©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

CIRCLE

Others

1. Prove Equal chords of a circle subtend equal angles at the centre.

- Watch Video Solution

2. Prove Chords of congruent circles which are equidistant from the corresponding centres, are equal.
3. Prove Equal chords of congruent circles subtend equal angles at the centre.

- Watch Video Solution

4. If the angles subtended by two chords of a circle at the centre are equal, then Prove chords are equal.

- Watch Video Solution

5. Of any two chords of a circle show that one which is larger is nearer to the centre.

- Watch Video Solution

6. If the angles subtended by two chords of congruent circles at the corresponding centres are equal, then Prove chords are equal.
7. If two equal chords of a circle in intersect within the circle, prove that : the segments of the chord are equal to the corresponding segments of the other chord. the line joining the point of intersection to the centre makes equal angles with the chords.

- Watch Video Solution

8. Two equal chords $A B$ and $C D$ of a circle with centre O, when produced meet at a point E, as shown in Figure. Prove that $B E=D E$ and $A E=C E$.

- Watch Video Solution

9. Two equal chords $A B$ and $C D$ of a circle with centre O, when produced meet at a point E, as shown in Figure. Prove that $B E=D E$ and $A E=C E$.
10. Prove that, Of any two chords of a circle, show that the one which is nearer to the centre is larger.

- Watch Video Solution

11. Chords of a circle which are equidistant from the centre are equal.

- Watch Video Solution

12. Equal chords of congruent circles are equidistant from the corresponding centres.

- Watch Video Solution

13. The lengths of two parallel chords of a circle are 6 cm and 8 cm . If the smaller chord is at a distance of 4 cm from the centre, what is the distance of the other chord from the centre?

- Watch Video Solution

14. Equal chords of a circle are equidistant from the centre.

- Watch Video Solution

15. Two circle with centres A and B intersect at C and D. Prove that $\angle A C B=\angle A D B$.

- Watch Video Solution

16. Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre.
17. Prove that the right bisector of a chord of a circle, bisects the corresponding arc or the circle.

- Watch Video Solution

18. Prove that the perpendicular bisector of a chord of a circle always passes through the centre.

- Watch Video Solution

19. Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre.
20. Two circles of radil 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of the common chord.

- Watch Video Solution

21. Two circles are drawn with sides $A B, A C$ of a triangle $A B C$ as diameters. The circles intersect at a point D. Prove that D lies on $B C$.

- Watch Video Solution

22. In the figure, two circles intersect at A and $B . A C$ and $A D$ are respectively the diameters of the circles. Prove that C, B, D are collinear.

- Watch Video Solution

23. Prove that any angle subtended by a minor arc in the alternate segment is acute and any angle subtended by a major arc in the alternate segment is obtuse.

- Watch Video Solution

24. The arc of a circle subtending a right angle at any point of the circle in its alternate segment is a semi-circle.

- Watch Video Solution

25. Using vectors, prove that angle in a semicircle is a right angle.

- Watch Video Solution

26. Prove that angle in the same segment of a circle are equal.
27. Prove that the circle drawn on any one of the equal sides of an isosceles triangle as diameter bisects the base.

- Watch Video Solution

28. A chord of a circle is equal to the radius of the circle find the angle subtended by the chord at a point on the monor arc and also at a point on the major arc.

- Watch Video Solution

29. In Figure, $A B C$ is a triangle in which $\angle B A C=30^{\circ}$. Show that $B C$ is the radius of the circumcircle of $A B C$, whose centre is O.

- Watch Video Solution

30. Theorem:- If the line segment joining two points subtends equal angles at two other points lying on the same side of the line segment; the four points are concyclic. i.e lie on the same circle.

- Watch Video Solution

31. In Figure, $O A$ and $O B$ ar respectively perpendiculars to chords $C D$ and $E F$ of a circle whose centre is O. If $O A=O B$, prove that $C E=D F$.

- Watch Video Solution

32. Draw the graph of the fuction $4 x+3 y=12$,at what pt it cut the coordinate axis

- Watch Video Solution

33. If two equal chords of a circle in intersect within the circle, prove that: the segments of the chord are equal to the corresponding segments of the other chord.

- Watch Video Solution

34. prove that the line joining the mid-point of two equal chords of a circle subtends equal angles with the chord.

- Watch Video Solution

35. Show that if two chords of a circle bisect one another they must be diameters.

- Watch Video Solution

36. In Figure, equal chords $A B$ and $C D$ of a circle with centre O, cut at right angles at E. If M and N are mid-point of $A B$ and $C D$ respectively, prove that OMEN is a square.

- Watch Video Solution

37. Two equal circles intersect in P and Q. A straight line through P meets the circles in A and B. Prove that $Q A=Q B$.

- Watch Video Solution

38. Prove that all the chords of a circle through a given point within it, the least is one which is bisected at that point.

- Watch Video Solution

39. Prove that the diameter is the greatest chord in a circle.
40. Bisector $A D$ of $\angle B A C$ of $\triangle A B C$ passes through the centre O of the circumcircle of $\triangle A B C$ as shown in figure. Prove that $A B=A C$.

- Watch Video Solution

41. If two sides of a cyclic quadrilateral are parallel, prove that the remaining two sides are equal and the diagonals are also equal. OR A cyclic trapezium is isosceles and its diagonals are equal.

- Watch Video Solution

42. The quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.

- Watch Video Solution

43. If two non-parallel sides of a trapezium are equal, it is cyclic. OR An isosceles trapezium is always cyclic.

- Watch Video Solution

44. If two opposite sides of a cyclic quadrilateral are equal, then the other two sides are parallel.

- Watch Video Solution

45. The sum of either pair of opposite angles of a cyclic quadrilateral is 180° OR The opposite angles of a cyclic quadrilateral are supplementary.

- Watch Video Solution

46. If the chord of a circle is equal to the radius of the circle, then the angle subtended by the chord at a point on the minor arc is \qquad
47. If one side of a cyclic quadrilateral is produced, then the exterior angle is equal to the interior opposite angle.

- Watch Video Solution

48. If the sum of any pair of opposite angles of a quadrilateral is 180°; then the quadrilateral is cyclic.

- Watch Video Solution

49. The sum of the angles in the four segments exterior to a cyclic quadrilateral is equal to 6 right angles.

- Watch Video Solution

50. If the bisectors of the opposite angles \angle Aand $\angle B$ of a cyclic quadrilateral $A B C D$ intersect the corresponding cicle at PandQ respectively, then $P Q$ is a diameter of the circle.

