left.\right|^{g m} B C D E\right.$ on the same base $B C$ and between the same parallels $B C$ and $A D$. TO PROVE $: \operatorname{ar}(\triangle A B C)=1 / 2$ ar ($\left|\left.\right|^{g m} B C D E\right)$ CONSTRUCTION : Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{BC}$, produced at M.

D Watch Video Solution

18. In Figure, $A B C D E$ is a pentagon. A line through B parallel to $A C$ meets $D C$ produced at F. Show that:
$\operatorname{ar}(\triangle A C B)=\operatorname{ar}(\triangle A C F)$
(ii) ar (quadrilateral
$A E D F)=\operatorname{ar}(A B C D E)$
19. Prove that The area of a parallelogram is the product of its base and the corresponding altitude.

D Watch Video Solution

20. Prove that Parallelograms on the same base and between the same parallels are equal in area.

D Watch Video Solution

21. Prove that A diagonal of a parallelogram divides it into two triangles of equal area.

- Watch Video Solution

22. If each diagonal of a quadrilateral separates it into two triangles of equal area then show that the quadrilateral is a parallelogram. GIVEN : A quadrilateral $A B C D$ such that its diagonals $A C$ and $B D$ are such that $\operatorname{ar}(A B D)=\operatorname{ar}(C D B)$ and $\operatorname{ar}(A B C)=\operatorname{ar}(A C D)$. TO PROVE: Quadrilateral $A B C D$ is a parallelogram.

D Watch Video Solution

23. The area of a triangle is half the product of any of its sides and the corresponding altitude. GIVEN : A $A B C$ in which $A L$ is the altitude to the side $B C$. TO PROVE : $\operatorname{ar}(A B C)=\frac{1}{2}(B C \cdot A L)$ CONSTRUCTION : Through C and A draw $C D B A$ and $A D B C$ respectively, intersecting each other at D.
24. Triangles $A B C$ and DBC are on the same base $B C$ with A, D on opposite side of line $B C$, such that $\operatorname{ar}(\perp A B C)=\operatorname{ar}(D B C)$. Show that $B C$ bisects $A D$.

D Watch Video Solution

25. If the diagonals $A C, B D$ of a quadrilateral $A B C D$, intersect at O, and seqarate the quadrilateral into four triangles of equal area, show that quadrilateral $A B C D$ is a parallelogram. GIVEN : A quadrilateral $A B C D$ such that its diagonals $A C$ and $B D$ intersect at O and separate it into four parts such that $\operatorname{ar}(A O B)=\operatorname{ar}(B O C)=\operatorname{ar}(C O D)=\operatorname{ar}(A O D) \quad$ TO PROVE : Quadrilateral $A B C D$ is a parallelogram.

- Watch Video Solution

26. If P is any point in the interior of a parallelogram $A B C D$, then prove that area of the triangle $A P B$ is less than half the are of parallelogram.

D Watch Video Solution

27. The diagonals of quadrilateral $A B C D, A C$ and $B D$ intersect in O. Prove that if $B O=O D$, the triangles $A B C$ and $A D C$ are equal in area. GIVEN : A quadrilateral $A B C D$ in which its diagonals $A C$ and $B D$ intersect at O such that $B O=O D$. TO PROVE : $\operatorname{ar}(A B C)=\operatorname{ar}(A D C)$

D Watch Video Solution

28. $X Y$ is a line parallel to side $B C$ of triangle $A B C$. BEll $A C$ and CF II ABmeetXY $\in E$ and Frespectively. Showt^a r(ABE)=ar(AC F)dot`

D Watch Video Solution

29. In Figure, $A B C D$ is a trapezium in which $A B D C$ and $D C=40 \mathrm{~cm}$ and $A B=60 \mathrm{~cm}$. If X and Y are, respectively, the midpoints of $A D$ and $B C$, prove that : $X Y=50 \mathrm{~cm} D C Y X$ is a trapezium $\operatorname{ar}(\operatorname{trap} \dot{D} C Y X)=\frac{9}{11} \operatorname{ar}(\operatorname{trap} X \dot{Y} B A$

- Watch Video Solution

30. Show that the diagonals of a parallelogram divide it into four triangles of equal area. GIVEN : A parallelogram $A B C D$. The diagonals $A C$ and $B D$ intersect at O. TO PROVE : $\operatorname{ar}(O A B)=\operatorname{ar}(O B C)=\operatorname{ar}(O C D)=\operatorname{ar}(A O D)$
31. Show that the area of a rhombus is half the product of the lengths of its diagonals. GIVEN : A rhombus $A B C D$ whose diagonals $A C$ and $B D$ intersect at O TO PROVE : $\operatorname{ar}($ rhombus $A B C D)=\frac{1}{2}(A C \cdot B D)$

D Watch Video Solution

32. $A B C D$ is a parallelogram whose diagonals $A C$ and $B D$ intersect at O. A Line through O intersects $A B$ at P and $D C$ at Q. Prove that $\operatorname{ar}(P O A)=\operatorname{ar}(Q O C)$.

- Watch Video Solution

33. A point D is taken on the side $B C$ of a $A B C$ such that $B D=2 d C$. Prove that $\operatorname{ar}(A B D)=2 a r(A D C)$.
34. In Figure, D, E are points on sides $A B$ and $A C$ respectively of $A B C$, such that $\operatorname{ar}(B C E)=\operatorname{ar}(B C D)$. Show that 'DE II BC.

- Watch Video Solution

35. $A B C$ is a triangle in which D is the mid-point of $B C$ and E is the mid-point of $A D$. Prove that area of $B E D=\frac{1}{4}$ areaof $A B C$.

D Watch Video Solution

36. In Figure, $A B C D$ is a parallelogram. Prove that: $\operatorname{ar}(B C P)=\operatorname{ar}(D P Q)$ Construction: Join $A C$

D Watch Video Solution

37. $A B C D$ is a parallelogram X and Y are the mid-points of $B C$ and $C D$ respectively. Prove that $\operatorname{ar}(A X Y)=\frac{3}{8} \operatorname{ar}(\wedge(g m) A B C D)$

D Watch Video Solution

38. The area of a trapezium is half the product of its height and the sum of parallel sides. GIVEN : A trapezium $A B C D$ in which $A B|\mid C D ; A B=a, D C=b \quad$ and $\quad A L=C M=h, \quad$ where $A L \perp D C \quad$ and $\quad C M \perp A B$. TO PROVE $\operatorname{ar}(\operatorname{trap} . A B C D)=\frac{1}{2} h(a+b)$ construction : Join $A C$

Watch Video Solution

39. Parallelogram $A B C D$ and rectangle $A B E F$ have the same base $A B$ and also have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.
40. O is any point on the diagonal $B D$ of the parallelogram $A B C D$.

