© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

CONGRUENT TRIANGLE

Others

1. In Figure, $A B=A C B E$ and $C F$ are respectively the bisectors of $\angle B$ and $\angle C$. Prove that $E B C=F C B$.

- Watch Video Solution

2. ABC is an isosceles triangle in which $A B=A C$. Side BA is produced to D such that $A D=A B$ (see Fig. 7.34). Show that $\angle B C D$ is a right angle.
3. If any two angles and a non-included side of one triangle are equal to the corresponding angles and side of another triangle, then the two triangles are congruent. GIVEN : Two $s A B C$ and $D E F$ such that $\angle A=\angle D, \angle B=\angle E, B C=E F$ TO PROVE : $A B C \cong D E F$ Figure

- Watch Video Solution

4. $B D$ and $C E$ are bisectors of $\angle B$ and $\angle C$ of an isosceles $A B C$ with $A B=A C$. Prove that $B D=C E$.

- Watch Video Solution

5. Two lines $A B$ and $C D$ intersect at O such that $B C$ is equal and parallel to $A D$. Prove that the lines $A B$ and $C D$ bisect at O.

- Watch Video Solution

6. In Figure, $A C=B C, \angle D C A=\angle E C B$ and $\angle D B C=\angle E A C$. Prove that triangles $D B C$ and $E A C$ are congruent, and hence $D C=E C$ and $B D=A E$

- Watch Video Solution

7. If the bisector of the vertical angle of a triangle bisects the base of the triangle. then the triangle is isosceles. GIVEN : triangle A B C in which A D is the bisector of angle A meeting $B C$ in D such that $B D=D C T O P R O V E$: triangleA B^{\prime} ' is an isosceles triangle.

- Watch Video Solution

8. In an isosceles triangle altitude from the vertex bisects the base. GIVEN
: An isosceles triangle $A B C$ such that $A B=A C$ and an altitude $A D$ from A on side $B C$. TO PROVE : D bisects $B C$ i.e. $B D=D C$. Figure
9. If the altitude from one vertex of a triangle bisects the opposite side, then the triangle is isosceles. GIVEN : A $A B C$ such that the altitude $A D$ from A on the opposite side $B C$ bisects $B C$ i.e., $B D=D C$. TO PROVE : $A B=A C$ i.e. the triangle $A B C$ is isosceles.

- Watch Video Solution

10. Angles opposite to two equal sides of a triangle are equal. GIVEN :
$A B C$ in which $A B=A C$ TO PROVE : $\angle C=\angle B$ CONSTRUCTION : Draw the bisector $A D$ of $\angle A$ which meets $B C$ in D Figure

- Watch Video Solution

11. Prove that the perimeter of a triangle is greater than the sum of its altitudes.

- Watch Video Solution

12. In $A B C$, side $A B$ is produced to D so that $B D=b$. If $\angle B=60^{\circ}$ and $\angle A=70^{\circ}$, prove that: $A D>C D A D>A C$

- Watch Video Solution

13. Prove that in a quadrilateral the sum of all the sides is greater than the sum of its diagonals.

- Watch Video Solution

14. In Figure, $P Q R S$ is a quadrilateral in which diagonals $P R$ and $Q S$ intersect in O. Show that $P Q+Q R+R S+S P>P R+Q S$ $P Q+Q R+R S+S P<2(P R+Q S)$ Figure

- Watch Video Solution

15. GIVEN : $P Q R S$ is a quadrilateral. $P Q$ is its longest side and $R S$ is its shortest side. TO PROVE : (i) $\angle R>\angle P$ (ii) $\angle S>\angle Q$ CONSTRUCTION :

Join $P R$ and $Q S$. Figure

- Watch Video Solution

16. In Figure, $A B$ and CD are respectively the smallest and longest sides of a quadrilateral $A B C D$. Show that $\angle A>\angle C$ and $\angle B>\angle D$.

- Watch Video Solution

17. Of all the line segments drawn from a point P to a line m not containing P, let $P D$ be the shortest. If B and C are points on m such that D is the mid-point of $B C$, prove that $P B=P C$.

- Watch Video Solution

18. In Figure, $A D$ is a median and $B L, C M$ are perpendiculars drawn from B and C respectively on $A D$ and $A D$ produced. Prove that $B L=C M \cdot$ Figure
19. In Figure, $B M$ and $D N$ are both perpendiculars to the segments $A C$ and $B M=D N$. Prove that $A C$ bisects $B D$. Figure

- Watch Video Solution

20. If $A B C$ is an isosceles triangle with $A B=A C$. Prove that the perpendiculars from the vertices B and C to their opposite sides are equal.

- Watch Video Solution

21. If the altitudes from two vertices of a triangle to the opposite sides are equal, prove that the triangle is isosceles.

- Watch Video Solution

22. $A D$ and $B C$ are equal perpendiculars to a line segment $A B$. Show that $C D$ bisects $A B$.

Watch Video Solution

23. In $A B C, A B=A C$, and the bisectors of angles B and C intersect at point O. Prove that $B O=C O$ and the ray $A O$ is the bisector of angles $B A C$.

- Watch Video Solution

24. In Figure, it is given that $A B=E F, B C=D E, A B \perp B D$ and $F E \perp C E$. Prove that $A B D \cong F E C$.

- Watch Video Solution

25. In Figure, it is given that $A B=B C$ and $A D=E C$. Prove that
$A B E \cong C B D$

- Watch Video Solution

26. In Figure, lIIm and M is the mid-point of the line segment $A B$. Prove that M is also the mid-point of any line segment $C D$ having its endpoints on l and m respectively.

- Watch Video Solution

27. In Figure, line l is the bisector of angle A and B is any point on $l . B P$ and $B Q$ are perpendiculars from B to the arms of A. Show that : $A P B \cong A Q B B P=B Q$ or B is equidistant from the arms of $\angle A$. Figure

- Watch Video Solution

28. In Figure, O is the mid point of $A B$ and $C D$. Prove that (i) $A O C \cong B O D$ (ii) $\mathrm{AC}=\mathrm{BD}$
29. Prove that measure of each angle of an equilateral triangle is 60°.

- Watch Video Solution

30. In Figure, it is given that $A E=A D$ and $B D=C E$. Prove that $\triangle A E B \cong \triangle A D C$

- Watch Video Solution

31. In Figure, it is given that $A B=C F, E F=B D$ and $\angle A F E=\angle C B D$. Prove that $A F E \cong C B D$.

- Watch Video Solution

32. Two triangles are congruent if two sides and the included angle of one are equal to the corresponding sides and the included angle of the
other triangle. GIVEN : Two triangles $A B C$ and $D E F$ such that $A B=D E, A C=D F$ and $\angle A=\angle D$ PROVE : $A B C \cong D E F$ Figure

- Watch Video Solution

33. In $\triangle A B C, \angle A=100^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$

- Watch Video Solution

34. Angles opposite to two equal sides of a triangle are equal. GIVEN :
$A B C$ in which $A B=A C$ TO PROVE : $\angle C=\angle B$ CONSTRUCTION : Draw the bisector $A D$ of $\angle A$ which meets $B C$ in D Figure

- Watch Video Solution

35. In Figure, X and Y are two points on equal sides $A B$ and $A C$ of a $A B C$ such that $A X=A Y$. Prove that $X C=Y B$.
36. Prove that the angle between internal bisector of one base angle and the external bisector of the other base angle of a triangle is equal to one half of the vertical angle.