- Watch Video Solution

51. If O is the circumcentre of a $A B C$ and $O D \perp B C$, prove that $\angle B O D=\angle A$.

- Watch Video Solution

52. Two diameters of a circle intersect each other at right angles. Prove that the quadrilateral formed by joining their end-points is a square.

- Watch Video Solution

53. $A B C$ and $A D C$ are two right triangles with common hypotenuse $A C$. Prove that $\angle C A D=\angle C B D$.

- Watch Video Solution

54. In a circle with centre O, chords $A B a n d C D$ intersect inside the circumference at E. Prove that $\angle A O C+\angle B O D=2 \angle A E C$.

- Watch Video Solution

55. $A B C$ and $A D C$ are two right triangles with common hypotenuse $A C$. Prove that $\angle C A D=\angle C B D$.

- Watch Video Solution

56. Bisectors of angles A, B and C of a triangle $A B C$ intersect its circumcircle at D, E and F respectively. Prove that the angles of the
triangle DEF are $90 o-\frac{1}{2} A, 90 o-\frac{1}{2} B$ and $90 o-\frac{1}{2} C$

- Watch Video Solution

57. Prove that the circle drawn with any side of a rhombus as a diameter, passes through the point of intersection of its diagonals.

- Watch Video Solution

58. $A C a n d B D$ are chords of a circle that bisect each other. Prove that: $A C a n d B D$ are diameters $A B C D$ is a rectangle.

- Watch Video Solution

59. Prove that the mid-point of the hypotenuse of a right triangle is equidistant from its vertices.

- Watch Video Solution

60. In Figure, P, is any point on the chord $B C$ of a circle such that $A B=A P$. Prove that $C P=C Q$.

- Watch Video Solution

61. Two chords $A B$ and $C D$ of a circle are parallel and a line l is the perpendicular bisector of $A B$. Show that l bisects $C D$.

- Watch Video Solution

62. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk to each other. Find the length of the string of each phone.

- Watch Video Solution

63. In an equilateral triangle, prove that the centroid and centre of the circum-circle (circum centre) coincide.

- Watch Video Solution

64. In Figure, l is a line intersecting the two concentric circles, whose common centre is O, at the points A, B, C and D. Show that $A B=C D$.

- Watch Video Solution

65. In the Figure, $O D$ is perpendicular to the chord $A B$ of a circle whose centre is O. If $B C$ is a diameter, show that $C A=2 O D$.

- Watch Video Solution

66. $A B$ and $C D$ are two chords of a circle such that $A B=6 \mathrm{~cm}, C D=12 \mathrm{~cm}$ and $A B|\mid C D$. If the distance between $A B$ and $C D$ is 3 cm , find the radius of the circle.

- Watch Video Solution

67. $A B$ and $C D$ are two parallel chords of a circle such that $A B=10 \mathrm{~cm}$ and $C D=24 \mathrm{~cm}$. If the chords are on the opposite sides of the centre and the distance between them is 17 cm , find the radius of the circle.

- Watch Video Solution

68. $P Q$ and $R S$ are two parallel chords of a circle whose centre is O and radius is 10 cm . If $P Q=16 \mathrm{~cm}$ and $R S=12 \mathrm{~cm}$, find the distance between $P Q$ and $R S$, if they lie: on the same side of the centre O on opposite side of the centre O.
69. $A B$ and $C D$ are two parallel chords of a circle whose diameter is $A C$
. Prove that $A B=C D$.

- Watch Video Solution

70. If a diameter of a circle bisects each of the two chords of a circle, prove that the chords are parallel.

- Watch Video Solution

71. Prove that the line segment joining the mid points of two side of a triangle is parallel to the third side and equal to half of it.

- Watch Video Solution

72. Prove that the angle in a segment greater than a semi-circle is less than a right angle.
73. Prove that the angle in a segment greater than a semi-circle is less than a right angle.

- Watch Video Solution

74. $A B C D$ is a parallelogram. If $A B$ is produced to E such that $B E=A B$. Prove that $E D$ bisects $B C$.

- Watch Video Solution

75. If two sides of a cyclic quadrilateral are parallel, prove that the remaining two sides are equal and the diagonals are also equal.

- Watch Video Solution

76. Prove that the circle drawn with any side of a rhombus as a diameter, passes through the point of intersection of its diagonals.

- Watch Video Solution

77. Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that $\angle A B C$ is equal to half the difference of the angles subtended by the chords AC and DE at the centre.

- Watch Video Solution

78. In any triangle $A B C$, if the angle bisector of $\angle A$ and perpendicular bisector of BCintersect, prove that they intersect on the circumcircle of the triangle ABC

- Watch Video Solution

79. P is a point on the side $B C$ of a triangle $A B C$ such that $A B=A P$. Through A and C , lines are drawn parallel to $B C$ and $P A$, respectively, so as to intersect at D as shown in Figure. Show that $A B C D$ is a cyclic quadrilateral.

- Watch Video Solution

80. $A B C D$ is a cyclic quadrilateral whose diagonals $A C a n d B D$ intersect at P. If $A B=D C$, Prove that : $P A B \cong P D C$ $P A=P D a n d P C=P B A D l l B C$

- Watch Video Solution

81. (Converse of Theorem 3) The line joining the centre of a circle to the mid-point of a chord is perpendicular to the chord.

- Watch Video Solution

82. The equation of the circle passing through three non-collinear points $\mathrm{P}\left(x_{1}, y_{1}\right) \mathrm{Q}\left(x_{2}, y_{2}\right)$ and $\mathrm{R}\left(x_{3}, y_{3}\right)$ is

- Watch Video Solution

83. Two chords $A B$ and $A C$ of a circle are equal. Prove that the centre of the circle lies on the angle bisector of $\angle B A C$.

- Watch Video Solution

84. If two chords $A B$ and $A C$ of a circle with centre O are such that the centre O lies on the bisector of $\angle B A C$, prove that $A B=A C$, i.e. the chords are equal.

- Watch Video Solution

85. If two arcs of a circle (or of congruent circles) are congruent, then corresponding chords are equal.

- Watch Video Solution

86. If two chord of a circle (or of congruent circles) are equal, then their corresponding arcs. (minor, major or semi-circular) are congruent.

- Watch Video Solution

87. The perpendicular from the centre of a circle to a chord bisects the chord.

- Watch Video Solution

88. If two circles intersect in two points, prove that the line through the centres is the perpendicular bisector of the common chord.
89. Find the length of the chord which is at 12 cm distance from center and radius of circle is 13 cm .