Prove that $\operatorname{ar}(\triangle O A B)=\operatorname{ar}(\triangle O B C)$

D Watch Video Solution

41. Prove that the area of a rhombus is equal to half the rectangle contained by its diagonals. Given: A rhombus $A B C D$ such that its diagonals $A C$ and $B D$ intersect at O. To Prove: ar (rhombus $A B C D)=\frac{1}{2}$ (area of the rectangle contained by its diagonals $=\frac{1}{2}(A C \times B D)$

D Watch Video Solution

42. A quadrilateral $A B C D$ is such that diagonal $B D$ divides its area in two equal parts. Prove that $B D$ bisects $A C$. GIVEN : A quadrilateral
$A B C D$ in which diagonal $B D$ bisects it. i.e. $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle B D C)$ CONSTRUCTION : Join $A C$ Suppose $A C$ and $B D$ intersect at O. Draw $A M \perp B D$ and $C N \perp B D$. то PROVE : $A O=O C$.

- Watch Video Solution

43. Prove that two triangles having the same base and equal areas lie between the same parallels.

- Watch Video Solution

44. Show that a median of a triangle divides it into two triangles of equal area. GIVEN : A $\triangle A B C$ in which $A D$ is the median. TO PROVE
$: \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A D C)$ CONSTRUCTION : Draw $A L \perp B C$
45. $A B C D$ is a trapezium with $A B|\mid D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that $\operatorname{ar}(\triangle A D X)=\operatorname{ar}(\triangle A C Y)$.

D Watch Video Solution

46. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$. Prove that $A B C D$ is a trapezium.

D Watch Video Solution

47. Let $A B C D$ be a parallelogram of area $124 \mathrm{~cm}^{2}$. If E and F are the mid-points of sides $A B$ and $C D$ respectively, then find the area of parallelogram $A E F D$.
48. If $A B C D$ is a parallelogram, the prove that $\operatorname{ar}(A B D)=\operatorname{ar}(B C D)=\operatorname{ar}(A B C)=\operatorname{ar}(A C D)=1 / 2 \mathrm{ar}\left(| |^{g m} \mathrm{~A} \mathrm{~B}\right.$ C D)

D Watch Video Solution

49. Triangles on the same base and between the same parallels are equal in area.

D Watch Video Solution

50. Triangles having equal areas and having one side of one of the triangles, equal to one side of the other, have their corresponding altitudes equal.
51. In Figure, $A B C D$ is a parallelogram and $E F C D$ is a rectangle.

Also $A L \perp D C$. Prove that
(i) $\operatorname{ar}(A B C D=\operatorname{ar}(E F C D)$
(ii) $\operatorname{ar}(A B C D)=D C \times A L$

- Watch Video Solution

52. If E, F, G and H are respectively the mid-points of the sides of a parallelogram $A B C D$, show that $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$.

D Watch Video Solution

53. In Figure, P is a point in the interior of a parallelogram $A B C D$.

Show that $\operatorname{ar}(A P B)+\operatorname{ar}(P C D)=\frac{1}{2} \operatorname{ar}\left({ }^{\wedge}(g m) A B C D\right)$ $a R(A P D)+a r(P B C)=a r(A P B)+a r(P C D)$
54. In Figure, $P Q R S$ and $A B R S$ are parallelograms and X is any point on side $B R$. Show that
$\operatorname{ar}\left(\left|\left.\right|^{g m} P Q R S\right)=\operatorname{ar}\left(| |^{g m} A B R S\right)\right.$,
$\operatorname{ar}(\triangle A X S)=\frac{1}{2} \operatorname{ar}\left(| |^{g m} P Q R S\right)$

- Watch Video Solution

55. The diagonals of a parallelogram $A B C D$ intersect at a point O. Through O, a time is drawn to intersect $A D$ at P and $B C$ at Q. Show that $P Q$ divides the parallelogram into two parts of equal area.

- Watch Video Solution

56. E, F, G, H are respectively, the mid-points of the sides of parallelogram $A B C D$. Show that the area of EFGH is half the area of the parallelogram, $A B C D$. GIVEN : A quadrilateral $A B C D$ in which L, F, G, H are respectively the mid-points of the sides $A B, B C, C D$
and $D A$. TO PROVE : $\operatorname{ar}\left({ }^{\wedge}(g m) E F G H\right)=\frac{1}{2} \operatorname{ar}\left({ }^{\wedge}(g m) A B C D\right)$ CONSTRUCTION : Join H and F

D Watch Video Solution

57. The side $A B$ of a parallelogram $A B C D$ is produced to any point P. A line through A and parallel to $C P$ meets $C B$ produced at Q and then parallelogram $P B Q R$ is completed as shown in Figure. Show that $\left.\operatorname{ar}\left({ }^{\wedge}(g m) A B C D\right)=a r^{g m} P B Q R\right)$.

- Watch Video Solution

58. In Figure, $B C\|X Y, B X\| C A$ and $A B|\mid Y C$ Prove that: $\operatorname{ar}(A B X)=\operatorname{ar}(A C Y)$

D Watch Video Solution

59. The medians $B E$ and $C F$ of a triangle $A B C$ intersect at G. Prove that area of $\triangle G B C=$ area of quadrilateral $A G F E$.

- Watch Video Solution

60. ABCD is a parallelogram. E is a point on BA such that $B E=2 E A$ and F is a point on DC such that $\mathrm{DF}=2 \mathrm{FC}$. Prove that AECF is a parallelogram whose area is one third area of parallelogram ABCD.

D Watch Video Solution

61. A circular grassy plot of land, 42 m in diameter has a path of 3.5 m wide running round it on the outside. Find the cost of gravelling the path at Rs. 4 per square metre.
62. A point O inside a rectangle $A B C D$ is joined to the vertices.

Prove that the sum of the areas of a pair of opposite triangles so formed is equal to the sum of the areas of other pair of triangles.