- Watch Video Solution

37. In $A B C$ and $P Q R$ Figure, $A B=P Q, B C=Q R$ and $C B$ and $R Q$ are extended to X and Y respectively and $\angle A B X=\angle P Q Y$. Prove that $A B C \cong P Q R$. Figure

- Watch Video Solution

38. In Figure, the side $B C$ of $A B C$ is produced to form ray $B D$ as shown.

Ray $C E$ is drawn parallel to $B A$. Show directly, without using the angle sum property of a triangle that $\angle A C D=\angle A+\angle B$ and deduced that $\angle A+\angle B+\angle C=180^{\circ}$.
39. In a triangle the greater angle has the longer side opposite to it.

- Watch Video Solution

40. If the bisectors of the base angles of a triangle enclose an angle of 135^{0}, prove that the triangle is a right triangle.

- Watch Video Solution

41. If two sides of a triangle are unequal, the longer side has greater angle opposite to it. GIVEN : A $A B C$ in which $A C>A B$. TO PROVE : $\angle A B C>\angle A C B$ CONSTRUCTION : Mark a point D on $A C$ such that $A B=A D$. Joint $B D$.

- Watch Video Solution

42. The bisectors of base angles of a triangle cannot enclose a right angle in any case.

- Watch Video Solution

43. $A B C D$ is a square, X and Y are points on sides $A D$ and $B C$ respectively such that $\mathrm{AY}=\mathrm{BX}$. Prove that $\mathrm{BY}=\mathrm{AX}$ and $\angle B A Y=\angle A B X$.

- Watch Video Solution

44. In figure, if $P Q \perp P S, P Q| | S R, \angle S Q R=28^{0} \quad$ and
$\angle Q R T=65^{\circ}$, then find the values of x and y. Figure

- Watch Video Solution

45. If perpendiculars from any point with an angle on its arms are congruent, prove that it lies on the bisector of that angle.
46. In figure, if lines $P Q$ and $R S$ intersect at a point T such that $P R T=40^{\circ}, \angle R P T=95^{\circ}$ and $\angle T S Q=75^{\circ}$, find $\angle S Q T$. Figure

- Watch Video Solution

47. $A B C$ is a triangle is which $B E$ and $C F$ are, respectively, the perpendiculars to the sides $A C$ and $A B$. If $B E=C F$, prove that $A B C$ is isosceles.

Watch Video Solution

48. Sides $B C, C A$ and BA of a triangle $A B C$ are produced to D, Q, P respectively as shown in Figure. If $\angle A C D=100^{\circ}$ and $\angle Q A P=35^{\circ}$, find all the angles of the triangle. Figure
49. $A B C$ is a triangle and D is the mid-point of $B C$. The perpendiculars from D to $A B$ and $A C$ are equal. Prove that the triangle is isosceles.

Watch Video Solution

50. The side $B C$ of a triangle $A B C$ is produced on both sides. Show that the sum of the exterior angles so formed is greater than $\angle A$ by two right angles.

- Watch Video Solution

51. P is a point equidistant from two lines l and m intersecting at a point
A, Show that $A P$ bisects the angle between them.

- Watch Video Solution

52. If two parallel lines are intersected by a transversal, prove that the bisectors of the interior angles on the same side of transversal intersect each other at right angles.

- Watch Video Solution

53. If $A B C$ is an isosceles triangle such that $A B=A C$ and $A D$ is an altitude from A on $B C$. Prove that (i) $\angle B=\angle C$ (ii) $A D$ bisects $B C$ (iii) $A D$ bisects $\angle A$

- Watch Video Solution

54. If PS is the bisector of $\angle Q P R$ and $P T \perp Q R$. Show that $\angle T P S=\frac{1}{2}(\angle Q-\angle R)$.

- Watch Video Solution

55. Of all the line segments that can be drawn to a given line, from a point, not lying on it, the perpendicular line segment is the shortest. GIVEN : A straight line l and a point P not lying on $l . P M \perp l$ and N is any point on 1 other than M. TO PROVE : 'P M

- Watch Video Solution

56. A triangle $A B C$ is right angled at A . AL is drawn perpendicular to $B C$
. Prove that $\angle B A L=\angle A C B$.

- Watch Video Solution

57. The sum of any two sides of a triangle is greater than the third side. GIVE : A triangle $A B C$ TO PROVE : $A B+A C>B C, A B+B C>A C$ and $B C+A C>A B$ CONSTRUCTION : Produce side $B A$ to D such that $A D=A C$. Join $C D$.
58. In Figure $\mathrm{AB} \| \mathrm{DC}$, if $x=\frac{4 y}{3}$ and $y=\frac{3 z}{8}$, find $\angle B C D, \angle A B C$ and $\angle B A D$.

- Watch Video Solution

59. $A B$ is a line segment and line l is its perpendicular bisector. If a point P lies on l, show that P is equidistant from A and B.

- Watch Video Solution

60. $A B C$ is a triangle in which $\angle A=72^{0}$, the internal bisectors of angles B and C meet in O. Find the magnitude of $\angle B O C$.

- Watch Video Solution

61. $A B$ is a line-segment. P and Q are points on opposite sides of $A B$ such that each of them is equidistant from the points A and B. Show that the
line $P Q$ is the perpendicular bisector of $A B$

- Watch Video Solution

62. If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right triangle.

- Watch Video Solution

63. Suppose line segments $A B$ and $C D$ intersect at O in such a way that $A O=O D$ and $O B=O C$. Prove that $A C=B D$ but $A C$ may not be parallel to $B D$.

- Watch Video Solution

64. Two angles of a triangle are equal and the third angle is greater than each of those angles by 30° Determine all the angle of the triangle.
65. If D is the mid-point of the hypotenuse $A C$ of a right triangle $A B C$, prove that $B D=\frac{1}{2} A C$. GIVEN : A $A B C$ in which $\angle B=90^{\circ}$ and D is the mid-point of $A C$. TO PROVE : $B D=\frac{1}{2} A C$ CONSTRUCTION Produce $B D$ to E so that $B D=D E$. Join $E C$.

- Watch Video Solution

66. In triangle $A B C, \angle B=45^{\circ}, \angle C=55^{\circ}$ and bisector of $\angle A$ meets $B C$ at a point D. Find $\angle A D B$ and $\angle A D C$.

- Watch Video Solution

67. $A B$ is a line segment, $A X$ and $B Y$ are two equal line segments drawn on opposite sides of line $A B$ such that $A X|\mid B Y$. If $A B$ and $X Y$ intersect each other at P, prove that $\triangle A P X \cong \triangle B P Y . A B$ and $X Y$ bisect each other.
68. In Figure, if $A B\left|\mid D E, \angle B A C=35^{\circ}\right.$ and $\angle C D E=53^{\circ}$, find $\angle D C E$.

- Watch Video Solution

69. l and m are two parallel lines intersected by another pair of parallel lines p and q as shown in figure. Show that $\triangle A B C \cong \triangle C D A$.