- Watch Video Solution

90. In an isosceles triangle $A B C$ with $A B=A C$, a circle passing through B and C intersects the sides $A B a n d A C$ at Dand E respectively. Prove that $D E|\mid B C$.

- Watch Video Solution

91. $P Q$ and $R S$ are two parallel chords of a circle and lines $R P$ and $S Q$ intersect each other at O as shown in Figure. Prove that $O P=O Q$.

- Watch Video Solution

92. $A B C$ is an isosceles triangle in which $A B=A C$. If DandE are the mid-points of $A B a n d A C$ respectively, prove that the points $B, C, D a n d E$ are concylic.

- Watch Video Solution

93. D and E are points on equal sides $A B$ and $A C$ of an isosceles triangle $A B C$ such that $A D=A E$. Prove that B, C, D, E are concylic.

- Watch Video Solution

94. D and E are, respectively, the points on equal sides $A B$ and $A C$ of an isosceles triangle $A B C$ such that B, C, E, and D are concyclic as shown in Figure. If O is the point of intersection of $C D$ and $B E$, prove that $A O$ is the bisector of line segment $D E$

- Watch Video Solution

95. $A B C D$ is a cyclic quadrilateral. $A B a n d D C$ are produced to meet in E. Prove that $E B C \sim E D A$.

- Watch Video Solution

96. In Figure, $P Q R S$ is a cyclic quadrilateral. Find the measure of each of its angles.

- Watch Video Solution

97. Prove that any cyclic parallelogram is a rectangle.

- Watch Video Solution

98. $A C$ and $B D$ are chords of a circle which bisect each other. Prove that
(i) $A C a n d B D$ are diameters (ii) $A B C D$ is a rectangle.
99. $A B C D$ is a parallelogram. The circle through $A, B a n d C$ intersects $C D$ produced at E, prove that $A E=A D$.

- Watch Video Solution

100. Fill in the blanks: All point lying inside/outside a circle are called ... points/ ... points. Circle having the same centre and different radii are called ... circles. A point whose distance from the centre of a circle is greater than its radius lies in of the circle. A continuous piece of a circle is of the circle. The longest chord of a circle is aof the circle. An arc is a when its ends are the ends of a diameter. Segment of a circle is the region between an arc and ... of the circle. A circle divides the plane, on which it lies, in parts.
101. Write the truth value (T/F) of the following with suitable reasons: A circle is a plane figure. Line segment joining the centre to any point on the circle is a radius of the circle. If a circle is divided into three equal arcs each is a major arc. A circle has only finite number of equal chords. A chord of a circle, which is twice as long is its radius is a diameter of the circle. Sector is the region between the chord and its corresponding arc. The degree measure of an arc is the complement of the central angle containing the arc. The degree measure of a semi-circle is 180°

- Watch Video Solution

102. The radius of a circle is 13 cm and the length of one of its chords is 10 cm . Find the distance of the chord from the centre.

- Watch Video Solution

103. Find the length of a chord which is at a distance of 5 cm from the centre of a circle of radius 13 cm .

(D) Watch Video Solution

104. In Figure, O is the centre of the circle of radius $5 \mathrm{~cm} . O P \perp A B, O Q \perp C D, A B| | C D, A B=6 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$
. Determine $P Q$.

- Watch Video Solution

105. In Figure, O is the centre of the circle of radius $5 \mathrm{cmOP} \perp A B, O Q \perp C D, A B C D, A B=6 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$. Determine $P Q$

- Watch Video Solution

106. $P Q$ and $R S$ are two parallel chords of a circle whose centre is O and radius is 10 cm . If $P Q=16 \mathrm{~cm}$ and $R S=12 \mathrm{~cm}$, find the distance between $P Q$ and $R S$, if they lie: on the same side of centre O
107. $P Q$ and $R S$ are two parallel chords of a circle whose centre is O and radius is 10 cm . If $P Q=16 \mathrm{~cm}$ and $R S=12 \mathrm{~cm}$, find the distance between $P Q$ and $R S$, if they lie: on the same side of the centre O on opposite side of the centre O.

- Watch Video Solution

108. $A B$ and $C D$ are two parallel chords of a circle such that $A B=10 \mathrm{~cm}$ and $C D=24 \mathrm{~cm}$. If the chords are on the opposite sides of the centre and the distance between them is 17 cm , find the radius of the circle.

- Watch Video Solution

109. $A B$ and $C D$ are two chords of a circle such that $A B=6 \mathrm{~cm}, C D=12 \mathrm{~cm}$ and $A B|\mid C D$. If the distance between
$A B$ and $C D$ is 3 cm , find the radius of the circle.

- Watch Video Solution

110. In the figure, $O D$ is perpendicular to the chord $A B$ of a circle whose centre is O. If $B C$ is a diameter, show that $C A=2 O D$.

- Watch Video Solution

111. In Figure, l is a line intersecting the two concentric circles, whose common centre is O, at the points A, B, C and D. Show that $A B=C D$.

- Watch Video Solution

112. In a circle of radius $5 \mathrm{~cm}, A B$ and $A C$ are two chords such that $A B=A C=6 \mathrm{~cm}$. Find the length of the chord $B C$.
113. In an equilateral triangle, prove that the centroid and centre of the circum-circle (circum centre) coincide).

- Watch Video Solution

114. A circular park of radius $20 m$ is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk to each other. Find the length of the string of each phone.

- Watch Video Solution

115. Two chords $A B$ and $C D$ of a circle are parallel and a line L is the perpendicular bisector of $A B$. Show that L bisects $C D$
116. If a diameter of a circle bisects each of the two chords of a circle, prove that the chords are parallel.

- Watch Video Solution

117. $A B$ and $C D$ are two parallel chords of a circle whose diameter is $A C$
. Prove that $A B=C D$

- Watch Video Solution

118. Two concentric circle with centre O have A, B, C, D as the points of intersection with the line l as shown in Figure. If $A D=12 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$, find the lengths of $A B, C D, A C$ and $B D$.

- Watch Video Solution

119. Two circles whose centres are O and O^{\prime} intersect at P. Through P, a line l parallel to $O O^{\prime}$ intersecting the circles at C and D is drawn. Prove that $C D=2 O O^{\prime}$

- Watch Video Solution

120. Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre.

- Watch Video Solution

121. Two circles of radii 10 cm and 8 cm intersect and the length of the common chord is 12 cm . Find the distance between their centres.

- Watch Video Solution

122. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of the common chord.