D Watch Video Solution

63. Which of the following figure lie on the same base and between the same parallels? In such a case, write the common base and two parallels: Figure
(ii) Figure
(iii) Figure Figure
(ii) Figure (iii) Figure

- Watch Video Solution

64. $A B C D$ is a quadrilateral and $B D$ is one of its diagonals as shown in Figure. Show that $A B C D$ is a parallelogram and find its area.
65. In parallelogram $A B C D, A B=10 \mathrm{~cm}$. The altitudes corresponding to the sides $A B$ and $A D$ are respectively 7 cm and 8 cm . Find $A D$.

- Watch Video Solution

66. Show that the segment joining the mid-points of a pair of opposite sides of a parallelogram, divides it into two equal parallelograms.

D Watch Video Solution

67. The diagonals of a parallelogram $A B C D$ intersect at O. A line through O meets $A B$ in X and $C D$ in Y. Show that $\operatorname{ar}($ quadrilateral $A X Y D)=\frac{1}{2} \operatorname{ar}($ parallelogram $A B C D)$
68. Prove that of all parallelograms of which the sides are given, the parallelogram which is rectangle has the greatest area.

D Watch Video Solution

69. In Figure, $A B C D$ is a parallelogram and $E F C D$ is a rectangle.

Also $A L \perp D C$. Prove that
(i) $\operatorname{ar}(A B C D=\operatorname{ar}(E F C D)$
(ii) $\operatorname{ar}(A B C D)=D C \times A L$

- Watch Video Solution

70. If E, F, G and H are respectively the mid-points of the sides of a parallelogram $A B C D$, show that $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$
71. $p A N D q$ are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$. Show that $\operatorname{ar}(A P B)=a r(B Q C)$.

- Watch Video Solution

72. In Figure, P is a point in the interior of a parallelogram $A B C D$.

Show \quad that $\quad \operatorname{ar}(A P B)+\operatorname{ar}(P C D)=\frac{1}{2} \operatorname{ar}\left(\|^{g m} A B C D\right)$ $a r(A P D)+a r(P B C)=a r(A P B)+a r(P C D)$

D Watch Video Solution

73. In Figure, $A B C D$ is a parallelogram, $A E \perp D C$ and $\mathbb{C} F \perp A D$.

If $A B=16 C M, A E=8 \mathrm{~cm}$ and $C F=10 \mathrm{~cm}$, find $A D$
74.
$A D=6 \mathrm{~cm}, C F=10 \mathrm{~cm}$, and $A E=8 \mathrm{~cm}$, find $A B$.

D Watch Video Solution

75. Let $A B C D$ be a parallelogram of area $124 \mathrm{~cm}^{2}$. If E and F are the mid-points of sides $A B$ and $C D$ respectively, then find the area of parallelogram $A E F D$

- Watch Video Solution

76. If $A B C D$ is a parallelogram, then prove that $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle B C D)=\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A C D)$
$=\frac{1}{2} \operatorname{ar}($ parallelogram $A B C D)$
77. Show that a median of a triangle divides it into two triangles of equal area.

D Watch Video Solution

78. $A D$ is one of the medians of a $A B C \cdot X$ is any point on $A D$.

Show that $\operatorname{ar}(A B X)=a r(A C X)$

- Watch Video Solution

79. In a $A B C, E$ is the mid-point of median $A D$. Show that $\operatorname{ar}(B E D)=\frac{1}{4} \operatorname{ar}(A B C)$

- Watch Video Solution

80. In Figure, $A B C D$ is a quadrilateral and $B E \mid A C$ and also $B E$ meets $D C$ produced at E. Show that area of $A D E$ is equal to the
area of the quadrilateral $A B C D$

D Watch Video Solution

81. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at O. Prove that $a r(A O D)=a r(B O C)$.

D Watch Video Solution

82. In Figure, $A B C D E$ is a pentagon. A line through B parallel to $A C$ meets $D C$ produced at F. Show that:
(i) $\operatorname{ar}(A C B)=a r(A C F)$
(ii) $\operatorname{ar}(A E D F)=\operatorname{ar}(A B C D E)$
83. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

D Watch Video Solution

84. The diagonals of quadrilateral $A B C D, A C$ and $B D$ intersect in O. Prove that if $B O=O D$, the triangles $A B C$ and $A D C$ are equal in area.

- Watch Video Solution

85. If the diagonals $A C, B D$ of a quadrilateral $A B C D$, intersect at
O, and separate the quadrilateral into four triangles of equal area, show that quadrilateral $A B C D$ is a parallelogram.
86. If each diagonals of a quadrilateral separates it into two triangles of equal area then show that the quadrilateral is a parallelogram.

- Watch Video Solution

87. Show that the area of a rhombus is half the product of the lengths of its diagonals.

- Watch Video Solution

88. The side $A B$ of a parallelogram $A B C D$ is produced to any point $P . A$ line through A and parallel to $C P$ meets $C B$ produced at Q and then parallelogram PBQR is completed as shown in Figure. Show that $\operatorname{ar}\left(\left|\mid{ }^{g m} A B C D\right)=\operatorname{ar}\left(\left.| |\right|^{g m} P B Q R\right)\right.$

D Watch Video Solution

89. A villager Itwari has a plot of land of the shape of a quadrilateral.

The Gram Panchayat of the village decided to take over some portion of plot from one of the corners to construct a Health centre. Itwari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how his proposal will be implemented.

- Watch Video Solution

90. $A B C D$ is a trapezium with $A B|\mid D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that $\operatorname{ar}(A D X)=\operatorname{ar}(A C Y)$.
91. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that $\operatorname{ar}(A O D)=\operatorname{ar}(B O C)$. Prove that $A B C D$ is a trapezium.

D Watch Video Solution

92. In Figure, $A P\|B Q\| C R$. Prove that $a r(A Q C)=a r(P B R)$

D Watch Video Solution

93.

In
Fig.9.29,
$\operatorname{ar}(B D P)=a r(A R C)$ and
$\operatorname{ar}(B D P)=a r(A R C)$. Show that both the quadrilaterals $A B C D$ and DCPR are trapeziums.

- Watch Video Solution

94. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that $\operatorname{ar}(A O D)=\operatorname{ar}(B O C)$. Prove that $A B C D$ is a trapezium.

