

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

FACTORIZATION OF POLYNOMIAL

Others

1. Show that (x-2) is a factor of the polynomial $f(x)=2x^3-3x^2-17x+30$ and hence factorize f(x).

Watch Video Solution

2. What must be added to $3x^3+x^2-22x+9$ so that the result is exactly divisible by $3x^2+7x-6$?

3. If ax^3+bx^2+x-6 has x+2 as a factor and leaves a remainder 4 when divided by (x-2), find the value of a and b .

4. If both x-2 and x-1/2 are factors of px^2+5x+r , show that p=r

5. Find the values of a and b so that the polynomial x^3+10x^2+ax+b is exactly divisible by x-1 as well as x-2.

6. For what values of a is $2x^3+ax^2+11x+a+3$ exactly divisible by (2x-1)?

7. Determine the value of a for which the polynomial $2x^4-ax^3+4x^2+2x+1$ is divisible by 1-2x.

8. Find the value of a and b so that the polynomial $x^3-ax^2-13x+b$ has (x-1) and (x+3) as factors.

9. Without actual division prove that $2x^4-6x^3+3x^2+3x-2$ is exactly division by x^2-3x+2 .

10. Find the value of a, if x-1 is a factor of x^3-a^2x+x+2 .

11. If the polynomials ax^3+3x^2-13 and $2x^3-5x+a,$ when divided by (x-2) leave the same remainder, find the value of a .

12. Show that (x-1) is a factor of $x^{10}-1$ and also of $x^{11}-1$.

13. Identify polynomials in the following: (i)

$$f(x) = 4x^3 - x^2 - 3x + 7$$
 (ii)

$$g(x) = 2x^3 - 3x^2 + \sqrt{x} - 1$$
 (iii)

$$p(x) = \frac{2}{3}x^2 - \frac{7}{4}x + 9 \tag{iv}$$

$$q(x) = 2x^2 - 3x + \frac{4}{x} + 2$$
 (v)

$$h(x)=x^4-x^{rac{2}{3}}+x-1$$
 (vi) $f(x)=2+rac{3}{x}+4x$

14. Show that x=1 is a root of the polynomial

$$2x^3 - 3x^2 + 7x - 6$$

15. If $x=rac{4}{3}$ is a root of the polynomial $f(x)=6x^3-11x^2+kx-20,$ find the value of k

16. If x=2 and x=0 are roots of the polynomial $f(x)=2x^3-5x^2+ax+b$. Find the values of a and b.

17. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer : (i) $3x^2-4x+15$ (ii) $y^2+2\sqrt{3}$ (iii) $3\sqrt{x}+\sqrt{2}x$ (iv) $x-\frac{4}{x}$ (v) $x^{12}+y^3+t^{50}$

18. Write the degrees of each of the following polynomials: (i) $7x^3+4x^2-3x+12$ (ii) $12-x+2x^3$ (iii) $5y-\sqrt{2}$ (iv) 7 (v) 0

19. Classify the following polynomials as polynomials in one-variable, two variables etc. : (i)

$$x^2-xy+7y^2$$
 (ii) $x^2-2tx+7t^2-x+t$ (iii)

$$t^3-3t^2+4t-5$$
 (iv) $xy+yz+zx$

20. Using factor theorem, factorize the polynomial $x^3 - 6x^2 + 11x - 6$.

21. Find the rational roots of the polynomial $2x^3 + 3x^2 - 11x - 6$

22. If x=0 and x=-1 are the roots of the polynomial $f(x)=2x^3-3x^2+ax+b,\,$ find the value of a and b .

23. If $f(x) = x^4 - 2x^3 + 3x^2 - ax + b$ is a polynomial such that when it is divided by x-1 and x+1, remainders are 5 and 19 respectively. Determine the remainder when f(x) is divided by x-3.