- Watch Video Solution

123. In Figure, two circles with centres A and B and of radii 5 cm and 3 cm touch each other internally. If the perpendicular bisector of segment $A B$ meets the bigger circle in P and Q, find the length of $P Q$

- Watch Video Solution

124. In Figure, $\widehat{A} B \cong \widehat{A} C$ and O is the centre of the circle. Prove that $O A$ is the perpendicular bisector of $B C$
125. Prove that the right bisector of a chord of a circle, bisects the corresponding arc or the circle.

- Watch Video Solution

126. Prove that the perpendicular bisector of a chord of a circle always passes through the centre.

- Watch Video Solution

127. In Figure, $A B=C B$ and O is the centre of the circle. Prove that $B O$ bisects $\angle A B C$.

- Watch Video Solution

128. Two circle with centres A and B intersect at C and D. Prove that $\angle A C B=\angle A D B$.
129. Prove that the line joining centres of two interesting circles subtends equal angles at the two points of intersection.

- Watch Video Solution

130. The radius of a circle is 8 cm and the length of one of its chords is 12 cm . Find the distance of the chord from the centre.

- Watch Video Solution

131. Find the length of a chord which is at a distance of 5 cm from the centre of a circle of radius 10 cm .
132. Find the length of a chord which is at a distance of 4 cm from the centre of the circle of radius 6 cm .

- Watch Video Solution

133. Two chords $A B$ and $C D$ of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between $A B$ and $C D$ is 6 cm , find the radius of the circle.

- Watch Video Solution

134. Suppose you are given a circle. Give a construction to find its centre.

- Watch Video Solution

135. Prove that the line joining the mid-point of a chord to the centre of the circle passes through the mid-point of the corresponding minor arc.
136. Prove that a diameter of a circle which bisects a chord of the circle also bisects the angle subtended by the chord at the centre of the circle.

- Watch Video Solution

137. Prove that two different circles cannot intersect each other at more than two points.

- Watch Video Solution

138. A line segment $A B$ is of length 5 cm . Draw a circle of radius 4 cm passing through A and B ? Give reason in support of your answer.

- Watch Video Solution

139. An equilateral triangle of side 9 cm is inscribed in a circle. Find the radius of the circle.

- Watch Video Solution

140. Given an arc of a circle, complete the circle.

- Watch Video Solution

141. Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?

- Watch Video Solution

142. Suppose you are given a circle. Give a construction to find its centre.
143. Two chords $A B$ and $C D$ of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between $A B$ and $C D$ is 6 cm , find the radius of the circle.

- Watch Video Solution

144. The lengths of two parallel chords of a circle are 6 cm and 8 cm . If the smaller chord is at a distance of 4 cm from the centre, what is the distance of the other chord from the centre?

- Watch Video Solution

145. If two chords of a circle are equally inclined to the diameter through their point of intersection, prove that the chords are equal.

- Watch Video Solution

146. In Figure, O is the centre of a circle and $P O$ BISECTS $\angle A P D$. Prove that $A B=C D$

- Watch Video Solution

147. Two equal chords $A B$ and $C D$ of a circle with centre O, when produced meet at a point E, as shown in Figure, Prove that $B E=D E$ and $A E=C E$.

- Watch Video Solution

148. If two equal chords of a circle in intersect within the circle, prove that: the segments of the chord are equal to the corresponding segments of the other chord. the line joining the point of intersection to the centre makes equal angles with the chords.

- Watch Video Solution

149. If two equal chords of a circle intersect within the circle, prove that: the segments of the chord are equal to the corresponding segments of the other chord.

- Watch Video Solution

150. prove that the line joining the mid-point of two equal chords of a circle subtends equal angles with the chord.

- Watch Video Solution

151. L and M are mid-point of two equal chords $A B$ and $C D$ of a circle with centre O. Prove that $\angle O L M=\angle O M L$ (ii) $\angle A L M=\angle C M L$

- Watch Video Solution

152. PQ and RQ are chords of a circle equidistant from the centre. Prove that the diameter passing through Q bisects $\angle P Q R$ and $\angle P S R$
153. In the figure, two equal chords $A B$ and $C D$ of a circle with centre O, intersect each other at E , Prove that $\mathrm{AD}=\mathrm{CB}$

- Watch Video Solution

154. A, B, C, D are four consecutive points on a circle such that $A B=C D$. Prove that $A C=B D$

- Watch Video Solution

155. Show that if two chords of a circle bisect one another they must be diameters.
156. In Figure, equal chords $A B$ and $C D$ of a circle with centre O, cut at right angles at E. If M and N are mid-point of $A B$ and $C D$ respectively, prove that OMEN is a square.

- Watch Video Solution

157. Two equal circles intersect in P and Q. A straight line through P meets the circles in A and B. Prove that $Q A=Q B$.

- Watch Video Solution

158. Prove that all the chords of a circle through a given point within it, the least is one which is bisected at that point.

- Watch Video Solution

159. Prove that the diameter is the greatest chord in a circle.
160. Bisector $A D$ of $\angle B A C$ of $\triangle A B C$ passes through the centre O of the circumcircle of $\triangle A B C$ as shown in figure. Prove that $A B=A C$.

- Watch Video Solution

161. In Figure, $A B$ and $A C$ are two equal chords of a circle whose centre is O. If $O D \perp A B$ and $O E \perp A C$, prove that $\triangle A D E$ is an isosceles triangle.

- Watch Video Solution

162. In Figure, $O A$ and $O B$ ar respectively perpendiculars to chords $C D$ and $E F$ of a circle whose centre is O. If $O A=O B$, prove that $C E=D F$.
163. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?

- Watch Video Solution

164. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

- Watch Video Solution

165. In Figure, calculate the measure of $\angle A O C$.
166. A, B and C are three points on a circle such that the angles subtended by the chords $A B$ and $A C$ at the centre O are 90° and 110°, respectively. Determine $\angle B A C$.

- Watch Video Solution

167. In Figure, $A B C$ is a triangle in which $\angle B A C=30^{\circ}$. Show that $B C$ is the radius of the circumcircle of $A B C$, whose centre is O.

- Watch Video Solution

168. A chord of a circle is equal to the radius of the circle find the angle subtended by the chord at a point on the monor arc and also at a point on the major arc.