- Watch Video Solution

95. In Figure, diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intersect at

O such that $O B=O D$. If $A B=C D$, then show that:
(i) $a r \triangle(D O C)=a r \triangle(A O B)$
(ii) $a r \triangle(D C B)=a r \triangle(A C B)$
(iii) $D A \| C B$

D Watch Video Solution

96. A point O inside a rectangle $A B C D$ is joined to the vertices.

Prove that the sum of the areas of a pair of opposite triangles so formed is equal to the sum of the other pair of triangles. Given: A
rectangle $A B C D$ and O is a point inside it. $O A, O B, O C$ and $O D$ have been joined. To Prove:
$a r(A O D)+a r(B O C)=a r(A O B)+\operatorname{ar}(C O D)$

D Watch Video Solution

97. Show that the area of a rhombus is half the product of the lengths of its diagonals. GIVEN : A rhombus $A B C D$ whose diagonals $A C$ and $B D$ intersect at O. TO PROVE : $\operatorname{ar}(r h o m b u s A B C D)=\frac{1}{2}(A C x B D)$

D Watch Video Solution

98. $A B C D$ is a parallelogram and O is any point in its interior. Prove that:
(i) $\operatorname{ar}(A O B)+\operatorname{ar}(C O D)=\frac{1}{2} \operatorname{ar}(A B C D)$
(ii) $\operatorname{ar}(A O B)+\operatorname{ar}(C O D)=\operatorname{ar}(B O C)+\operatorname{ar}(A O D)$
99. A quadrilateral $A B C D$ is such that diagonal $B D$ divides its area in two equal parts. Prove that $B D$ bisects $A C$ GIVEN : A quadrilateral $A B C D$ in which diagonal $B D$ bisects it. i.e. $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle B D C)$ CONSTRUCTION : Join $A C$ Suppose $A C$ and $B D$ intersect at O. Draw $A L \perp B D$. TO PROVE : $A O=O C$

D Watch Video Solution

100. Parallelogram $A B C D$ and rectangle $A B E F$ have the same base
$A B$ and also have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle. GIVEN : $A\left|\left.\right|^{g m} A B C D\right.$ and a rectangle $A B E F$ with the same base $A B$ and equal areas. TO PROVE: Perimeter of $\left|\left.\right|^{g m} A B C D>\right.$ Perimeter of rectangle ABEF i.e.
$A B+B C+C D+A D>A B+B E+E F+A F$
101. O is any point on the diagonal $B D$ of the parallelogram $A B C D$.

Prove that $\operatorname{ar}(\triangle O A B)=a r(\triangle O B C)$

D Watch Video Solution

102. Triangles $A B C$ and $D B C$ are on the same base $B C$ with A, D on opposite side of line $B C$, such that $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle D B C)$. Show that $B C$ bisects $A D$.

D Watch Video Solution

103. D and E are points on sides AB and AC respectively of $\triangle A B C$ such that $a r(D B C)=a r(E B C)$. Prove that $D E|\mid B C$.
104. If the medians of a $\triangle A B C$ intersect at G, show that $\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle B G C)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$. GIVEN : $\triangle A B C$ such that its medians $A D, B E$ and $C F$ intersect at $G \quad$ TO PROVE $\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle B G C)=\operatorname{ar}(\triangle C G A)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$.

- Watch Video Solution

105. D, E and F are respectively the mid-points of the sides $B C, C A$ and AB of a $\triangle A B C$. Show that
(i) BDEF is a parallelogram.
(ii) $\operatorname{ar}(D E F)=\frac{1}{4} \operatorname{ar}(A B C)$
(iii) $\operatorname{ar}(B D E F)=\frac{1}{2} \operatorname{ar}(A B C)$
106. $B D$ is one of the diagonals of a quadrilateral $A B C D . A M$ and $C N$ are the perpendiculars from A and C, respectively, on $B D$. Show that ar (quad. $A B C D)=\frac{1}{2} B D(A M+C N)$

D Watch Video Solution

107. $A B C D$ is a quadrilateral. A line through D, parallel to $A C$, meets $B C$ produced in P as shown in figure. Prove that $\operatorname{ar}(\triangle A B P)=\mathrm{ar}($ Quad. $A B C D)$.

- Watch Video Solution

108. If the median of a $\triangle A B C$ intersect at G. show that $\operatorname{ar}(\triangle A G C)=a r$
$(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{BGC})=1 / 3 \operatorname{ar}(\triangle \mathrm{ABC})$

D Watch Video Solution

109. $X Y$ is a line parallel to side $B C$ of triangle $A B C$. IfBEII $A C$ and CFIIAB meet $X Y$ at E and F respectively.Show that $\operatorname{ar}(A B E)=\operatorname{ar}(A C F)$.

- Watch Video Solution

110. E, F, G, H are respectively, the mid-points of the sides $A B, B C, C D$ and $D A$ of parallelogram $A B C D$. Show that the quadrilateral $E F G H$ is a parallelogram and that its area is half the area of the parallelogram, $A B C D$. GIVEN : A quadrilateral $A B C D$ in which L, F, G, H are respectively the mid-points of the sides $A B, B C, C D$ and $D A$. TO PROVE : (i) Quadrilateral $E F G H$ is a parallelogram

$$
\operatorname{ar}\left(\left|\left.\right|^{g m} E F G H\right)=\frac{1}{2} \operatorname{ar}\left(| |^{g m} A B C D\right)\right.
$$

CONSTRUCTION : Join $A C$ and $H F$
111. $X Y$ is a line parallel to side $B C$ of $\triangle A B C . B E| | A C$ and $C F|\mid A B$ meet $X Y$ in E and F respectively. Show that $\operatorname{ar}(A B E)=\operatorname{ar}(A C F)$.

D Watch Video Solution

112. E, F, G, H are respectively, the mid-points of the sides $A B, B C, C D$ and $D A$ of parallelogram $A B C D$. Show that the quadrilateral $E F G H$ is a parallelogram and that its area is half the area of the parallelogram, $A B C D$.

D Watch Video Solution

113. The side $A B$ of a parallelogram $A B C D$ is produced to any point P. A line through A parallel to $C P$ meets $C B$ produced in Q and the parallelogram $P B Q R$ completed. Show that
$\operatorname{ar}\left({ }^{\wedge}(g m) A B C D\right)=\operatorname{ar}\left({ }^{\wedge}(g m) B P R Q\right)$. CONSTRUCTION : Join $A C$ and PQ.TO PROVE : $a r\left({ }^{\wedge}(g m) A B C D\right)=a r\left({ }^{\wedge}(g m) B P R Q\right)$

D Watch Video Solution

114. Any point D is taken in the base $B C$ of a triangle $A B C$ and $A D$ is produced to E, making $D E$ equal to $A D$. Show that $\operatorname{ar}(\triangle B C E)=\operatorname{ar}(\triangle A B C)$

(D) Watch Video Solution

115. In $A B C, D$ is the mid-point of $A B, P$ is any point of $B C C Q P D$ meets $A B$ in Q. Show that $\operatorname{ar}(B P Q)=\frac{1}{2} \operatorname{ar}(A B C)$.
116. In a parallelogram $A B C D, E, F$ are any two points on the sides $A B$ and $B C$ respectively. Show that $\operatorname{ar}(\triangle A D F)=\operatorname{ar}(\triangle D C E)$.