- Watch Video Solution

70. (Exterior Angle Theorem): If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles. GIVEN : A triangle $A B C, D$ is a point of $B C$ produced, forming exterior angle $\angle 4$. TO PROVE : $\angle 4=\angle 1+\angle 2$ i.e. , $\angle A C D=\angle C A B+\angle C B A$.
71. Two triangles are congruent if include two angles and the included side of one triangle are equal to the corresponding two angles and the included side of the other triangle. GIVE : Two $\triangle A B C$ and $D E F$ such that $\angle B=\angle E, \angle C=\angle F$ and $B C=E F \quad$ TO PROVE : $\triangle A B C \cong \triangle D E F$

- Watch Video Solution

72. A, B, C are three angles of a triangle. If $A-B=15^{0}, B-C=30^{0}$, find $\angle A, \angle B$ and $\angle C$

- Watch Video Solution

73. In the figure, diagonal $A C$ of a quadrilateral $A B C D$ bisects the angles A and C. Prove that $A B=A D$ and $C B=C D$
74. In a triangle $A B C, \angle A B C=\angle A C B$ and the bisectors of $\angle A B C$ and $\angle A C B$ intersect at O such that $\angle B O C=120^{\circ}$. Show that $\angle A=\angle B=\angle C=60^{\circ}$

- Watch Video Solution

75. In Figure, $\angle B C D=\angle A D C$ and $\angle A C B=\angle B D A$. Prove that $A D=B C$ and $\angle A=\angle B$

- Watch Video Solution

76. If each angle of a triangle is less than the sum of the other two show that the triangle is acute angled.

- Watch Video Solution

77. In two right triangles, one side and an acute angle of one triangle are equal to one side and the corresponding acute angle of the other triangle. Prove that the two triangles are congruent.

- Watch Video Solution

78. If Figure, if $Q T \perp P R, \angle T Q R=40^{\circ}$ AND $\angle S P R=30^{\circ}$, find x and y. Figure

- Watch Video Solution

79. If D is any point on the base $B C$ produced, of an isosceles triangle $A B C$, prove that $A D>A B$.

- Watch Video Solution

80. sides $Q P$ and $R Q$ of $P Q R$ are produced to point S and T respectively. If $\angle S P R=135^{\circ}$ and $\angle P Q T=110^{\circ}$, find $\angle P R Q$.

Watch Video Solution

81. Show that in a right triangle the hypotenuse is the longest side. GIVEN
: A right triangle $A B C$ in which $\angle A B C=90^{\circ}$. TO PROVE : Hypotenuse
$A C$ is the longest side, i.e. (i) $A C>A B$ (ii) $A C>B C$

- Watch Video Solution

82. An exterior angle of a triangle is 110^{0}, and one of the interior opposite angles is 30°. Find the other two angles of the triangle.

- Watch Video Solution

83. Show that the sum of the three altitudes of a triangle is less than the sum of three sides of the triangle. GIVEN :triangle A B C in which $A D \perp B C, B E \perp A C \quad$ and $\quad C F \perp A B . \quad$ PROVE $A D+B E+C F<A B+B C+A C$

- Watch Video Solution

84. The sides $B C, C A$ and $A B$ of a triangle $A B C$, are produced in order, forming exterior angles $\angle A C D, \angle B A E$ and $\angle C B F$. Show that $\angle A C D+\angle B A E+\angle C B F=360^{\circ}$

- Watch Video Solution

85. Prove that any two sides of a triangle are together greater than twice the median drawn to the third side. GIVEN : $\triangle A B C$ in which $A D$ is a median. PROVE : $A B+A C>2 A D$ CONSTRUCTION : Produce $A D$ to E such that $A D=D E$. Join $E C$.
86. Prove that the sum of the three angles of a triangle is 180°.

- Watch Video Solution

87. In a $\triangle A B C$, if $\angle A=50^{\circ}$ and $\angle B=60^{\circ}$, determine the shortest and largest sides of the triangle.

- Watch Video Solution

88. Two parallel lines I and mare intersected by a transversal p. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.
89. In figure, sides $L M$ and $L N$ of $L M N$ are extended to P and Q respectively. If $x>y$, show that $L M>L N$.

- Watch Video Solution

90. In a triangle $A B C, \angle B=105^{\circ}, \angle C=50^{\circ}$, Find $\angle A$

- Watch Video Solution

91. In figure, $P Q=P R$. Show that $P S>P Q$.

- Watch Video Solution

92. The sum of two equal angles of a triangle is equal to its third angle.

Determine the measure of the third angle.

- Watch Video Solution

93. In figure, $A B>A C$. Show that $A B>A D$.

- Watch Video Solution

94. Of the three angles of a triangle, one is twice the smallest and another is three times the smallest. Find the angles.

- Watch Video Solution

95. Prove that the perimeter of a triangle is greater than the sum of the three medians. GIVEN : A $A B C$ in which $A D, B E$ and $C F$ are its medians.TO PROVE : $A B+B C+A C>A D+B E+C F$

- Watch Video Solution

96. If the angles of a triangle are in the ratio $2: 3: 4$. determine three angles.
97. Show that the difference of any two sides of a triangle is less than the third side. GIVEN : $\triangle A B C$ TO PROVE : (i) AC-AB < BC

- Watch Video Solution

98. The sum of two angles of a triangle is 80° and their difference is 20°. Find all the angles.

- Watch Video Solution

99. A triangle $A B C$ is an isosceles triangle if any one of the following conditions hold: (a) Altitude $A D$ bisects $\angle B A C$ (b) Bisector of $\angle B A C$ is perpendicular to the base $B C$.

- Watch Video Solution

100. In a $\triangle A B C$, if $2 \angle A=3 \angle B=6 \angle C$, determine $\angle A, \angle B$ and $\angle C$.

- Watch Video Solution

101. In a right angled triangle, one acute angle is double the other. Prove that the hypotenuse is double the smallest side. GIVEN : A $A B C$ in which $\angle B=90^{\circ}$ and $\angle A C B=2 \angle C A B$. to prove : $A C=2 B C$

- Watch Video Solution

102. The sides $A B$ and $A C$ of a $A B C$ are produced to P and Q respectively. If the bisectors of $\angle P B C$ AND $\angle Q C B$ intersect at O, then $\angle b o c=90^{\circ}-\frac{1}{2} \angle A$ GIVEN : A $A B C$ in which sides $A B$ and $A C$ are produced to P and Q respectively. The bisectors of $\angle P B C$ and $\angle Q C B$ intersect at O.

- Watch Video Solution

103. In Figure, $B D$ and $C E$ are two altitudes of a $A B C$ such that $B D=C E$. Prove that $A B C$ is isosceles. Figure

- Watch Video Solution

104. The side $B C$ of a $\triangle A B C$ is produced, such that D is on the ray $B C$. The bisector of $\angle A$ meets $B C$ in L as shown in Figure. Prove that $\angle A B C+\angle A C D=2 \angle A L C$

- Watch Video Solution

105. In Figure, $A P$ and $B Q$ are perpendiculars to the line segment $A B$ and $A P=B Q$. Prove that O is the mid-point of line segment $A B$ and $P Q$. Figure
106. In Figure, $\angle X=62^{0}, \angle X Y Z=54^{0}$. If $Y O$ and $Z O$ are bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively of $X Y Z$, find $\angle O Z Y$ and $\angle Y O Z$. Figure

- Watch Video Solution

107. $A D$ and $B E$ are respectively altitudes of triangle $\hat{A} A B C$ such that $A E=B D$. Prove that $A D=B E$.