- Watch Video Solution

169. In Figure, $\angle A B C=69^{0}, \angle A C B=31^{0}$, find $\angle B D C$

- Watch Video Solution

170. In Figure, $\angle P Q R=100^{\circ}$, where P, Q and R are points on a circle with centre. O. Find $\angle O P R$

- Watch Video Solution

171. In Fig. 10.39, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that $\angle B E C \backslash=\backslash 130$ o and $\angle E C D \backslash=\backslash 20 \odot$ Find $\angle B A C$.

- Watch Video Solution

172. $B C$ is a chord with centre O. A is a point on an $\operatorname{arc} B C$. Prove that:
$\angle B A C+\angle O B C=90$, if A is the point on the major arc.
173. $B C$ is a chord with centre O. A is a point on an arc $B C$. Prove that: $\angle B A C-\angle O B C=90^{\circ}$.

- Watch Video Solution

174. Prove that the circle drawn on any one of the equal sides of an isosceles triangle as diameter bisects the base. Given: $\mathrm{A} \triangle A B C$ in which $A B=A C$ and a circle is drawn by taking $A B$ as diameter which intersects the side $B C$ of triangle at D. To Prove: $B D=D C$ Construction : Join $A D$.

- Watch Video Solution

175. In Figure, A, B, C are three points on a circle such that the angles subtended by the chords $A B$ and $A C$ at the centre O are 80° and 120° respectively. Determine $\angle B A C$ and the degree measure of arc $B P C$

Watch Video Solution

176. In Figure, O is the centre of the circle and the measure of arc $A B C$ is 100°. Determine $\angle A D C$ and $\angle A B C$

- Watch Video Solution

177. In Figure, O is the centre of the circle. The angle subtended by the arc $B C D$ at the centre is $140^{\circ} . B C$ is produced to P. Determine $\angle B A D$ and $\angle D C B$.

- Watch Video Solution

178. In Figure, find $m \angle P Q B$ where O is the centre of the circle

- Watch Video Solution

179. Two circle intersect in A and B and $A C$ and $A D$ are respectively the diameters of the circles. Prove that C, B, D are collinear.

Watch Video Solution

180. Two circles are drawn with sides $A B, A C$ of a triangle $A B C$ as diameters. The circles intersect at a point D. Prove that D lies on $B C$.

- Watch Video Solution

181. $A B C$ and $A D C$ are two right triangles with common hypotenuse $A C$. Prove that $\angle C A D=\angle C B D$.

- Watch Video Solution

182. In the figure, P is the centre of the circle. Prove that:
$\angle X P Z=2(\angle X Z Y+\angle Y X Z)$
183. In a circle with centre O, chords $A B$ and $C D$ intersect inside the circumference at E. Prove that $\angle A O C+\angle B O D=2 \angle A E C$

- Watch Video Solution

184. C is a point on the minor arc $A B$ of the circle, with centre O. Given $\angle A C B=x^{\circ}$ and $\angle A O B=y^{\circ}$. Express y in terms of x. Calculate x, if $A C B O$ is a parallelogram.

- Watch Video Solution

185. In Figure, chord $E D$ is parallel to the diameter $A C$ of the circle.

Given $\angle C B E=65^{\circ}$, calculate $\angle D E C$.

- Watch Video Solution

186. In Figure, $A B$ and $C D$ are two chords of a circle, intersecting each other at P such that $A P=C P$. Show that $A B=C D$.

- Watch Video Solution

187. If O is the circumcentre of a $A B C$ and $O D \perp B C$, prove that $\angle B O D=\angle A$.

(D) Watch Video Solution

188. In the given figure, a diameter PQ of a circle bisects the chord RS at the point O . If PS is parallel to RQ , prove that RS is also a diameter of the circle.

- Watch Video Solution

189. In Figure, $A B=C D$. Prove that $B E=D E$ and $A E=C E$, where E is the point of intersecting of $A D$ and $B C$.

- Watch Video Solution

190. Two diameters of a circle intersect each other at right angles. Prove that the quadrilateral formed by joining their end-points is a square.

- Watch Video Solution

191. Prove that the circle drawn with any side of a rhombus as a diameter, passes through the point of intersection of its diagonals.

- Watch Video Solution

192. $A C$ and $B D$ are chords of a circle that bisect each other. Prove that:
(i) $A C$ and $B D$ are diameters
(ii) $A B C D$ is a rectangle.
193. $A C a n d B D$ are chords of a circle that bisect each other. Prove that: (i) $A C a n d B D$ are diameters (ii) ABCD is a rectangle.

- Watch Video Solution

194. $A B C$ and $A D C$ are two right triangles with common hypotenuse $A C$. Prove that $\angle C A D=\angle C B D$.

- Watch Video Solution

195. D is a point on the circumcircle of $A B C$ in which $A B=A C$ such that B and D are on the opposite side of line $A C$. If $C D$ is produced to a point E such that $C E=B D$, prove that $A D=A E$.

- Watch Video Solution

196. The bisector of $\angle B$ of an isosceles triangle $A B C$ with $A B=A C$ meets the circumcircle of $A B C$ at P as shown in Figure. If $A P$ and $B C$
produced meet at Q, prove that $C Q=C A$.

- Watch Video Solution

197. Bisectors of angles A, B and C of a triangle $A B C$ intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are $90^{\circ}-\frac{1}{2} A, 90^{\circ}-\frac{1}{2} B$ and $90^{\circ}-\frac{1}{2} C$

- Watch Video Solution

198. Prove that the mid-point of the hypotenuse of a right triangle is equidistant from its vertices.

- Watch Video Solution

199. $A B$ is a diameter of a circle with centre O and radius $O D$ is perpendicular to $A B$. If C is any point on arc $D B$, find $\angle B A D$ and $\angle A C D$.
200. In Figure, P, is any point on the chord $B C$ of a circle such that $A B=A P$. Prove that $C P=C Q$.

- Watch Video Solution

201. In Figure, $A B$ is a diameter of the circle, $C D$ is a chord equal to the radius of the circle. AC and BD when extended intersect at a point E . Prove that $\angle A E B=60^{\circ}$

- Watch Video Solution

202. In Figure, O is the centre of the circle. If $\angle A P B=50^{\circ}$, find $\angle A O B$ and $\angle O A B$
203. In Figure, it is given that O is the centre of the circle and $\angle A O C=150^{\circ}$. Find $\angle A B C$

- Watch Video Solution

204. In Figure, O is the centre of the circle. Find $\angle B A C$

- Watch Video Solution

205. If O is the center of the circle, find the value of x in each of the following figures:

- Watch Video Solution

206. If O is the circumcentre of $\triangle A B C$ and $O D \perp B C$, prove that $\angle B O D=\angle A$
207. In the figure, O is the center of the circle and BO is the bisector of $\angle A B C$ show that $\mathrm{AB}=\mathrm{BC}$

- Watch Video Solution

208. In Figure, O is the centre of the circle, prove that $\angle x=\angle y+\angle z$

- Watch Video Solution

209. In Figure, O and O^{\prime} are centres of two circles intersecting at B and $C . A C D$ is a straight line, find x.