D Watch Video Solution

117. In Figure, $A B C D$ is a trapezium in which $A B|\mid D C . D C$ is produced to E such that $C E=A B$, prove that $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle B C E)$. Construction: Draw $D M$ on $B A$ produced and $B N \perp D C$

D Watch Video Solution

118. Prove that the area of an equilateral triangle is equal to $\frac{\sqrt{3}}{4} a^{2}$, where a is the side of the triangle.
119. In Figure, $B C \| X Y, B X| | C A$ and $A B|\mid Y C$. Prove that: $\operatorname{ar}(A B X)=\operatorname{ar}(A C Y)$.

D Watch Video Solution

120. In Figure, $A B C D$ is a parallelogram. Prove that: $\operatorname{ar}(B C P)=\operatorname{ar}(D P Q)$ CONSTRUCTION $:$ Join $A C$.

- Watch Video Solution

121. $A B C$ is a triangle in which D is the mid-point of $B C$ and E is the mid-point of $A D$. Prove that area of $\triangle B E D=\frac{1}{4}$ area of $\triangle A B C$. GIVEN : A $\triangle A B C, D$ is the mid-point of $B C$ and E is the mid-point of the median $A D$. TO PROVE : $\operatorname{ar}(\triangle B E D)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$.

- Watch Video Solution

122. $A B C D$ is a parallelogram X and Y are the mid-points of $B C$ and $C D$ respectively. Prove that $\operatorname{ar}(A X Y)=\frac{3}{8} \operatorname{ar}\left({ }^{\wedge}(g m) A B C D\right)$ GIVEN : A parallelogram $A B C D$ in which X and Y are the mid-points of $B C$ and $C D$ respectively. TO PROVE $\operatorname{ar}(A X Y)=\frac{3}{8} \operatorname{ar}\left({ }^{\wedge}(g m) a b c d\right)$ CONSTRUCTION $:$ Join $B D$.

D Watch Video Solution

123. The diagonals of a parallelogram $A B C D$ intersect at a point O.

Through O, a line is drawn to intersect $A D$ at P and $B C$ at Q. Show that $P Q$ divides the parallelogram into two parts of equal area.

D Watch Video Solution

124. The medians $B E$ and $C F$ of a triangle $A B C$ intersect at G.

Prove that area of $\triangle G B C=$ area of quadrilateral $A F G E$.
125. In Figure, compute the area of quadrilateral $A B C D$.

D Watch Video Solution

126. In Figure, $P Q R S$ is a square and T and U are, respectively, the mid-points of $P S$ and $Q R$. Find the area of $\triangle O T S$ if $P Q=8 \mathrm{~cm}$.

- Watch Video Solution

127. Compute the area of trapezium $P Q R S$ in the given figure.

D Watch Video Solution

128.

In
Figure,
$\angle A O B=90^{\circ}, A C=B C, O A=12 \mathrm{~cm}$ and $O C=6.5 \mathrm{~cm}$. Find
the area of $\triangle A O B$.

(D) Watch Video Solution

129. In Figure, $A B C D$ is a trapezium in which
$A B=7 \mathrm{~cm}, A D=B C=5 \mathrm{~cm}, D C=X \mathrm{~cm}, \quad$ and \quad distance between $A B$ and $D C$ is 4 cm . Find the value of X and area of trapezium $A B C D$

(D) Watch Video Solution

130. In Figure, $O C D E$ is a rectangle inscribed in a quadrant of a circle of radius 10 cm . If $O E=2 \sqrt{5} \mathrm{~cm}$, find the area of the rectangle.

- Watch Video Solution

131. In figure, $A B C D$ is a trapezium in which $A B|\mid C D$. Prove that: $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$.

- Watch Video Solution

132. In Figure, $A B C D, A B F E$ and $C D E F$ are parallelograms. Prove that $\operatorname{ar}(\triangle A D E)=a r(\triangle B C F)$

D Watch Video Solution

133. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect each at P. Show that: $\operatorname{ar}(\triangle A P B) \times \operatorname{ar}(\triangle C P D)=\operatorname{ar}(\triangle A P D) \mathrm{x}$ $\operatorname{ar}(\triangle P B C)$

- Watch Video Solution

134. In Figure, $A B C$ and ABD are two triangles on the base $A B$. If line segment $C D$ is bisected by $A B$ at O, show that $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A B D)$

- Watch Video Solution

135. If P is any point in the interior of a parallelogram $A B C D$, then prove that area of the triangle $A P B$ is less than half the area of parallelogram.

D Watch Video Solution

136. If $A D$ is a median of a triangle $A B C$, then prove that triangles
$A D B$ and $A D C$ are equal in area. If G is the mid-point of median
$A D$, prove that $\operatorname{ar}(\triangle B G C)=2 a r(\triangle A G C)$.
137. A point D is taken on the side $B C$ of a $A B C$ such that $B D=2 D C \cdot$ Prove that $\operatorname{ar}(A B D)=2 \operatorname{ar}(A D C)$

D Watch Video Solution

138. $A B C D$ is a parallelogram whose diagonals intersect at O. If P is any point on $B O$, prove that: $\operatorname{ar}(\triangle A B P)=\operatorname{ar}(\triangle C B P)$

D Watch Video Solution

139. $A B C D$ is a parallelogram in which $B C$ is produced to E such that $C E=B C . A E$ intersects $C D$ at F. Prove that ar $(A D F)=\operatorname{ar}(E C F)$. If the area of $D F B=3 \mathrm{~cm}^{2}$, find the area of $A B C D$.
140. $A B C D$ is a parallelogram whose diagonals $A C$ and $B D$ intersect at O. A line through O intersects $A B$ at P and $D C$ at Q. Prove that $\operatorname{ar}(\triangle P O A)=\operatorname{ar}(\triangle Q O C)$.

D Watch Video Solution

141. $A B C D$ is a parallelogram. E is a point on $B A$ such that $B E=2 E A$ and F is a point on $D C$ such that $D F=2 F C$. Prove that $A E C F$ is a parallelogram whose area is one third of the area of parallelogram $A B C D$.