24. Using factor theorem, factorize the polynomial $x^4 + 2x^3 - 13x^2 - 14x + 24$

25. Factorize : $2x^4 + x^3 - 14x^2 - 19x - 6$

26. Without actual division, prove that $2x^4-5x^3+2x^2-x+2$ is exactly divisible by x^2-3x+2 .

27. Factorize $x^3+13x^2+32x+20$, if it is given that x+2 is its factor.

28. If x^2-1 is a factor of $ax^4+bx^3+cx^2+dx+e$, show that a+c+e=b+d

29. In each of the following two polynomials, find the value of a, if x+a is a factor. i) $x^3+ax^2-2x+a+4$ ii) $x^4-a^2x^2+3x-a$

30. What must be added to $x^4+2x^3-2x^2+x-1$ so that the result is exactly divisible by x^2+2x-3 .

31. Without actual division, prove that $x^4+2x^3-2x^2+2x-3$ is exactly divisible by x^2+2x-3 .

32. If x-2 is a factor of each of the following two polynomials, find the values of a in each case. (i)

$$x^3-2ax^2+ax-1$$
 (ii)

$$x^5 - 3x^4 - ax^3 + 3ax^2 + 2ax + 4$$

Natab Midaa Calutian

33. If $f(x)=x^4-2x^3+3x^2-ax+b$ is a polynomial such that when it is divided by x-1 and x+1 , remainders are 5 and 19 respectively. Determine the remainder when f(x) is divided by x-3.

watch video Solution

34. Using factor theorem, factorize the following polynomial : $x^3 + 2x^2 - x - 2$

35. Use factor theorem to verify that x+a is a factor of x^n+a^n for any odd positive integer.

36. If $f(x) = x^4 - 2x^3 + 3x^2 - ax + b$ is a polynomial such that when it is divided by x-1 and x+1, the remainders are respectively 5 and 19. Determine the remainder when f(x) is divided by (x-2).

37. Let R_1 and R_2 are the remainders when the polynomials $x^3+2x^2-5ax-7$ and $x^3+ax^2-12x+6$ are divided by x+1 and x-2 respecti-vely. If $2R_1+R_2=6$, find the value of a.

38. The polynomials ax^3+3x^2-13 and $2x^3-5x+a$ are divided by x+2, if the remainder in each case is the same, find the value of $a\cdot$

39. If the polynomials ax^3+4x^2+3x-4 and x^3-4x+a leave the same remainder when divided by (x-3), find the value of a.

Watch Video Solution

40. Find the remainder when $f(x) = x^3 - 6x^2 + 2x - 4$ is divided by g(x) = 3x - 1.

41. Find the remainder when $p(x)=4x^3-12x^2+14x-3$ is divided by $g(x)=x-rac{1}{2}$

- **42.** Find the remainder when $p(x) = x^3 ax^2 + 6x a$ is divided by (x a).
 - Watch Video Solution

- **43.** Find the integral roots of the polynomial f(X) = $x^3 + 6x^2 + 11x + 6$
 - **Watch Video Solution**

44. What must be subtracted from $x^3-6x^2-15x+80$ so that the result is exactly

divisible by $x^2 + x - 12$?

45. If $x^3+ax^2-bx+10$ is divisible by x^2-3x+2 , find the values of a and b .

46. What must be subtracted from $4x^4-2x^3-6x^2+x-5$ so that the result is exactly divisible by $2x^2+x-1$

47. The polynomials ax^3+3x^2-3 and $2x^3-5x+a$ when divided by (x-4) leave the remainders R_1andR_2 respectively. Find the values of a in each of the following cases, if (i) $R_1=R_2$ (ii) $R_1+R_2=0$ (iii) $2R_1-R_2=0$

48. If the polynomials $2x^3+ax^2+3x-5$ and x^3+x^2-4x+a leave the same remainder when divided by x-2, find the value of a.

watch video Solution

49. In each of the following two polynomials, find the value of a, if x+a is a factor. (i) $x^3+ax^2-2x+a+4$ (ii) $x^4-a^2x^2+3x-a$

50. Factorize $9z^3-27z^2-100z+300$, if it is given that (3z+10) is a factor of it.

51. Using factor theorem, factorize each of the following polynomials : $x^4 - 2x^3 - 7x^2 + 8x + 12$

52. Using factor theorem, factorize each of the following polynomials :

$$2x^4 - 7x^3 - 13x^2 + 63x - 45$$

53. Using factor theorem, factorize each of the following polynomials : $3x^3-x^2-3x+1$

54. Using factor theorem, factorize each of the following polynomials : $x^3-10x^2-53x-42$

55. Using factor theorem, factorize each of the following polynomials : $x^3 + 13x^2 + 32x + 20$

56. Using factor theorem, factorize each of the following polynomials : $x^3 + 2x^2 - x - 2$

polynomials in one variable and which are not? State reasons for your answer : (i) $3x^2-4x+15$ (ii) $y^2+2\sqrt{3}$ (iii) $3\sqrt{x}+\sqrt{2}x$ (iv) $x-\frac{4}{x}$ (v) $x^{12}+y^3+t^{50}$