- Watch Video Solution

210. In Figure, O is the centre of a circle and $P Q$ is a diameter. If $\angle R O S=40^{\circ}$, find $\angle R T S$
211. In Figure, if $\angle A C B=40^{\circ}, \angle D P B=120^{\circ}$, find $\angle C B D$

- Watch Video Solution

212. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

- Watch Video Solution

213. In Figure, $P Q R S$ is a cyclic quadrilateral. Find the measure of each of its angles.

- Watch Video Solution

214. In Figure, if $\angle D B C=70^{\circ}$ and $\angle B A C=30^{\circ}$, find $\angle B C D$. Further, if $A B=B C$, find $\angle E C D$

Watch Video Solution

215. In Figure, $A B C D$ is a cyclic quadrilateral; O is the centre of the circle. If $\angle B O D=160^{\circ}$, find the measure of $\angle B P D$

- Watch Video Solution

216. In Figure, $A B C$ is an isosceles triangle with $A B=A C$ and $m \angle A B C=50^{\circ}$. Find $m \angle B D C$ and $\angle B E C$

- Watch Video Solution

217. In Figure, $A B C D$ is a cyclic quadrilateral whose side $A B$ is a diameter of the circle through A, B, C, D. If $(\angle A D C)=130^{\circ}$, find

- Watch Video Solution

218. In Figure, C and D are points on the semi-circle described on $B A$ as diameter. Given $m \angle B A D=70^{\circ}$ and $m \angle D B C=30^{\circ}$. Calculate $\angle A B D$ and $\angle B D C$.

- Watch Video Solution

219. In Figure, O is the centre of the circle. The angle subtended by the arc $B C D$ at the centre is $140^{\circ} \dot{B C}$ is produced to P. Determine $\angle B A D$ and $\angle D C P$

- Watch Video Solution

220. In Figure, $B D=D C$ and $\angle D B C=25^{0}$ find the measure of $\angle B A C$
221. Prove that any cyclic parallelogram is a rectangle.

- Watch Video Solution

222. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

- Watch Video Solution

223. Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see Figure). Prove that $\angle A C P=\angle Q C D$.

- Watch Video Solution

224. $A C$ and $B D$ are chords of a circle which bisect each other. Prove that
(i) $A C$ and $B D$ are diameters
(ii) $A B C D$ is a rectangle

Watch Video Solution

225. $A B C D$ is a parallelogram. The circle through $A, B a n d C$ intersects $C D$ produced at E, prove that $A E=A D$.

- Watch Video Solution

226. In Figure, A, B, C and D, E, F are two sets of collinear points.

Prove that $A D|\mid C F$

- Watch Video Solution

227. In Figure, $A B C D$ is a cyclic quadrilateral. A circle passing through A and B meets $A D$ and $B C$ in the points E and F respectively. Prove that $E F|\mid D C$

- Watch Video Solution

228. $A B C$ is an isosceles triangle in which $A B=A C$. If D and E are the mid-points of $A B$ and $A C$ respectively, Prove that the points B, C, D and E are concyclic.

- Watch Video Solution

229. D and E are points on equal sides $A B$ and $A C$ of an isosceles triangle $A B C$ such that $A D=A E$. Prove that B, C, D, E are concylic.

- Watch Video Solution

230. DandE are, respectively, the points on equal sides $A B a n d A C$ of an isosceles triangle $A B C$ such that $B, C, E a n d D$ are concyclic as shown in Figure. If O is the point of intersectionof $C D a n d B E$, prove that $A O$ is the bisector of line segment $D E$.

- Watch Video Solution

231. $A B C D$ is a cyclic quadrilateral. $A B a n d D C$ are produced to meet in E. Prove that $E B C \sim E D A$.

- Watch Video Solution

232. In an isosceles triangle $A B C$ with $A B=A C$, a circle passing through B and C intersects the sides $A B$ and $A C$ at D and E respectively. Prove that $D E|\mid B C$.

- Watch Video Solution

233. In Figure, $\angle A=60^{\circ}$ and $\angle A B C=80^{\circ}$, find $\angle D P C$ and $\angle B Q C$

Watch Video Solution

234. $A B$ is a diameter of a circle $C(O, r)$. Chord $C D$ is equal to radius $O C$. If $A C$ and $B D$ when produced intersect at P, prove that $\angle A P B$ is constant.

- Watch Video Solution

235. $P Q$ and $R S$ are two parallel chords of a circle and lines $R P$ and $S Q$ intersect each other at O as shown in Figure. Prove that $O P=O Q$

- Watch Video Solution

236. $A B C D$ is a cyclic quadrilateral whose diagonals $A C$ and $B D$ intersect at P.If $A B=D C$, prove that:
(i) $P A B \cong P D C$
(ii) $P A=P D$ and $P C=P B$
(iii) $A D|\mid B C$

- Watch Video Solution

237. P is a point on the side $B C$ of a triangle $A B C$ such that $A B=A P$.

Through A and C, lines are drawn parallel to $B C$ and $P A$, respectively, so as to intersect at D as shown in Figure. Show that $A B C D$ is a cyclic quadrilateral.

- Watch Video Solution

238. $A B C$ is a triangle in which $A B=A C$ and P is a point on $A C$. Through C a line is drawn to intersect $B P$ produced at Q such that $\angle A B Q=\angle A C Q$. Prove that: $\angle A Q C=90^{\circ}+\frac{1}{2} \angle B A C$

- Watch Video Solution

239. In any triangle ABC , if the angle bisector of $\angle A$ and perpendicular bisector of $B C$ intersect, prove that they intersect on the circumcircle of the triangle $A B C$.

- Watch Video Solution

240. Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that $\angle A B C$ is equal to half the difference of the angles subtended by the chords AC and DE at the centre.