- Watch Video Solution

108. In Figure, $\angle Q P R=\angle P Q R$ and M and N are respectively on sides $Q R$ and $P R$ of $P Q R$ such that $Q M=P N$. Prove that $O P=O Q$, where O is the point of intersection of $P M$ and $Q N$.

- Watch Video Solution

109. In Figure, line segment $A B$ is parallel to another line segment $C D$. O is the mid-point of $A D$. Show that: (i) $A O B \cong D O C$ (ii) O is also the mid-point of $B C$.

- Watch Video Solution

110. $A D$ and $B E$ are respectively altitudes of an isosceles triangle $A B C$ with $A C=B C$. Prove that $A E=B D$.

- Watch Video Solution

111. $P Q R$ is a triangle in which $P Q=P R$ and S is any point on the side $P Q$. Through S, a line is drawn parallel to $Q R$ and intersecting $P R$ at T. Prove that $P S=P T$.

- Watch Video Solution

112. If the bisector of the exterior vertical angle of a triangle be parallel to the base. Show that the triangle is isosceles.

D Watch Video Solution

113. Prove that Two right triangles are congruent if the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other triangle.

- Watch Video Solution

114. $A D, \hat{A} B E$ and $C F$, the altitudes of triangle $A B C$ are equal. Prove that $A B C$ is an equilateral triangle.

- Watch Video Solution

115. A point O is taken inside an equilateral four sided figure $A B C D$ such that its distances from the angular points D and B are equal. Show that $A O$ and $O C$ are in one and the same straight line. GIVEN : A point O inside an equilateral quadrilateral four sided figure $A B C D$ such that $B O=O D$. TO PROVE : $A O$ and $O C$ are in one and the same straight line.

- Watch Video Solution

116. In $\triangle P Q R$, if $P Q=Q R$ and L, M and N are the mid-points of the sides $P Q, Q R$ and $R P$ respectively. Prove that $L N=M N$.

- Watch Video Solution

117. If two isosceles triangles have a common base, prove that the line joining their vertices bisects them at right angles.
118. Side Side Side(SSS) Congruence : Two triangles are congruent if the three sides of one triangle are equal to the corresponding three sides of the other triangle.

- Watch Video Solution

119. $A B C D$ is a parallelogram, if the two diagonals are equal, find the measure of $\angle A B C$.

- Watch Video Solution

120. In a $A B C$, it is given that $A B=A C$ and the bisectors of $\angle B$ and $\angle C$ intersect at O, If M is a point on $B O$ produced, prove that $\angle M O C=\angle A B C$.

- Watch Video Solution

121. $A B C$ is a triangle in which $\angle B=2 \angle C D$ is a point on $B C$ such that $A D$ bisects $\angle B A C$ and $A B=C D$. Prove that $\angle B A C=72^{\circ}$.

Watch Video Solution

122. In $A B C, \angle A=100^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$

- Watch Video Solution

123. In Figure, $A B=A C$ and $\angle A C D=120^{\circ}$. Find $\angle A$

- Watch Video Solution

124. Prove that measure of each angle of an equilateral triangle is 60°.

- Watch Video Solution

125. In Figure O is the mid-point of $A B$ and $C D$. Prove that $A O C \cong B O D$ (b) $A C=B D$ (iii) $A C|\mid B D$

Watch Video Solution

126. In Figure, it \quad is
$A B=C F, E F=B D$ and $\angle A F E=\angle C B D$.
$A F E \cong C B D$

- Watch Video Solution

127. In Figure, it is given that $A E=A D$ and $B D=C E$. Prove that $A E B \cong A D C$

- Watch Video Solution

128. In $\triangle \mathrm{ABC}$ and $\triangle P Q R, A B=P Q, B C=Q R$ and $C B$ and $R Q$ are extended to X and Y respectively and $\angle A B X=\angle P Q Y$. Prove that $A B C \cong P Q R$.

- Watch Video Solution

129. In Figure, X, Y are two points on equal sides $A B$ and $A C$ of a $A B C$ such that $A X=A Y$. Prove that $X C=Y B$

- Watch Video Solution

130. Suppose line segments $A B$ and $C D$ intersect at O in such a way that $A O=O D$ and $O B=O C$. Prove that $A C=B D$ but $A C$ may not be parallel to $B D$.

- Watch Video Solution

131. If D is the mid-point of the hypotenuse $A C$ of a right triangle $A B C$, prove that $B D=\frac{1}{2} A C$

- Watch Video Solution

132. $A B$ is a line segment and line l is its perpendicular bisector. If a point P lies on l, show that P is equidistant from A and B.

- Watch Video Solution

133. In quadrilateral $A C B D, A C=A D$ and $A B$ bisects $\angle A$. Show that $A B C \cong A B D$. What can you say about $B C$ and $B D$?

- Watch Video Solution

134. Prove that $A B C$ is isosceles if any one of the following holds:

Altitude AD bisects $B C$ Median $A D$ is perpendicular to the base $B C$
135. In Figure, $P Q R S$ is a quadrilateral and T and U are respectively points on $P S$ and $R S$ such that $P Q=R Q, \angle P Q T=\angle R Q U$ and $\angle T Q S=\angle U Q S . \quad$ Prove that $Q T=Q U$.

- Watch Video Solution

136. In Figure, $P S=Q R$ and $\angle S P Q=\angle R Q P$. Prove that
$P Q S \cong Q P R, P R=Q S$ and $\angle Q P R=\angle P Q S$

- Watch Video Solution

137. In right triangle $A B C$, right angle at C, M is the mid-point of the hypotenuse $A B$. C is jointed to M and produced to a point D such that $D M=C M$. Point D is joined to point B. Show that $A M C \cong B M D$ (ii) $\angle D B C=\angle A C B D B C \cong A C B$ (iii) $C M=\frac{1}{2} A B$

(Watch Video Solution

138. In Figure, $A C=A E, A B=A D$ and $\angle B A D=\angle E A C$. Prove that $B C=D E$

- Watch Video Solution

139. In Figure, the side $B A$ and $C A$ have been produced such that $B A=A D$ and $C A=A E$. Prove that segment $D E|\mid B C$

- Watch Video Solution

140. In triangle $P Q R$, if $P Q=R Q$ and L, M and N are the mid-points of the sides $P Q, Q R$ and $R P$ respectively. Prove that $L N=M N$.

- Watch Video Solution

141. In Figure, $P Q R S$ is a square and $S R T$ is an equilateral triangle. Prove that $P T=Q T$ (ii) $\angle T Q R=15^{0}$

- Watch Video Solution

142. Prove that the medians of an equilateral triangle are equal.

- Watch Video Solution

143. In a $A B C$, if $\angle A=120^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$

- Watch Video Solution

144. In $A B C$, if $A B=A C$ and $\angle B=70^{\circ}$, find $\angle A$

- Watch Video Solution

145. The vertical angle of an isosceles triangle is 100°. Find its base angles.

Watch Video Solution

146. In Figure, $A B=A C$ and $\angle A C D=100^{\circ}$, find $\angle B A C$

- Watch Video Solution

147. Find the measure of each exterior angle of an equilateral triangle.

- Watch Video Solution

148. If the base of an isosceles triangle is produced on both sides, prove that the exterior angles so formed are equal to each other.