57. Which of the following expressions are

58. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer : (i) $3x^2-4x+15$ (ii) $y^2+2\sqrt{3}$ (iii) $3\sqrt{x}+\sqrt{2}x$ (iv) $x-\frac{4}{x}$ (v) $x^{12}+y^3+t^{50}$

59. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer : (i) $3x^2-4x+15$

61. Write the coefficient of
$$x^2$$
 in each of the

following: (i) $rac{\pi}{6}x^2-3x+4$ (ii) $\sqrt{3}\,x-7$

ollowing: (i)
$$17-2x+7x^2$$

 $x^{12} + y^3 + t^{50}$

(ii) $y^2+2\sqrt{3}$ (iii) $3\sqrt{x}+\sqrt{2}x$ (iv) $x-\frac{4}{\pi}$ (v)

60. Write the coefficient of x^2 in each of the

Watch Video Solution

62. Write the degrees of each of the following

polynomials: (i)
$$7x^3 + 4x^2 - 3x + 12$$
 (ii)

$$12-x+2x^3$$
 (iii) $5y-\sqrt{2}$ (iv) 7 (v) 0

63. Write the degrees of each of the following

polynomials:
$$7x^3+4x^2-3x+12$$
 (ii)

$$12-x+2x^3$$
 (iii) $5y-\sqrt{2}$ (iv) 7 (v) 0

64. Classify the following polynomials as linear, quadratic, cubic and biquadratic polynomials: (i) $x+x^2+4$ (ii) 3x-2 (iii) $2x+x^2$

65. Classify the following polynomials as linear, quadratic, cubic and biquadratic polynomials: (i) 3y

(ii)
$$t^2+1$$
 (iii) $7t^4+4t^3+3t-2$

66. Classify the following polynomials as polynomials in one-variable, two variables etc.: (i) $x^2-xy+7y^2$ (ii) $x^2-2tx+7t^2-x+t$

67. Classify the following polynomials as polynomials in one-variable, two variables etc.: (i) t^3-3t^2+4t-5 (ii) xy+zy+zx

$$f(x) = 4x^3 - x^2 - 3x + 7$$
 (ii)

(v)

$$g(x)=4x^3-3x^2+\sqrt{x}-1$$
 (iii)

$$p(x) = rac{2}{3}x^2 - rac{7}{4}x + 9$$
 (iv)

$$q(x)=2x^2-3x+rac{4}{x}+2$$
 (v) $h(x)=x^4-x^{rac{2}{3}}+x-1$ (vi) $f(x)=2+rac{3}{x}+4x$

Watch Video Solution

69. Identify polynomials in the following: (i)

$$f(x) = 4x^3 - x^2 - 3x + 7$$
 (ii)

$$f(x) = 4x - x - 3x + t$$
 (II)
$$g(x) = 2x^3 - 3x^2 + \sqrt{x} - 1$$
 (III)

$$g(x)=2x^3-3x^2+\sqrt{x}-1$$
 (iii) $p(x)=rac{2}{3}x^2-rac{7}{4}x+9$ (iv)

 $q(x) = 2x^2 - 3x + \frac{4}{x} + 2$

70. Identify polynomials in the following: (i)
$$f(x) = 4x^3 - x^2 - 3x + 7$$
 (ii)

 $h(x)=x^4-x^{rac{2}{3}}+x-1$ (vi) $f(x)=2+rac{3}{x}+4x$

(v)

(iv)

$$g(x)=2x^3-3x^2+\sqrt{x}-1$$
 (iii)

$$p(x)=rac{2}{3}x^2-rac{7}{4}x+9$$
 (iv) $q(x)=2x^2-3x+rac{4}{x}+2$ (v)

$$h(x)=x^4-x^{rac{2}{3}}+x-1$$
 (vi) $f(x)=2+rac{3}{x}+4x$

71. Identify constant, linear, quadratic and cubic polynomials from the following polynomials: (i) f(x)=0 (ii) $g(x)=2x^3-7x+4$