- Watch Video Solution

241. In Figure, $A B C$ is an equilateral triangle. Find $m \angle B E C$

- Watch Video Solution

242. In Figure, O is the centre of the circle. If $\angle B O D=160^{\circ}$, find the values of x and y

- Watch Video Solution

243. In Figure $A B C D$ is a cyclic quadrilateral. If
$\angle B C D=100^{\circ}$ and $\angle A B D=70^{\circ}$, find $\angle A D B$

Watch Video Solution

244. If $A B C D$ is a cyclic quadrilateral in which $A D|\mid B C$. Prove that $\angle B=\angle C$

- Watch Video Solution

245. In Figure, O is the centre of the circle. Find $\angle C B D$
246. $A B$ and $C D$ are diameters of a circle with centre O. If $\angle O B D=50^{\circ}$, find $\angle A O C$

- Watch Video Solution

247. On a semi-circle with $A B$ as diameter, a point C is taken, so that $m(\angle C A B)=30^{\circ}$. Find $m(\angle A C B)$ and $m(\angle A B C)$

- Watch Video Solution

248. In a cyclic quadrilateral $A B C D$, if $A B \| C D$ and $\angle B=70^{\circ}$, find the remaining angles.

- Watch Video Solution

249. In a cyclic quadrilateral $A B C D$, if $\angle A=3 \angle C$. Find $\angle A$
250. In Figure, O is the centre of the circle and $\angle D A B=50^{\circ}$. Calculate the values of x and y

- Watch Video Solution

251. In Figure, if $\angle B A C=60^{\circ}$ and $\angle B C A=20^{\circ}$, find $\angle A D C$

- Watch Video Solution

252. In Figure, if $A B C$ is an equilateral triangle. Find $\angle B D C$ and $\angle B E C$

- Watch Video Solution

253. In Figure, O is the centre of the circle. If $\angle C E A=30^{\circ}$, find the values of x, y and z
254. In Figure, $\angle B A D=78^{0}, \angle D C F=x^{0}$ and $\angle D E F=y^{0}$. Find the value of x and y

- Watch Video Solution

255. In a cyclic quadrilateral $A B C D$, if $\angle A-\angle C=60^{\circ}$, prove that the smaller of two is 60°

- Watch Video Solution

256. In Figure, $A B C D$ is a cyclic quadrilateral. Find the value of a and b .

- Watch Video Solution

257. $A B C D$ is a cyclic quadrilateral in which:
$B C$ isparallelto $A D, \angle A D C=110^{\circ}$ and $\angle B A C=50^{\circ}$. Find $\angle D A C$.
258. Prove that the perpendicular bisectors of the sides of a cyclic quadrilateral are concurrent.

- Watch Video Solution

259. Prove that the centre of the circle circumscribing the cyclic rectangle $A B C D$ is the point of intersection of its diagonals.

- Watch Video Solution

260. Prove that the circle drawn with any side of a rhombus as a diameter, passes through the point of intersection of its diagonals.

- Watch Video Solution

261. If the two sides of a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are equal.

- Watch Video Solution

262. $A B C D$ is a cyclic quadrilateral in which $B A$ and $C D$ when produced meet in E and $E A=E D$. Prove that: (i) $A D$ isparallelto $B C$
(ii) $E B=E C$

- Watch Video Solution

263. Prove that the angle in a segment greater than a semi-circle is less than a right angle.

- Watch Video Solution

264. $A B C D$ is a cyclic trapezium with $A D\left|\mid B C\right.$. If $\angle B=70^{\circ}$, determine other three angles of the trapezium.

- Watch Video Solution

265. Prove that the line segment joining the mid-point of the hypotenuse of a right triangle to its opposite vertex is half of the hypotenuse.

- Watch Video Solution

266. $A B C D$ is a cyclic quadrilateral in which $A C$ and $B D$ are its diagonals. If $\angle D B C=55^{\circ}$ and $\angle B A C=45^{\circ}$, find $\angle B C D$

- Watch Video Solution

267. In Figure, two circles intersect at A and B. The centre of the smaller circle is O and it lies on the circumference of the larger circle. If
$\angle A P B=70^{\circ}$, find $\angle A C B$

- Watch Video Solution

268. In Figure, two congruent circles with centres O and O^{\prime} intersect at A and B. If $\angle A O^{\prime} B=50^{\circ}$, then find $\angle A P B$

- Watch Video Solution

269. $A B C D$ is a cyclic quadrilateral in which
$\angle B A D=75^{\circ}, \angle A B D=58^{0}$ and $\angle A D C=77^{0}, A C$ and $B D$ intersect at P. then, find $\angle D P C$

- Watch Video Solution

270. In Figure, if $\angle A O B=80^{\circ}$ and $\angle A B C=30^{\circ}$, then find $\angle C A O$
271. If O is the circumcentre of $A B C$, then find the value of $\angle O B C+\angle B A C$

- Watch Video Solution

272. If Figure, $A O C$ is a diameter of the circle and arc $A X B=\frac{1}{2}$ arc $B Y C$. Find $\angle B O C$

- Watch Video Solution

273. In Figure, A is the centre of the circle. $A B C D$ is a parallelogram and $C D E$ is a straight line. Find $\angle B C D: \angle A B E$.

- Watch Video Solution

274. In Figure, $A B$ is a diameter of the circle such that $\angle A=35^{\circ}$ and $\angle Q=25^{\circ}$, find $\angle P B R$
275. In Figure, P and Q are centres of two circles intersecting at B and C. $A C D$ is a straight line. Then, $\angle B Q D=$

Watch Video Solution

276. In Figure, $A B C D$ is quadrilateral inscribed in a circle with centre
$O . C D$ is produced to E such that $\angle A D E=95^{\circ}$ and $\angle O B A=30^{\circ}$.
Find $\angle O A C$.

- Watch Video Solution

277. If the length of a chord of a circle is 16 cm and is at a distance of 15 cm from the centre of the circle, then the radius of the circle is 15 cm
(b) 16 cm
(c) 17 cm
(d) 34 cm
278. The radius of a circle is 6 cm . The perpendicular distance from the centre of the circle to the chord which is 8 cm in length, is
A. $\sqrt{5} \mathrm{~cm}$
B. $2 \sqrt{5} \mathrm{~cm}$
C. $2 \sqrt{7} \mathrm{~cm}$
D. $\sqrt{7} \mathrm{~cm}$

Answer: B

- Watch Video Solution

279. If O is the centre of a circle with radius r and $A B$ is a chord of the circle at a distance $\frac{r}{2}$ from O , then $\angle B A O=$

- Watch Video Solution

280. $A B C D$ is a cyclic quadrilateral such that $\angle A D B=30^{\circ}$ and $\angle D C A=80^{\circ}$, the $\angle D A B=$ (A) 70° (b) 100° (c) 125° (d) 150^{0}