- Watch Video Solution

142. In $\triangle A B C, P$ and Q are respectively the mid-points of $A B$ and $B C$ and R is the mid-point of $A P$. Prove that: $\operatorname{ar}(\triangle P B Q)=\operatorname{ar}(\triangle A R C)$
143. In $\triangle A B C, P$ and Q are respectively the mid-points of $A B$ and $B C$ and R is the mid-point of $A P$. Prove that: $\operatorname{ar}(\triangle P R Q)=\frac{1}{2} \operatorname{ar}(\triangle A R C)$.

- Watch Video Solution

144. In $\triangle A B C, P$ and Q are respectively the mid-points of $A B$ and $B C$ and R is the mid-point of $A P$. Prove that: $\operatorname{ar}(\triangle R Q C)=\frac{3}{8} \operatorname{ar}(\triangle A B C)$.

(D) Watch Video Solution

145. $A B C D$ is a parallelogram, G is the point on $A B$ such that $A G=2 G B, E$ is a point of $D C$ such that $C E=2 D E$ and F is the point of $B C$ such that $B F=2 F C$. Prove that: $\operatorname{ar}(A D E G)=\operatorname{ar}(G B C E)$

D Watch Video Solution

146. $A B C D$ is a parallelogram, G is the point on $A B$ such that $A G=2 G B, E$ is a point of $D C$ such that $C E=2 D E$ and F is the point on $B C$ such that $B F=2 F C$. Prove that: $\operatorname{ar}(\triangle E G B)=\frac{1}{6} \operatorname{ar}(A B C D)$

- Watch Video Solution

147. $A B C D$ is a parallelogram, G is the point on $A B$ such that $A G=2 G B, E$ is a point of $D C$ such that $C E=2 D E$ and F is the point of $B C$ such that $B F=2 F C$. Prove that: $\operatorname{ar}(\triangle E F C)=\frac{1}{2} \operatorname{ar}(\triangle E B F)$
148. In figure, $A B C D$ is a parallelogram, $A E$ perpendicular to $D C$ and $C F$ perpendicular to $A D$. If $A B=16 \mathrm{~cm}, A E=8 \mathrm{~cm}$ and $C F=10 \mathrm{~cm}$, Find $A D$.

- Watch Video Solution

149. In Figure, $C D \| A E$ and $C Y \| B A$. (i) Name a triangle equal in area of $\triangle C B X$ (ii) Prove that $\operatorname{ar}(\triangle Z D E)=\operatorname{ar}(\triangle C Z A)$
(iii) Prove that $\operatorname{ar}(B C Z Y)=\operatorname{ar}(\triangle E D Z)$.

- Watch Video Solution

150. In figure, $P S D A$ is a parallelogram in which $P Q=Q R=R S$ and $A P\|B Q\| C R|\mid D S . \quad$ Prove that $\operatorname{ar}(\triangle P Q E)=\operatorname{ar}(\triangle C F D)$.

D Watch Video Solution

151. In Figure, $A B C D$ is a trapezium in which $A B D C$ and $D C=40 \mathrm{~cm}$ and $A B=60 \mathrm{~cm}$. If X and Y are, respectively, the midpoints of $A D$ and $B C$, prove that : $X Y=50 \mathrm{~cm} D C Y X$ is a trapezium $\operatorname{ar}(\operatorname{trap} \dot{D} C Y X)=\frac{9}{11} \operatorname{ar}(\operatorname{trap} X \dot{Y} B A$

D Watch Video Solution

152. In Figure, $A B C D$ is a trapezium in which $A B|\mid D C$ and $D C=40 \mathrm{~cm}$ and $A B=60 \mathrm{~cm}$. If X and Y are, respectively, the midpoints of $A D$ and $B C$, prove that:
(i) $X Y=50 \mathrm{~cm}$
(ii) $\operatorname{ar}(\operatorname{trap} D C Y X)=\frac{9}{11} \operatorname{ar}(\operatorname{trap}(X Y B A)$.

D Watch Video Solution

153. In Figure, $A B C D$ is a trapezium in which $A B|\mid D C$ a n d $\mathrm{DC}=40 \mathrm{~cm}$ and $\mathrm{AB}=60 \mathrm{~cm}$. If X and Y are, respectively, the mid-points
$\operatorname{ar}(\operatorname{trap\dot {D}CYX})=\frac{9}{11} \operatorname{ar}(\operatorname{trap} X \dot{Y} B A)$

- Watch Video Solution

154. In Figure, $A B C$ and $B D E$ are two equilateral triangls such that D is the mid-point of $B C$. If $A E$ intersects $B C$ in F, Prove that: $\operatorname{ar}(B D E)=\frac{1}{4} \operatorname{ar}(A B C)$.

- Watch Video Solution

155. In Figure, $A B C$ and $B D E$ are two equilateral triangls such that D is the mid-point of $B C A E$ intersects $B C$ in F. Prove that:
$\operatorname{ar}(B D E)=\frac{1}{2} \operatorname{ar}(B A E)$

D Watch Video Solution

156. In Figure, $A B C$ and $B D E$ are two equilateral triangls such that D is the mid-point of $B C A E$ intersects $B C$ in F. Prove that: $\operatorname{ar}(B F E)=\operatorname{ar}(A F D)$

D Watch Video Solution

157. $A B C$ is a triangle in which D is the mid-point of $B C$ and E is the mid-point of $A D$. Prove that area of $B E D=\frac{1}{4}$ area of $A B C$.

- Watch Video Solution

158. In figure, $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. If $A E$ intersects $B C$ in F. Prove that: $\operatorname{ar}(\triangle B F E)=2 \operatorname{ar}(\triangle F E D)$.

Watch Video Solution

159. D is the mid-point of side $B C$ of $A B C$ and E is the mid-point of $B D$. If O is the mid-point of $A E$, prove that $\operatorname{ar}(B O E)=\frac{1}{8} \operatorname{ar}(A B C)$

- Watch Video Solution

160. In Figure, X and Y are the mid-points of $A C$ and $A B$ respectively, $Q P|\mid B C$ and $C Y Q$ and $B X P$ are straight lines. Prove that $\operatorname{ar}(A B P)=a r(A C Q)$.