Watch Video Solution

72. Identify constant, linear, quadratic and cubic polynomials from the following polynomials: (i) $h(x)=-3x+rac{1}{2}$ (ii) $p(x)=2x^2-x+4$

Watch Video Solution

73. Identify constant, linear, quadratic and cubic polynomials from the following polynomials:

$$q(x)=4x+3$$
 (ii) $r(x)=3x^3+4x^2+5x-7$

74. Give one example each of a binomial of degree 35 and of a monomial of degree 100.

75. If
$$f(x) = 2x^3 - 13x^2 + 17x + 12$$
, find (i) $f(2)$

(ii)
$$f(-3)$$

76. Show that x=1 is a root of the polynomial

$$2x^3 - 3x^2 + 7x - 6$$

77. If $x=rac{4}{3}$ is a root of the polynomial $f(x)=6x^3-11x^2+kx-20,$ find the value of k

78. If x=2 and x=0 are roots of the polynomial $f(x)=2x^3-5x^2+ax+b$. Find the values of a and b.

79. Find the integral roots of the polynomial $f(x) = x^3 - 6x^2 + 11x - 6$

80. Find the rational roots of the polynomial

$$2x^3 + 3x^2 - 11x - 6$$

81. Find the zero (root) of the polynomial in each of the following cases: f(x)=x-5 (ii) g(x)=2x+5

82. Find the zero (root) of the polynomial in each of the following cases: (i)h(x)=2x (ii)

$$p(x)=c\,x+d,\
eq 0$$
 (iii) $p(x)=ax,\ a\
eq 0$

Watch Video Solution

83. If
$$f(x) = 2x^3 - 13x^2 + 17x + 12$$
 Then find $f(x) = f(x)(ii)$ $f(x) = f(x)(iii)$ $f(x) = f(x)(iii)$

84. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that cases: $f(x) = 3x + 1, \; x = -\frac{1}{3}$

Watch Video Solution

85. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that cases: $f(x) = x^2 - 1, \ x = 1, \ -1$

Watch Video Solution

86. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that $\frac{2}{2}$

cases:
$$g(x) = \ 3x^2 - 2, \ x = \frac{2}{\sqrt{3}}, \ -\frac{2}{\sqrt{3}}$$

Watch Video Solution

87. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that cases: $p(x) = x^3 - 6x^2 + 11x - 6$, x = 1, 2, 3

Watch Video Solution

88. Verify whether the following are zeroes of the polynomial, indicated against them. (i)

$$p(x) = 3x + 1, x = -\frac{1}{3}$$
 (ii)

$$p(x) = 5x - \pi, x = \frac{4}{5} \tag{iii}$$

$$p(x) = x^2 - 1, x = 1, -1$$
 (iv)

$$p(x) = (x+1)(x+2), x = -1, 2$$
 (v)

(vii)

Watch Video Solution

 $p(x)=x^2, x=0$ (vi) p(x)=lx+m, x=-

89. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that cases: $f(x)=x^2,\;x=0$

90. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that

cases: $f(x) = lx + m, \; x = -$

Watch Video Solution

$$f(x)=2x^2-3x+7a,\,\,$$
 find the value of a

92. If x=2 is a root of the polynomial

93. If $x=-rac{1}{2}$ is a zero of the polynomial $p(x)=8x^3-ax^2-x+2,$ find the value of a

94. If x=0 and x=-1 are the roots of the polynomial $f(x)=2x^3-3x^2+ax+b,\,$ find the value of a and b .

95. Find the integral roots of the polynomial $f(x) = x^3 - 6x^2 + 11x - 6$

96. Find rational roots of the polynomial $f(x) = 2x^3 + x^2 - 7x - 6$

97. Let $p(x)=x^4-3x^2+2x+5$. Find the remainder when p(x) is divided by (x-1).

98. Find the remainder when
$$p(y) = y^3 + y^2 + 2y + 3$$
 is divided by $y+2$.

99. Determine the remainder when the polynomial $p(x) = x^4 - 3x^2 + 2x + 1$, is divided by x-1

100. Find the remainder when $p(x) = x^3 - ax^2 + 6x - a$ is divided by (x-a).

101. Find the remainder when the polynomial $f(x) = 2x^4 - 6x^3 + 2x^2 - x + 2$ is divided by x+2

102. Find the remainder when $p(x)=4x^3-12x^2+14x-3$ is divided by $g(x)=x-rac{1}{2}$

103. Find the remainder when $f(x) = x^3 - 6x^2 + 2x - 4$ is divided by g(x) = 3x - 1.

104. Find the remainder when $f(x) = x^3 - 6x^2 + 2x - 4$ is divided by g(x) = 3x - 1.

105. If the polynomials ax^3+4x^2+3x-4 and x^3-4x+a leave the same remainder when divided by (x-3), find the value of a.

Watch Video Solution

106. The polynomials ax^3+3x^2-13 and $2x^3-5x+a$ are divided by x+2, if the remainder in each case is the same, find the value of $a\cdot$

107. Let R_1 and R_2 are the remainders when the polynomials $x^3+2x^2-5ax-7$ and $x^3+ax^2-12x+6$ are divided by x+1 and x-2 respecti-vely. If $2R_1+R_2=6$, find the value of a.

watch video Solution

108. If $f(x)=x^4-2x^3+3x^2-ax+b$ is a polynomial such that when it is divided by x-1 and x+1, the remainders are respectively 5 and 19. Determine the remainder when f(x) is divided by (x-2).

109. Check whether the polynomial $q(t) = 4t^3 + 4t^2 - t - 1$ is a multiple of 2t + 1

110. $f(x) = x^3 + 4x^2 - 3x + 10$, g(x) = x + 4 divide f(x) with g(x) and find the remainder.

Watch Video Solution

111. On dividing the polynomial f(x) by the polynomial g(x) find the remainder with the help of remainder theorem and also confirm the result.

$$f(x) = 4x^4 - 3x^3 - 2x^2 + x - 7, g(x) = x - 1$$

Watch Video Solution

112. Find the remainder when $P(x) \div G(x)$

(i)

$$P(x)=2x^4-6x^3+2x^2-x+2; G(x)=(x+2)$$

(ii)
$$P(x) = 4x^3 + 4x^2 - x - 1; G(x) = (2x+1)$$

113.

 $f(x)=4x^3-12x^2+14x-3,\ g(x)=2x-1$ divide f(x) with g(x) and find the remainder.

114. Find the remainder when f(x)=x 3 -6x 2 +2x-4 is divided by g(x)=1-2x.

115. Find the remainder when $f(x) = x^4 - 3x^2 + 4$ is divided by g(x) = x - 2 is.

116. Find the remainder when $f(x)=9x^3-3x^2+x-5$, is divided by g(x)=x-2/3

Watch Video Solution

same remainder, find the value of a.

Watch Video Solution

118. If the polynomials $ax^3 + 3x^2 - 13$ and

 $2x^3-5x+a,$ when divided by (x-2) leave the

$f(x)=3x^4+2x^3-rac{x^2}{3}-rac{x}{9}+rac{2}{27},\;g(x)=\;x+rac{2}{3}$

find the value of f(x)-g(x).

119. The polynomials ax^3+3x^2-3 and $2x^3-5x+a$ when divided by (x-4) leave the remainders R_1andR_2 respectively. Find the values of a in each of the following cases, if $R_1=R_2$ (ii) $R_1+R_2=0$ $(iii)2R_1-R_2=0$

120. If the polynomials ax^3+3x^2-13 and $2x^3-5x+a,$ when divided by (x-2) leave the same remainder, find the value of a .

Watch Video Solution

121. Find the remainder when x^3+3x^2+3x+1 is divided by (i) x+1 (ii) $x-\frac{1}{2}$ (iii) x (iv) $x+\pi$ (v) 5+2x

122. Find the remainder when x^3+3x^2+3x+1 is divided by (i) x+1 (ii) $x-\frac{1}{2}$ (iii) x (iv) $x+\pi$ (v) 5+2x

123. Show that (x-3) is a factor of the polynomial $x^3-3x^2+4x-12$

124. Show that (x-1) is a factor of $x^{10}-1$ and also of $x^{11}-1$.

125. Show that x+1 and 2x-3 are factors of $2x^3-9x^2+x+12$

126. Without actual division prove that
$$2x^4-6x^3+3x^2+3x-2$$
 is exactly divisible by x^2-3x+2 is

127. Find the value of a, if x-a is a factor of

$$x^3 - a^2x + x + 2$$

128. Find the value of k, if x+3 is a factor of $3x^2+kx+6$.

129. Determine the value of a for which the polynomial $2x^4-ax^3+4x^2+2x+1$ is divisible by $1-2x\cdot$

130. Find the value of a and b so that the polynomial $x^3-ax^2-13x+b$ has (x-1) and

 $\left(x+3
ight)$ as factors.