- Watch Video Solution

149. In Figure, $A B=A C$ and $D B=D C$, find the ratio $\angle A B D: \angle A C D$

- Watch Video Solution

150. Determine the measure of each of the equal angles of a right-angled isosceles triangle.

- Watch Video Solution

151. $A B C$ is a right-angled triangle is which $\angle A=90^{\circ}$ and $A B=A C$.

Find $\angle B$ and $\angle C$

- Watch Video Solution

152. $A B$ is a line segment. P and Q are points on opposite sides of $A B$ such that each of them is equidistant from the points A and B (in
figure). Show that the line $P Q$ is perpendicular bisector of $A B$.

- Watch Video Solution

153. In Figure, diagonal $A C$ of a quadrilateral $A B C D$ bisects the angles
A and C. Prove that $A B=A D$ and $C B=C D$

- Watch Video Solution

154. $A B$ is a line segment. $A X$ and $B Y$ are two equal line segments drawn on opposite sides of line $A B$ such that $A X|\mid B Y$. If $A B$ and $X Y$ intersect each other at P, prove that (i) $A P X \cong B P Y$ (ii) $A B$ and $X Y$ bisect each other.

- Watch Video Solution

155. l and m are two parallel lines intersected by another pair of parallel lines p and q as shown in figure. Show that $A B C \cong C D A$
156. In Figure, if $A B|\mid D C$ and P is the mid-point $B D$, prove that P is also the midpoint of $A C$

- Watch Video Solution

157. In Figure, $\angle B C D=\angle A D C$ and $\angle A C B=\angle B D A$. Prove that $A D=B C$ and $\angle A=\angle B$

- Watch Video Solution

158. In two right triangles, one side and an acute angle of one triangle are equal to one side and the corresponding acute angle of the other triangle. Prove that the two triangles are congruent.
159. In Figure, $A C=B C, \angle D C A=\angle E C B$ and $\angle D B C=E A C$. Prove that triangle $D B C$ and $E A C$ are congruent, and hence $D C=E C$ and $B D=A E$

- Watch Video Solution

160. In Figure, it is given that $R T=T S, \angle 1=2 \angle 2$ and $\angle 4=2 \angle 3$. Prove that $R B T \cong S A T$

- Watch Video Solution

161. Two lines $A B$ and $C D$ intersect at O such that $B C$ is equal and parallel to $A D$. Prove that the lines $A B$ and $C D$ bisect at O

- Watch Video Solution

162. $B D$ and $C E$ are bisectors of $\angle B$ and $\angle C$ of an isosceles $A B C$ with
$A B=A C$. Prove that $B D=C E$

(D) Watch Video Solution

163. In Figure, $A B=A C$ and $D B=D C$. Prove that $\angle A B D=\angle A C D$

- Watch Video Solution

164. $A B C$ is an isosceles triangle with $A B=A C$. Side $B A$ is produced to D such that $A B=A D$. Prove that $\angle B C D$ is a right angle.

- Watch Video Solution

165. In Figure, $A B=A C B E$ and $C F$ are respectively the bisectors of $\angle B$ and $\angle C$. Prove that $E C B \cong F C B$

- Watch Video Solution

166. If $A B C$ is an isosceles triangle with $A B=A C$. Prove that the perpendiculars from the vertices B and C to their opposite sides are equal.

- Watch Video Solution

167. If the altitudes from two vertices of a triangle to the opposite sides are equal, prove that the triangle is isosceles.

- Watch Video Solution

168. In Figure, it is given that $\angle A=\angle C$ and $A B=B C$. Prove that $A B D \cong C B E$

- Watch Video Solution

169. $A D$ and $B C$ are equal perpendiculars to a line segment $A B$. Show that $C D$ bisects $A B$.

- Watch Video Solution

170. In $A B C, A B=A C$, and the bisectors of angles B and C intersect at point O. Prove that $B O=C O$ and the ray $A O$ is the bisector of angle $B A C$

- Watch Video Solution

171. In Figure, it is given
$A B=E F, B C=D E, A B \perp B D$ and $F E \perp C E$ that
$A B D \cong F E C$.

- Watch Video Solution

172. In Figure, it is given that $A B=B C$ and $A D=E C$. Prove that (i) $A B E \cong C B D$ (ii) $B D=B E$

- Watch Video Solution

173. In Figure, $l|\mid m$ and M is the mid-point of the line segment $A B$.

Prove that M is also the mid-pooint of any line segment $C D$ having its end-points on l and m respectively.

- Watch Video Solution

174. In Figure, line l is the bisector of angle A and B is any point on $l \dot{B} P$ and $B Q$ are perpendiculars from B to the arms of A. Show that: $A P B \cong A Q B \mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle A$

- Watch Video Solution

175. In Figure, $A D$ is a median and $B L, C M$ are perpendiculars drawn from B and C respectively on $A D$ and $A D$ produced. Prove that $B L=C M$

- Watch Video Solution

176. In Figure, $B M$ and $D N$ are both perpendiculars to the segments $A C$ and $B M=D N$. Prove that $A C$ bisects $B D$.

- Watch Video Solution

177. In a right angled triangle, one acute angle is double the other. Prove that the hypotenuse is double the smallest side.

- Watch Video Solution

178. A triangle $A B C$ is an isosceles triangle if any one of the following conditions hold: Altitude $A D$ bisects $\angle B A C$ Bisector of $\angle B A C$ is perpendicular to the base $B C$

- Watch Video Solution

179. A triangle $A B C$ is an isosceles triangle if any one of the following conditions hold: Bisector of $\angle B A C$ is perpendicular to the base $B C$

- Watch Video Solution

180. In Figure, $A P$ and $B Q$ are perpendiculars to the line segment $A B$ and $A P=B Q$. Prove that O is the mid-point of line segment $A B$ and $P Q$

- Watch Video Solution

181. In Figure, $A B C$ is an isosceles triangle with $A B=A C, B D$ and $C E$ are two medians of the triangle. Prove that $B D=C E$

- Watch Video Solution

182. In Figure, $A D=A E$ and D and E are points on $B C$ such that $B D=E C$. Prove that $A B=A C$

- Watch Video Solution

183. In Figure, if $A B=A C$ and $B E=C D$, prove that $A D=A E$.

- Watch Video Solution

184. In Figure, $P S=P R, \angle T P S=\angle Q P R$. Prove that $P T=P Q$

- Watch Video Solution

185. In Figure, If $P Q=P T$ and $\angle T P S=\angle Q P R$, prove that $P R S$ is isosceles

- Watch Video Solution

186. In Figure, $A B C$ and $D B C$ are two isosceles triangles on the same base $B C$ such that $A B=A C$ and $D B=C D$. Prove that $\angle A B D=\angle A C D$

- Watch Video Solution

187. In Figure, $A B C$ and $D B C$ are two triangles on the same base $B C$ such that $A B=A C$ and $D B=D C$. Prove that $\angle A B D=\angle A C D$

- Watch Video Solution

188. In Figure, $B D$ and $C E$ are two altitudes of a $A B C$ such that $B D=C E$. Prove that $A B C$ is isosceles.

- Watch Video Solution

189. In Figure, $\angle Q P R=\angle P Q R$ and M and N are respectively on sides $Q R$ and $P R$ of $P Q R$ such that $Q M=P N$. Prove that $O P=O Q$, where O is the point of intersection of $P M$ and $Q N$

- Watch Video Solution

190. $A D$ and $B E$ are respectively altitudes of $A B C$ such that $A E=B D$. Prove that $A D=B E$.