Watch Video Solution

281. A chord of length 14 cm is at a distance of 6 cm from the center of the circle. The length of another chord at a distance of 2 cm from the center of the circle is
A. 12 cm
B. 14 cm
C. 16 cm
D. 18 cm

Answer: D

282. One chord of a circle is known to be 10 cm . The radius of this circle must be
A. 5 cm
B. greater than 5 cm
C. greater than or equal to 5 cm
D. less than 5 cm

Answer: C

- Watch Video Solution

283. $A B C$ is a triangle with B as right angle, $A C=5 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$. A circle is drawn with A as centre and $A C$ as radius. The length of the chord of this circle passing through C and B is (a) 3 cm (b) 4 cm (c) 5 cm (d) 6 cm
284. If $A B, B C$ and $C D$ are equal chords of a circle with O as centre and $A D$ diameter, then $\angle A O B=$ (a) 60° (b) 90° (c) 120° (d) none of these

- Watch Video Solution

285. Let C be the mid-point of an arc $A B$ of a circle such that $m \widehat{A} B=183^{0}$. If the region bounded by the arc $A C B$ and line segment $A B$ is denoted by S, then the centre O of the circle lies (a) in the interior of S (b) in the exterior of S on the segment $A B$ (d) on $A B$ and bisects $A B$

- Watch Video Solution

286. In a circle, the major arc is 3 times the minor arc. The corresponding central angles and the degree measures of two arcs are (a) 90° and 270°
(b) 90° and 90^{0}
(c) 270° and 90°
(d) 60^{0} and 210^{0}
287. If A and B are two points on a circle such that $m(\widehat{A} B)=260^{\circ} \cdot \mathrm{A}$ possible value for the angle subtended by arc $B A$ at a point on the circle is (a) 100° (b) 75^{0} (c) 50° (d) 25^{0}

- Watch Video Solution

288. An equilateral triangle $A B C$ is inscribed in a circle with centre O.

The measures of $\angle B O C$ is
A. 30°
B. 60°
C. 120°
D. 90°

Answer: C

289. In a circle with centre $O, A B$ and $C D$ are two diameters perpendicular to each other. The length of chord $A C$ is
A. $2 A B$
B. $\sqrt{2} A B$
C. $\frac{1}{2} A B$
D. $\frac{1}{\sqrt{2}} A B$

Answer: D

- Watch Video Solution

290. Two equal circles of radius r intersect such that each passes through the centre of the other. The length of the common chord of the circles is \sqrt{r} (b) $\sqrt{2} r A B$ (c) $\sqrt{3} r$ (d) $\frac{\sqrt{3}}{2} r$
291. If $A B$ is a chord of a circle, P and Q are the two points on the circle different from A and B, then which is correct.
(i) $\angle A P B=\angle A Q B$
(ii) $\angle A P B+\angle A Q B=180^{\circ}$ or $\angle A P B=\angle A Q B$
(iii) $\angle A P B+\angle A Q B=90^{\circ}$
(iv) $\angle A P B+\angle A Q B=180^{\circ}$

- Watch Video Solution

292. If two diameters of a circle intersect each other at right angles, then quadrilateral formed by joining their end points is a
A. Rhombus
B. rectangle
C. square
D. parallelogram

Answer: C

293. If $A B C$ is an arc of a circle and $\angle A B C=135^{\circ}$, then the ratio of arc $\widehat{A} B C$ to circumference is (a) 1:4 (b) 3:4 (c) 3:8 (d) 1:2

Watch Video Solution

294. The chord of a circle is equal to its radius. The angle subtended by this chord at the minor arc of the circle is
A. 60°
B. 75°
C. 120°
D. 180°

Answer: A

295. $P Q R S$ is a cyclic quadrilateral such that $P R$ is a diameter of the circle. If $\angle Q P R=67^{0}$ and $\angle S P R=72^{0}$, then $\angle Q R S=$ (a) 41^{0} (b) 23^{0}
(c) 67^{0}
(d) 18^{0}

- Watch Video Solution

296. If A, B, C are three points on a circle with centre O such that $\angle A O B=90^{\circ}$ and $\angle B O C=120^{\circ}$, then $\angle A B C=$ (a) 60° (b) 75° (c) 90° (d) 135^{0}

- Watch Video Solution

297. $A B$ and $C D$ are two parallel chords of a circle with centre O such that $A B=6 \mathrm{~cm}$ and $C D=12 \mathrm{~cm}$. The chords are on the same side of the centre and the distance between them is 3 cm . The radius of the circle is (a) 6 cm (b) $5 \sqrt{2} \mathrm{~cm}$ (c) 7 cm (d) $3 \sqrt{5} \mathrm{~cm}$
298. In a circle of radious 17 cm , two parallel chords are drawn on opposite side of a diameter. The distance between the chords is 23 cm . If the length of one chord is 16 cm , then the length of the other is (a) 34
cm
(b) 15 cm
(c) 23 cm
(d) 30 cm

Watch Video Solution

299. The greatest chord of a circle is called its (a) radius
secant
(c) diameter
(d) none of these

- Watch Video Solution

300. Angle formed in minor arc of a circle is
A. less than 90°
B. less than 180°
C. more than 180°
D. none of these

Answer: B

- Watch Video Solution

301. Number of circles that can be drawn through three non-collinear points is (a) 1
(b) 0
(c) 2
(d) 3

- Watch Video Solution

302. In Figure, O is the centre of the circle such that $\angle A O C=130^{\circ}$, then $\angle A B C=$ (a) 130^{0} (b) 115^{0} (c) 65^{0} (d) 165^{0}

- Watch Video Solution

303. In Figure, if chords $A B$ and $C D$ of the circle intersect each other at right angles, then $x+y=$ (a) 45^{0} (b) 60° (c) 75^{0} (d) 90^{0}
304. In Figure, If $\angle A B C=45^{\circ}$, then $\angle A O C=$ (a) 45° (b) 60° (c) 75° (d) 90^{0}

- Watch Video Solution

305. In Figure, chords $A D$ and $B C$ intersect each other at right angles at a point P. If $\angle D A B=35^{0}$, then $\angle A D C=$ (a) 35° (b) 45° (c) 55° (d) 65^{0}

- Watch Video Solution

306. In Figure, O is the centre of the circle and $\angle B D C=42^{\circ}$. The measure of $\angle A C B$ is (a) 42^{0} (b) 48^{0} (c) 58^{0} (d) 52^{0}

- Watch Video Solution