131. Find the values of a and b so that the polynomial x^3+10x^2+ax+b is exactly divisible by x-1 as well as x-2.

132. For what values of a is $2x^3+ax^2+11x+a+3$ exactly divisible by (2x-1)?

133. If ax^3+bx^2+x-6 has x+2 as a factor and leaves a remainder 4 when divided by (x-2), find the value of a and b .

134. If both x-2 and $x-rac{1}{2}$ are factors of $px^2+5x+r,$ show that p=r.

135. If x^2-1 is a factor of $ax^4+bx^3+cx^2+dx+e,$ show that a+c+e=b+d

136. Without actual division, prove that $2x^4-5x^3+2x^2-x+2$ is exactly divisible by x^2-3x+2 .

137. Without actual division, prove that $x^4+2x^3-2x^2+2x-3$ is exactly divisible by x^2+2x-3 .

138. In each of the following polynomials, find the value of a if x+a is a factor: $x^3+ax^2-2x+a+4$

139. In each of the following polynomials, find the value of a if x+a is a factor: $x^4-a^2x^2+3x-a$

140. Use factor theorem to verify that x+a is a factor of x^n+a^n for any odd positive integer.

141. If $f(x)=x^4-2x^3+3x^2-ax+b$ is a polynomial such that when it is divided by x-1

and $x+1,\,$ the remainders are respectively 5 and 19. Determine the remainder when f(x) is divided by (x-2).

142. What must be subtracted from $4x^4-2x^3-6x^2+x-5$ so that the result is exactly divisible by $2x^2+x-1$

143. What must be added to $x^4+2x^3-2x^2+x-1$ so that the result is exactly divisible by x^2+2x-3 .

144. Use factor theorem to find whether polynomial g(x) is a factor of polynomial f(x) or, not:

$$f(x) = x^3 - 6x^2 + 11x - 6; g(x) = x - 3$$

Watch Video Solution

145.

$$f(x) = 3x^4 + 17x^3 + 9x^2 - 7x - 10; g(x) = x + 5$$

find the remainder when f(x) is divided with g(x)

146. check whether g(x) is a factor of f(x) or not

$$f(x) = x^5 + 3x^4 - x^3 - 3x^2 + 5x + 15,$$

$$q(x) = x + 3$$

147. $f(x) = x^3 - 6x^2 - 19x + 84$, g(x) = x - 7 find the value of f(x)-g(x).

148. $f(x) = 3x^3 + x^2 - 20x + 12$, g(x) = 3x - 2 find the remainder when f(x) is divided with g(x).

149. Use factor theorem to find whether polynomial g(x) is a factor of polynomial f(x) or, not:

 $f(x) = 2x^3 - 9x^2 + x + 12, \ g(x) = 3 - 2x$

 $f(x) = x^3 - 6x^2 + 11x - 6, \ g(x) = x^2 - 3x + 2$

151. Show that (x-2),(x+3) and (x-4) are

150.

find the remainder when
$$f(x)$$
 is divided with $g(x)$.

- - Watch Video Solution

factors of $x^3 - 3x^2 - 10x + 24$.