(D) Watch Video Solution

161. In Figure $A B C D$ and $A E F D$ are two parallelograms. Prove that:
$P E=F Q$

D Watch Video Solution
162. In Figure, $A B C D$ and $A E F D$ are two parallelograms? Prove that: $\operatorname{ar}(A P E): \operatorname{ar}(P F A)=\operatorname{ar}(Q F D): a r(P F D)$

D Watch Video Solution

163. In Figure, $A B C D$ is a parallelogram. O is any point on $A C$. $P Q \| A B$ and $L M \| A D$. Prove that $\operatorname{ar}($ parallelogramDLOP $)=\operatorname{ar}($ parallellogramBMOQ $)$

- Watch Video Solution

164. In a $\triangle A B C$, If L and M are points on $A B$ and $A C$ respectively such that $L M|\mid B C$. Prove that: $\operatorname{ar}(\triangle L C M)=a r(\triangle L B M)$

- Watch Video Solution

165. In a $A B C$, If L and M are points on $A B$ and $A C$ respectively such that $L M|\mid B C$. Prove that: $a r(L B C)=a r(M B C)$

D Watch Video Solution

166. In a $A B C$, If L and M are points on $A B$ and $A C$ respectively such that $L M|\mid B C$. Prove that: $\operatorname{ar}(A B M)=\operatorname{ar}(A C L)$.

D Watch Video Solution

167. In a $A B C$, If L and M are points on $A B$ and $A C$ respectively such that $L M|\mid B C$. Prove that: $\operatorname{ar}(L O B)=a r(M O C)$.

- Watch Video Solution

168. In Figure D and E are two points on $B C$ such that $B D=D E=E C$.
$\operatorname{ar}(A B D)=a r(A D E)=a r(A E C)$.

D Watch Video Solution

169. In Figure, $A B C$ is a right triangle right angled at $A, B C E D, A C F G$ and $A M N$ are square on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that: $M B C \cong A B D$

- Watch Video Solution

170. In Figure, $A B C$ is a right triangle right angled at $A, B C E D, A C F G$ and $A M N$ are square on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that: $\operatorname{ar}(B Y X D)=2 \operatorname{ar}(M B C)$
171. In Figure, $A B C$ is a right triangle right angled at $A, B C E D, A C F G$ and $A B M N$ are squares on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that: $\operatorname{ar}(B Y X D)=a r(A B M N)$.

D Watch Video Solution

172. In figure, $A B C$ is a right triangle right angled at A. $B C E D, A C F G$ and $A B M N$ are square on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that: $\triangle F C B \cong \triangle A C E$

D Watch Video Solution

173. In figure, $A B C$ is a right triangle right angled at A. $B C E D, A C F G$ and $A B M N$ are square on the sides
$B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that: $\operatorname{ar}(C Y X E)=2 a r(\triangle F C B)$.

- Watch Video Solution

174. In figure, $A B C$ is a right triangle right angled at A. $B C E D, A C F G$ and $A B M N$ are square on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that: $\operatorname{ar}(C Y X E)=\operatorname{ar}(A C F G)$.

- Watch Video Solution

175. In Figure, $A B C$ is a right triangle right angled at $A, B C E D, A C F G$ and $A B M N$ are square on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that: $\operatorname{ar}(C Y X E)=a r(A C F G)$
176. In fig, $A B C$ and BDE are two equilateral triangles such that D is the mid-point of $B C$. If $A E$ intersects $B C$ at F, show that: (i) $\operatorname{ar}(B D E)=1 / 4$ $\operatorname{ar}(\mathrm{ABC})(\mathrm{ii}) \operatorname{ar}(\mathrm{BDE})=1 / 2 \operatorname{ar}(\mathrm{BAE})$

D Watch Video Solution

177. In Figure, $A B C D$ is a rectangle in which
$C D=6 \mathrm{~cm}, A D=8 \mathrm{~cm}$. Find the area of parallelogram $C D E F$

- Watch Video Solution

178. In Figure, $A B C D$ is a rectangle with sides $A B=10 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$. Find the area of $\triangle E F G$
179. In Figure, $A B C D$ is a rectangle with sides $A B=10 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$. Find the area of $E F G$

- Watch Video Solution

180. In Figure, $A B C D$ is a rectangle with sides $A B=10 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$. Find the area of $E F G$

D Watch Video Solution

181. $P Q R S$ is a rectangle inscribed in a quadrant of a circle of radius
$13 \mathrm{~cm} \cdot A$ is any point on $P Q$. If $P S=5 \mathrm{~cm}$, then find $\operatorname{ar}(R A S)$

- Watch Video Solution

182. In square $A B C D, P$ and Q are mid-point of $A B$ and $C D$ respectively. If $A B=8 \mathrm{~cm}$ and $P Q$ and $B D$ intersect at O, then find area of $O P B$

- Watch Video Solution

183. $A B C$ is a triangle in which D is the mid-point of $B C, E$ and F are mid-points of $D C$ and $A E$ respectively. If area of $A B C$ is $16 \mathrm{~cm}^{2}$, find the area of $D E F$

D Watch Video Solution

184. $P Q R S$ is a trapezium having $P S$ and $Q R$ as parallel sides. A is any point on $P Q$ and B is a point on $S R$ such that $A B|\mid Q R$. If area of $\triangle P B Q$ is $17 \mathrm{~cm}^{2}$, find the area of $\triangle A S R$
185. $A B C D$ is a parallelogram. P is the mid-point of $A B \dot{B} D$ and $C P$ intersect at Q such that $C Q: Q P=3: 1$. If $\operatorname{ar}(P B Q)=10 \mathrm{~cm}^{2}$, find the area of parallelogram $A B C D$

- Watch Video Solution

186. P is any point on base $B C$ of $A B C$ and D is the mid-point of $B C D E$ is drawn parallel to $P A$ to meet $A C$ at E. If ar $(A B C)=12 \mathrm{~cm}^{2}$, then find area of $E P C$

D Watch Video Solution

187. Two parallelograms are on equal bases and between the same parallels.

The ratio of their areas is
188. A triangle and a parallelogram are on the same base and between the same parallels. The ratio of the areas of triangle and parallelogram is
(a) 1:1
(b) $1: 2$
(c) $2: 1$
(d) $1: 3$

- Watch Video Solution

189. Let $A B C$ be a triangle of area 24 sq . units and $P Q R$ be the triangle formed by the mid-points of sides of $A B C$. Then the area of $P Q R$ is 12 sq. units (b) 6 sq. units 4 sq. units (d) 3 sq. units

- Watch Video Solution

190. The median of a triangle divides it into two (a)congruent triangle (b) isosceles triangles (c)right triangles
triangles of equal areas