- Watch Video Solution

191. In Figure, $A D$ and $B E$ are respectively altitudes of an isosceles triangle $A B C$ with $A C=B C$. Prove that $A E=B D$

- Watch Video Solution

192. In Figure, line segments $A B$ is parallel to another line segment $C D . O$ is the mid-point of $A D$. Show that: $A O B \cong D O C$.

- Watch Video Solution

193. In Figure, line segments $A B$ is parallel to another line segment $C D \dot{O}$ is the mid-point of $A D$. Show that: O is also the mid-point of $B D$

- Watch Video Solution

194. In two right triangles one side an acute angle of one are equal to the corresponding side and angle of the other. Prove that the triangles are
congruent.

- Watch Video Solution

195. If the bisector of the exterior vertical angle of a triangle be parallel to the base. Show that the triangle is isosceles.

- Watch Video Solution

196. In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.

- Watch Video Solution

197. $P Q R$ is a triangle is which $P Q=P R$ and S is any point on the side $P Q$. Through S, a line is drawn parallel to $Q R$ and intersecting $P R$ at T. Prove that $P S=P T$
198. In a $A B C$, it is given that $A B=A C$ and the bisectors of $\angle B$ and C intersect at O. If M is a point on $B O$ produced, prove that $\angle M O C=\angle A B C$

- Watch Video Solution

199. P is a point on the bisector of an angle $\angle A B C$. If the line through P parallel to $A B$ meets $B C$ at Q, prove that triangle $B P Q$ is isosceles.

- Watch Video Solution

200. Prove that each angle of an equilateral triangle is 60°

- Watch Video Solution

201. Angle A, B, C of a triangle $A B C$ are equal to each other. Prove that $A B C$ is equilateral.

- Watch Video Solution

202. $A B C$ is a triangle in which $\angle B=2 \angle C . D$ is a point on $B C$ such that $A D$ bisects $\angle B A C$ and $A B=C D$. Prove that $\angle B A C=72^{\circ}$.

- Watch Video Solution

203. $A B C$ is a right angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$.

Find $\angle B$ and $\angle C$

- Watch Video Solution

204. In Figure, it is given that $A B=C D$ and $A D=B C$. Prove that $A D C \cong C B A$.
205. $A B C D$ is a parallelogram, if the two diagonals are equal, find the measure of $\angle A B C$.

- Watch Video Solution

206. If two isosceles triangles have a common base, prove that the line joining their vertices bisects them at right angles.

- Watch Video Solution

207. $A B C$ and $D B C$ are two isosceles triangles on the same bas $B C$ and vertices A and D are on the same side of $B C$. If $A D$ is extended to intersect $B C$ at P, show that $A B D \cong A C D$ (ii) $A B P \cong A C P$

- Watch Video Solution

208. $A B C$ and $D B C$ are two isosceles triangles on the same bas $B C$ and vertices A and D are on the same side of $B C$. If $A D$ is extended to intersect $B C$ at P, show that $A P$ bisects $\angle A$ as well as $\angle D$ and $A P$ is the perpendicular bisector of $B C$

- Watch Video Solution

209. A point O is taken inside an equilateral four sided figure $A B C D$ such that its distances from the angular points D and B are equal. Show that $A O$ and $O C$ are in one and the same straight line. GIVEN : A point O inside an equilateral quadrilateral four sided figure $A B C D$ such that $B O=O D$. TO PROVE : $A O$ and $O C$ are in one and the same straight line.

- Watch Video Solution

210. In Figure, two sides $A B$ and $B C$ and the median $A D$ of $A B C$ are equal respectively to the two sides $P Q$ and $Q R$ and the median $P M$ of
the other triangle $P Q R$. Prove that $A B D \cong P Q M$ (ii) $A B C \cong P Q R$

- Watch Video Solution

211. In Figure, $A D=B C$ and $B D=C A$. Prove that $\angle A D B=\angle B C$ A a n $\mathrm{d} \angle \mathrm{DAB}=\angle$ CBA $^{\prime}$.

- Watch Video Solution

212. In Figure, $A B=A C, D$ is the point in the interior of $A B C$ such that $\angle D B C=\angle D C B$. Prove that $A D$ bisects $B A C$ of $A B C$.

- Watch Video Solution

213. In Figure, it is given that $A B=C D$ and $A D=B C$. Prove that $A D C \cong C B A$
214. In A $P Q R$, if $P Q=Q R$ and L, M and N are the mid-points of the sides $P Q, P R$ and $R P$ respectively. Prove that $L N=M N$

- Watch Video Solution

215. $A D, B E$ and $C F$, the altitudes of $A B C$ are equal. Prove that $A B C$ is an equilateral triangle.

- Watch Video Solution

216. In Figure, it is given that
$L M=M N, Q M=M R, M L \perp P Q$ and $M N \perp P R . \quad$ Prove that $P Q=P R$

- Watch Video Solution

217. If $A B C$ is an isosceles triangle such that $A B=A C$ and $A D$ is an altitude from A on $B C$. Prove that (i) $\angle B=\angle C$ (ii) $A D$ bisects $B C$ (iii) $A D$ bisects $\angle A$

- Watch Video Solution

218. P is a point equidistant from two lines I and m intersecting at point A (see Fig. 7.38). Show that the line AP bisects the angle between them.

- Watch Video Solution

219. $A B C$ is a triangle and D is the mid-point of $B C$. The perpendiculars from D to $A B$ and $A C$ are equal. Prove that the triangle is isosceles.

- Watch Video Solution

220. $A B C$ is a triangle is which $B E$ and $C F$ are, respectively, the perpendiculars to the sides $A C$ and $A B$. If $B E=C F$, prove that $A B C$ is isosceles.

- Watch Video Solution

221. In perpendiculars from any point within an angle on its arms are congruent, prove that it lies on the bisector of that angle.

- Watch Video Solution

222. In Figure, $A D \perp C D$ and $C B \perp C D$ If
$A Q=B P$ and $D P=C Q$, prove that $\angle D A Q=\angle C B P$.

- Watch Video Solution

223. $A B C D$ is a square, X and Y are points on sides $A D$ and $B C$ respectively such that $A Y=B X$. Prove that $B Y=A X$ and $\angle B A Y=\angle A B X$

- Watch Video Solution

224. Which of the following statements are true (T) and which are false
(F): Side opposite to equal angles of a triangle may be unequal. Angle opposite to equal sides of a triangle are equal. The measure of each angle of an equilateral triangle is 60° If the altitude from one vertex of a triangle bisects the opposite side, then the triangle may be isosceles. The bisectors of two equal angles of a triangle are equal. If the bisector of the vertical angle of a triangle bisects the base, then the triangle may be isosceles. The two altitudes corresponding to two equal sides of a triangle need not be equal. If any two sides of a right triangle are respectively equal to two sides of other right triangle, then the two triangles are congruent. Two right triangles are congruent if hypotenuse
and a side of one triangle are respectively equal to the hypotenuse and a side of the other triangle.