152. Show that $(x+4),\ (x-3) and\ (x-7)$ are factors of $x^3-6x^2-19x+84$

Watch Video Solution

153. For what value of a is (x-5) a factor of $x^3-3x^2+ax-10$?

Watch Video Solution

154. Find the value of a such that (x-4) is a factor of $5x^3-7x^2-ax-28$

155. Find the value of a, if x+2 is a factor of $4x^4+2x^3-3x^2+8x+5a$

156. Find the value of k if x-3 is a factor of $k^2x^3-kx^2+3kx-k$

157. Find the values of a and b, if x^2-4 is a factor of $ax^4+2x^3-3x^2+bx-4$.

158. Find $lpha\ and\ eta$, if $x+1\ and\ x+2$ are factors of $x^3+3x^2-2lpha x+eta$

159. Find the values of p and q so that $x^4 + px^3 + 2x^2 - 3x + q$ is divisible by $(x^2 - 1)$

160. Find the values of a a a b so that (x+1) a d a b are factors of $x^4 + ax^3 - 3x^2 + 2x + b$

161. If $x^3+ax^2-bx+10$ is divisible by x^2-3x+2 , find the values of a and b .

162. If (x+1) and (x-1) are factors of $p(x)=ax^3+x^2-2x+b$ find the values of a & b.

163. What must be added to $x^3-3x^2-12x+19$ so that the result is exactly divisibly by x^2+x-6

?

164. What must be subtracted from $x^3-6x^2-15x+80$ so that the result is exactly divisible by x^2+x-12 ?

165. What must be added to $3x^3+x^2-22x+9$ so that the result is exactly divisible by $3x^2+7x-6$?

166. If x-2 is a factor of each of the following two polynomials, find the values of a in each case.

$$x^3-2ax^2+ax-1$$
 and

 $x^5 - 3x^4 - ax^3 + 3ax^2 + 2ax + 4$

167. In each of the following two polynomials, find the value of a , if x-a is a factor: $x^6-ax^5+x^4-ax^3+3x-a+2$ and $x^5-a^2x^3+2x+a+1$

168. In each of the following two polynomials, find the value of a, if x+a is a factor. i) $x^3+ax^2-2x+a+4$ ii) $x^4-a^2x^2+3x-a$

169. Show that (x-2) is a factor of the polynomial $f(x)=2x^3-3x^2-17x+30$ and hence factorize f(x).

170. Using factor theorem, factorize the polynomial $x^3-6x^2+11x-6$.

Watch Video Solution

171. Using factor theorem, factorize the polynomial $x^4 + x^3 - 7x^2 - x + 6$

Watch Video Solution

172. Using factor theorem, factorize the polynomial $x^4-2x^3-13x^2+14x+24$

173. Factorize : $2x^4 + x^3 - 14x^2 - 19x - 6$

174. Factorize $x^3+13x^2+32x+20$, if it is given that x+2 is its factor.

175. Factorize $9z^3-27z^2-100z+300$, if it is given that (3z+10) is a factor of it.

176. using factor theorm factorize the following $x^3 + 6x^2 + 11x + 6$

177. Using factor theorem, factorize each of the following polynomials : $x^3 + 2x^2 - x - 2$

178. Using factor theorem factorize the following:

$$x^3 - 6x^2 + 3x + 10$$

179. Using factor theorem, factorize each of the following polynomials : $x^4-2x^3-7x^2+8x+12$

180. Using factor theorem, factorize each of the following polynomials : $x^4-2x^3-7x^2+8x+12$

Watch Video Solution

181. Using factor theorem, factorize the following $\mathsf{polynomial}: x^4 + 10x^3 + 35x^2 + 50x + 24$

Watch Video Solution

182. Using factor theorem, factorize each of the following polynomials :

 $2x^4 - 7x^3 - 13x^2 + 63x - 45$

183. Using factor theorem, factorize each of the following polynomials : $3x^3-x^2-3x+1$

184. Factorise $x^3 - 23x^2 + 142x - 120$.

185. Using factor theorem, factorize the following polynomial : y^3-7y+6

186. Using factor theorem, factorize each of the following polynomials : $x^3-10x^2-53x-42$

187. using factor theorm factorize the following $y^3-2y^2-29y-42$

188. Using factor theorem, factorize each of the following polynomials : $x^3-10x^2-53x-42$

189. Favtorise $x^3+13x^2+32x+20$

190. Factorise: (i)
$$x^3 - 2x^2 - x + 2$$
 (ii)

$$x^3 - 3x^2 - 9x - 5$$
 (iii) $x^3 + 13x^2 + 32x + 20$ (iv)