- Watch Video Solution

191. In a $A B C, D, E, F$ are the mi-points of sides $B C, C A$ and $A B$ respectively. If $\operatorname{ar}(A B C)=16 \mathrm{~cm}^{2}, \quad$ then ar $($ trapezium $F B C E)=4 \mathrm{~cm}^{2}$ (b) $8 \mathrm{~cm}^{2}$ (c) $12 \mathrm{~cm}^{2}$ (d) $10 \mathrm{~cm}^{2}$

- Watch Video Solution

192. $A B C D$ is a parallelogram. P is any point on $C D$. If $\operatorname{ar}(D P A)=15 \mathrm{~cm}^{2}$ and $\operatorname{ar}(A P C)=20 \mathrm{~cm}^{2}$, then $\operatorname{ar}(A P B)=$
(a) $15 \mathrm{~cm}^{2}$
(b) $20 \mathrm{~cm}^{2}$
(c) $35 \mathrm{~cm}^{2}$
(d) $30 \mathrm{~cm}^{2}$
193. The area of the figure formed by joining the mid-points of the adjacent sides of a rhombus with diagonals 16 cm and 12 cm is $28 \mathrm{~cm}^{2}$ (b) $48 \mathrm{~cm}^{2}$ (c) $96 \mathrm{~cm}^{2}$ (d) $24 \mathrm{~cm}^{2}$

D Watch Video Solution

194. A, B, C, D are mid-points of sides of a parallelogram $P Q R S$.

If $\operatorname{ar}(P Q R S)=36 C M^{2}$, then $\operatorname{ar}(A B C D)=24 \mathrm{~cm}^{2}(\mathrm{~b}) 18 \mathrm{~cm}^{2}$
(c) $30 \mathrm{~cm}^{2}$ (d) $36 \mathrm{~cm}^{2}$

- Watch Video Solution

195. The figure obtained by joining the mid-points of the adjacent sides of a rectangle of sides 8 cm and 6 cm is. a) rhombus of area $24 \mathrm{~cm}^{2}$ (b) a rectangle of area $24 \mathrm{~cm}^{2}$ a square of area $26 \mathrm{~cm}^{2}$ (d) a trapezium of area $14 \mathrm{~cm}^{2}$
196. The mid points of the sides of a triangle $A B C$ along with any of the vertices as the fourth point make a parallelogram of area equal to: $\operatorname{ar}(A B C)$ (b) $\frac{1}{2} \operatorname{ar}(A B C) \frac{1}{3} \operatorname{ar}(A B C)$ (d) $\frac{1}{4} \operatorname{ar}(A B C)$

(D) Watch Video Solution

197. If $A D$ is median of $A B C$ and P is a point on $A C$ such that $\operatorname{ar}(A D P): \operatorname{ar}(A B D)=2: 3$, then $\operatorname{ar}(P D C): \operatorname{ar}(A B C)$ is $1: 5$ (b) $1: 5$ (c) $1: 6$ (d) $3: 5$

D Watch Video Solution

198. Medians of $A B C$ intersect at G. If $\operatorname{ar}(A B C)=27 \mathrm{~cm}^{2}$, then $\operatorname{ar}(B G C)=$
(i) $6 \mathrm{~cm}^{2}$
(b) $9 \mathrm{~cm}^{2}$
(c) $12 \mathrm{~cm}^{2}$
(d) $18 \mathrm{~cm}^{2}$

D Watch Video Solution

199. In a $A B C$ if D and E are mid-points of $B C$ and $A D$ respectively such that $\operatorname{ar}(A E C)=4 \mathrm{~cm}^{2}$, then $\operatorname{ar}(B E C)=$
(b) $4 \mathrm{~cm}^{2}$
(b) $6 \mathrm{~cm}^{2}$
(c) $8 \mathrm{~cm}^{2}$
(d) $12 \mathrm{~cm}^{2}$
200. In Figure, $A B C D$ is a parallelogram. If $A B=12 \mathrm{~cm}, A E=7.5 \mathrm{~cm}, C F=15 \mathrm{~cm}$, then $A D=$ (a) 3 cm
(b) 6 cm (c) 8 cm (d) 10.5 cm

- Watch Video Solution

201. In Figure, $P Q R S$ is a parallelogram. If X and Y are mid-points of $P Q$ and $S R$ respectively and diagonal $S Q$ is joined. The ratio $\operatorname{ar} X Q R Y: a r(Q S R)=$
(a) 1:4
(b) $2: 1$
(c) $1: 2$
(d) 1:1

- Watch Video Solution

202. In Figure, $A B C D$ and $F E C G$ are parallelograms equal in area.

If $\operatorname{ar}(A Q E)=12 \mathrm{~cm}^{2}$, then $\operatorname{ar} F G B Q=$
(a) $12 \mathrm{~cm}^{2}$
(b) $20 \mathrm{~cm}^{2}$
(c) $24 \mathrm{~cm}^{2}$
(d) $36 \mathrm{~cm}^{2}$

D Watch Video Solution

203. Diagonal $A C$ and $B D$ of trapezium $A B C D$, in which $A B|\mid D C$, intersect each other at O. The triangle which is equal in area of $A O D$ is $A O B$ (b) $B O C$ (c) $D O C$ (d) $A D C$

- Watch Video Solution

204. $A B C D$ is a trapezium in which $A B|\mid D C$. If $\operatorname{ar}(A B D)=24 \mathrm{~cm}^{2}$ and $A B=8 \mathrm{~cm}$, then height of $A B C$ is 3 cm
(b) 4 cm (c) 6 cm (d) 8 cm
205. $A B C D$ is a trapezium with parallel sides $A B=a$ and $D C=b$. If E and F are mid-points of non-parallel sides $A D$ and $B C$ respectively, then the ratio of areas of quadrilaterals $A B F E$ and EFCD is: $a: b$ (b) $(a+3 b):(3 a+b)(3 a+b):(a+3 b)$ (d) $(3 a+b):(3 a+b)$

D Watch Video Solution

206. $A B C D$ is a rectangle with O as any point in its interior. If $\operatorname{ar}(A O D)=3 \mathrm{~cm}^{2}$ and $\operatorname{ar}(B O C)=6 \mathrm{~cm}^{2}$, then area of rectangle $A B C D$ is: $9 \mathrm{~cm}^{2}$ (b) $12 \mathrm{~cm}^{2}$ (c) $15 \mathrm{~cm}^{2}$ (d) $18 \mathrm{~cm}^{2}$

(D) Watch Video Solution