- Watch Video Solution

225. Fill in the blanks in the following so that each of the following statements is true.
(i) Sides opposite to equal angles of a triangle are \qquad
(ii) Angle opposite to equal sides of a triangle are
(iii) In an equilateral triangle all angles are
(iv) In a $A B C$ if $\angle A=\angle C$, then $A B=\ldots .$.
(v) If altitudes $C E$ and $B F$ of a triangle $A B C$ are equal, then $A B=$ \qquad
(vi) In an isosceles triangle $A B C$ with $A B=A C$, if $B D$ and $C E$ are its altitudes, then $B D$ is $C E$.
(vii) In right triangles $A B C$ and $D E F$, if hypotenuse $A B=E F$ and side $A C=D E$, then $A B C \cong \ldots$.

- Watch Video Solution

226. In a $A B C$, if $\angle A=45^{\circ}$ and $\angle B=70^{\circ}$. Determine the shortest and largest sides of the triangle.

- Watch Video Solution

227. In a $A B C$, if $\angle A=50^{\circ}$ and $\angle B=60^{\circ}$, determine the shortest and largest sides of the triangle.

- Watch Video Solution

228. In Figure, $P Q>P R$. $Q S$ and $R S$ are the bisectors of $\angle Q$ and $\angle R$ respectively. Prove that $S Q>S R$.

- Watch Video Solution

229. In Figure, sides $L M$ and $L N$ OF $\triangle L M N$ are extended to P and Q respectively. If $x>y$, show that $L M>L N$.
230. In Figure, $P Q=P R$. Show that $P S>P Q$

- Watch Video Solution

231. In Figure, $A B>A C$. Show that $A B>A D$.

- Watch Video Solution

232. If D is any point on the base $B C$ produced, of an isosceles triangle $A B C$, prove that $A D>A B$.

- Watch Video Solution

233. In Figure, if $A D$ is the bisector of $L A$, show that: $A B>B D$ (ii)
$A C>C D$
234. Show that in a right angled triangle, the hypotenuse is the longest side.

- Watch Video Solution

235. In Figure, $A C>A B$ and $A D$ is the bisector of $\angle A$. Show that $A D C>\angle A D B$.

- Watch Video Solution

236. Show that the sum of the three altitudes of a triangle is less than the sum of three sides of the triangle.

- Watch Video Solution

237. Prove that any two sides of a triangle are together greater than twice the median drawn to the third side.

(D) Watch Video Solution

238. Prove that the perimeter of a triangle is greater than the sum of its three medians.

- Watch Video Solution

239. Show that the difference of any two sides of a triangle is less than the third side.

- Watch Video Solution

240. In Figure, $P Q R$ is a triangle and S is any point in its interior, show that $S Q+S R<P Q+P R$. Given : S is any point in the interior of $P Q R$ To Prove : $S Q+S R<P Q+P R$ Construction: Produce $Q S$ to meet $P R$ in T
241. In $P Q R, S$ is any point on the side $Q R$. Show that $P Q+Q R+R P>2 P S$

- Watch Video Solution

242. In Figure, $A P \perp l$ and $P R>P Q$. Show that $A R>A Q$.

- Watch Video Solution

243. In Figure, $P Q R S$ is a quadrilateral. $P Q$ is its longest side and $R S$ is its shortest side. Prove that $\angle R>\angle P$ and $\angle S>\angle Q$.

- Watch Video Solution

244. In Figure, $P Q R S$ is a quadrilateral in which diagonals $P R$ and $Q S$ intersect in O. Show that :
(i) $P Q+Q R+R S+S P>P R+Q S$
(ii) $P Q+Q R+R S+S P<2(P R+Q S)$

- Watch Video Solution

245. Of all the lines segments drawn from a point P to a line m not containing P, let $P D$ be the shortest. If B and C are points on m such that D is the mid-point of $B C$, prove that $P B=P C$.

- Watch Video Solution

246. In Figure, $\angle E>\angle A$ and $\angle C>\angle D$. Prove that $A D>E C$

- Watch Video Solution

247. In Figure, T is a point on side $Q R$ of $P Q R$ and S is a point such that $R T=S T$. Prove That : $P Q+P R>Q S$
248. In Figure, $A C>A B$ and D is the point on $A C$ such that $A B=A D$. Prove that $B C>C D$

- Watch Video Solution

249. In Figure, $A B$ and $C D$ are respectively the smallest and longest sides of a quadrilateral $A B C D$. Show that $\angle A>\angle C$ and $\angle B>\angle D$

- Watch Video Solution

250. In $A B C$, if $\angle A=40^{\circ}$ and $\angle B=60^{\circ}$. Determine the longest and shortest sides of the triangle.

- Watch Video Solution

251. In a $A B C$, if $\angle B=\angle C=45^{\circ}$, which is the longest side?
252. In $A B C$, side $A B$ is produced to D so that $B D=B C$. If $\angle B=60^{\circ}$ and $\angle A=70^{\circ}$, prove that: $A D>C D$ (ii) $A D>A C$

- Watch Video Solution

253. Is it possible to draw a triangle with sides of length $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm ?

- Watch Video Solution

254. In $A B C, \angle B=35^{\circ}, \angle C=65^{\circ}$ and the bisector of $\angle B A C$ meets $B C$ in P. Arrange $A P, B P$ and $C P$ in descending order.

- Watch Video Solution

255. O is any point in the interior of $A B C$. Prove that $A B+A C>O B+O C \quad A B+B C+C A>O A+O B+O C$
$O A+O B+O C>\frac{1}{2}(A B+B C+C A)$

- Watch Video Solution

256. Prove that the perimeter of a triangle is greater than the sum of its altitudes.

- Watch Video Solution

257. Prove that in a quadrilateral the sum of all the sides is greater than the sum of its diagonals.

- Watch Video Solution

258. In Figure, prove that $C D+D A+A B+B C>2 A C$
259. Which of the following statements are true (T) and which are false (F)?
(i) Sum of the three sides of a triangle is less than the sum of its three altitudes.
(ii) Sum of any two sides of a triangle is greater than twice the median drawn to the third side.
(iii) Sum of any two sides of a triangle is greater than the third side.
(iv) Difference of any two sides of a triangle is equal to the third side.
(v) If two angles of a triangle are unequal, then the greater angle has the larger side opposite to it.
(vi) Of all the line segments that can be drawn from a point to a line not containing it, the perpendicular line segment is the shortest one.