- $2y^3 + y^2 2y 1$
 - Watch Video Solution

- **191.** $2y^3+y^2-2y-1$ factorize the polynomial
 - Watch Video Solution

- **192.** x^3-2x^2-x+2 Factorize the polynomial,
 - **Watch Video Solution**

193. Factorize : $x^3 + 13x^2 + 31x - 45$ given that

x+9 is a factor

194. Factorize: $4x^3 + 20x^2 + 33x + 18$ given that

2x+3 is a factor

195. What is a Zero of a Polynomial?

196. If
$$x=rac{1}{2}$$
 is a zero of the polynomial $f(x)=8x^3+ax^2-4x+2,$ find the value of a

197. Write the remainder when the polynomial $f(x) = x^3 + x^2 - 3x + 2$ is a divided by x+1

198. Find the remainder when x^3+4x^2+4x-3 is divided by x

199. If x+1 is a factor of x^3+a , then write the value of a

200. If $f(x)=x^4-2x^3+3x^2-ax-b$ when divided by x-1 , the remainder is 6, then find the

value of a+b

Watch Video Solution

201. If x-2 is a factor of $x^2+3ax-2a$, then

$$a =$$

(a) 2

(b) -2

(c) 1

(d) -1

202. If x^3+6x^2+4x+k , is exactly divisible by (x+2), then the value of k is:

203. If x-a is a factor of $x^3-3x^2a+2a^2x+b$,

- then the value of b is
- (a) 0
- (b) 2
- (c) 1
- (d) 3

204. If $x^{140}+2x^{151}+k$ is divisible by x+1 , then the value of k is=?

(a) 1

(b) -3

(c) 2

(d) -2

(a) 5 and -3

205. If x+2 and x-1 are the factors of x^3+10x^2+mx+n , then the values of m and n are respectively=?

(b) 17 and -8

(c) 7 and -18

(d) 23 and -19

Watch Video Solution

206. Let
$$f(x)$$
 be a polynomial such that $f\!\left(-\frac{1}{2}\right) = 0$, then a factor of $f(x)$ is:?

$$(a)2x-1$$

(b)
$$2x + 1$$

$$(c)x-1$$

(d)
$$x + 1$$

Vatch Video Solution

207. When x^3-2x^2+ax-b is divided by x^2-2x-3 , the remainder is x-6. The values of a and b are respectively. (a) -2, -6 (b) 2, -6 (c) -2, 6 (d) 2, 6

208. One factor of x^4+x^2-20 is x^2+5 . The other factor is x^2-4 (b) x-4 (c) x^2-5 (d) x+2

209. If (x-1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of (a) $f(x)g(x) \ \, (b) \ \, -f(x)+\,g(x) \ \, (c)f(x)-g(x) \ \, (d)$ $\{f(x)+g(x)\}g(x)$

210. (x+1) is a factor of x^n+1 only if

A. n is an odd integer

B. n is an even integer

C. n is a positive integer

D. n is a negative integer

Answer: A

Watch Video Solution

211. If x+2 is a factor of $x^2+mx+14$, then

m =

A. 7

B. 2

C. 9

D. 14

Answer: C

212. If
$$x-3$$
 is a factor of $x^2-ax-15$, then $a=$

(a)
$$-2$$

(c)
$$-5$$

213. If x^2+x+1 is a factor of the polynomial

 $3x^3 + 8x^2 + 8x + 3 + 5k$, then the value of k is

(b)
$$\frac{2}{5}$$
 (c) $\frac{5}{2}$ (d) -1

214.

If

then the value of $a_7+a_6.\ldots.a_0$ =

 $(3x-1)^7 = a_7x^7 + a_6x^6 + a_5x^5 + \dots + a_1x + a_0$

215. If $x^{51}+51$ is divided by x+1 , the remainder is

(a)0

(b) 1

(d) 50

(c)49

216. If x+1 is a factor of the polynomial

 $2x^2+kx, \; \mathsf{then} \; k=$

(a) -2

(b) -3

- (c) 4
- (d) 2

Watch Video Solution

- **217.** If x + a is a factor of $x^4 a^2x^2 + 3x 6a$, then a =
 - A. 0
 - B. 1
 - C. 9
 - D. 9

Answer: A

Watch Video Solution

218. Find the value of k, if x-1 is a factor of $4x^3+3x^2-4x+k$.

219. If both x-2 and $x-\frac{1}{2}$ are factors of $px^2+5x+r,$ show that p=r.

220. If
$$x^2-1$$
 is a factor of $ax^4+bx^3+cx^2+dx+e$, show that $a+c+e=b+d$