- Watch Video Solution

260. Fill in the blanks to make the following statements true: In a right triangle the hypotenuse is the side. The sum of three altitudes of a triangle is than its perimeter. The sum of any two sides of a triangle is \qquad than the third side. If two angles of a triangle are unequal, then the smaller angle has the \qquad side opposite to it. Difference of any two sides of a triangle is \qquad than the third side. If two sides of a triangle are unequal, then the larger side has angle opposite to it.

- Watch Video Solution

261. In two congruent triangles $A B C$ and $D E F$, if
$A B=D E$ and $B C=E F$. Name the pairs of equal angles.

- Watch Video Solution

262. In two triangles $A B C$ and $D E F$, it is given that
$\angle A=\angle D, \angle B=\angle E$ and $\angle C=\angle F$. Are the two triangles necessarily
263. If $A B C$ and $D E F$ are two triangles such that $A C=2.5 \mathrm{~cm}, B C=5 \mathrm{~cm}, \angle C=75^{0}, D E=2.5 \mathrm{~cm}, D F=5 \mathrm{~cm}$ and \angle
. Are two triangles congruent?

- Watch Video Solution

264. In two triangles $A B C$ and $A D C$, if $A B=A D$ and $B C=C D$. Are they congruent?

- Watch Video Solution

265.

In triangle
$A B C$ and $C D E$,
$A C=C E, B C=C D, \angle A=60^{\circ}, \angle C=30^{\circ}$ and $\angle D=90^{\circ}$. Are two triangle congruent?
266. $A B C$ is an isosceles triangle in which $A B=A C, B E$ and $C F$ are its two medians. Show that $B E=C F$.

- Watch Video Solution

267. Find the measure of each angle of an equilateral triangle.

- Watch Video Solution

268. $\triangle C D E$ is an equilateral triangle formed on a side $C D$ of a square $A B C D$. Show that $\triangle A D E \cong \triangle B C E$.

- Watch Video Solution

269. Show that the sum of the three altitudes of a triangle is less than the sum of three sides of the triangle.
270. In Figure, if $A B=A C$ and $\angle B=\angle C$. Prove that $B Q=C P$

- Watch Video Solution

271. If $A N C \cong L K M$, then side of $L K M$ equal to side $A C$ of $A B C$ is
(a) $L K$ (b) $K M$ (c) $L M$ (d) None of these

- Watch Video Solution

272. If $A B C \cong A C B$, then $A B C$ is isosceles with
(a) $A B=A C$
(b) $A B=B C$ (c) $A C=B C$
(d) None of these

- Watch Video Solution

273. If $A B C \cong P Q R$ and $A B C$ is not congruent to $R P Q$, then which of the following not true: (a) $B C=P Q$ (b) $A C=P R$ (c) $A B=P Q$
$Q R=B C$

- Watch Video Solution

274. In triangles $A B C$ and $P Q R$ three equality relations between some parts are as follows: $A B=Q P, \angle B=\angle P$ and $B C=P R$ State which of the congruence conditions applies: (a) $S A S$ (b) $A S A$ (c) $S S S$ (d) $R H S$

- Watch Video Solution

275. In triangles $A B C$ and $P Q R$,
$\angle A=\angle R, \angle B=\angle P$ and $A B=R P$, then which one of the following congruence conditions applies: $S A S$ (b) $A S A$ (c) $S S S$ (d) $R H S$

- Watch Video Solution

276. If $P Q R \cong E F D$, then $E D=\mathrm{PQ}$ (b) QR (c) PR (d) None of these
277. If $\triangle P Q R \cong \triangle E F D$, then $\angle E=$
(a) $\angle P$
(b) $\angle Q$
(c) $\angle R$
(d) None of these

- Watch Video Solution

278. In a $A B C$, if $A B=A C$ and $B C$ is produced to D such that $\angle A C D=100^{\circ}$, then $\angle A=$
(a) 20^{0}
(b) 40^{0} (c) 60^{0}
(d) 80^{0}

Watch Video Solution

279. In an isosceles triangle, if the vertex angle is twice the sum of the base angles, then the measure of vertex angle of the triangle is
(a) 100^{0}
(b) 120° (c) 110^{0}
(d) 130^{0}
280. D, E, F are the mid-point of the sides $B C, C A$ and $A B$ respectively of $\triangle A B C$. Then $D E F$ is congruent to triangle.
(a) $A B C$
(b) AEF
(c) $B F D, C D E$
(d) $A F E, B F D, C D E$

- Watch Video Solution

281. Which of the following is not a criterion for congruence of triangles?
$S A S$ (b) $S S A$ (c) $A S A$ (d) $S S S$

- Watch Video Solution

282. In Figure, the measure of $\angle B^{\prime} A^{\prime} C^{\prime}$ is
(a) 50^{0}
(b) 60^{0}
(c) 70^{0}
(d) 80°

- Watch Video Solution

283. If $A B C$ and DEF are two triangles such that $A B C \cong F D E$ and $A B=5 \mathrm{~cm}, \angle B=40^{\circ}$ and $\angle A=80^{\circ}$. Then, which of the following is true? (a) $D F=5 \mathrm{~cm}, \angle F=60^{\circ}$
$D E=5 \mathrm{~cm}, \angle E=60^{\circ}$

$$
\begin{equation*}
\text { (c) } D F=5 \mathrm{~cm}, \angle E=60^{\circ} \tag{b}
\end{equation*}
$$

$D E=5 c m, \angle D=40^{\circ}$

- Watch Video Solution

284. In Figure, $A B \perp B E$ and $F E \perp B E$. If $B C=D E$ and $A B=E F$, then $A B D$ is congruent to: $E F C$ (b) $E C F$ (c) $C E F$ (d) $F E C$

- Watch Video Solution

285. In figure $A B C$ is an isosceles triangle such that $A B=A C$ and $A D$ is the median to base $B C$. Then, $\angle B A D=55^{\circ}$ (b) 70° (c) 35° (d) 110^{0}

- Watch Video Solution

286. In Figure, if $A E\left|\mid D C\right.$ and $A B=A C$, the value of $\angle A B D$ is 70° (b) 110^{0} (c) 120^{0} (d) 130^{0}

- Watch Video Solution

287. In Figure, $A B C$ is an isosceles triangle whose side $A C$ is produced to E. Through $C, C D$ is drawn parallel to $B A$. The value of x is 52^{0} (b) 76^{0} (c) 156^{0} (d) 104^{0}

- Watch Video Solution

288. In Figure, X is a point in the interior of square $A B C D . A X Y Z$ is also a square. If $D Y=3 \mathrm{~cm}$ and $A Z=2 \mathrm{~cm}$, then $B Y=$
(a) 5 cm
(b) 6 cm
(c) 7 cm
(d) 8 cm

- Watch Video Solution

289. In Figure, $A B C$ is a triangle in which $\angle B=2 \angle C . D$ is a point on side $B C$ such that $A D$ bisects $\angle B A C$ and $A B=C D . B P$ is the bisector of $\angle B$. The measure of $\angle B A C$ is
(a) 72^{0}
(b) 73^{0}
(c) 74^{0}
(d) 96^{0}

- Watch Video Solution

290. In Figure, if $A C$ is bisector for $\angle B A D$ such that $A B=3 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$, then $C D=$
(a) 2 cm
(b) 3 cm
(c) 4 cm
(d) 5 cm

- Watch Video Solution

