©゙doubtnut

MATHS

BOOKS - CBSE COMPLEMENTARY MATERIAL MATHS
 (HINGLISH)

TRIANGLE

Very Short Answer Type Questions Fill In The Blanks

1. Area of an equilateral triangle

- Watch Video Solution

2. If $\triangle A B C \sim \triangle F E D$, then $\frac{A B}{-}=\frac{-}{E D}$.
3. Circles having saem radii are ..

- Watch Video Solution

4. Theorem 6.1 : If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

- Watch Video Solution

5. Theorem 6.8 : In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

- Watch Video Solution

Very Short Answer Type Questions State True Or False

1. All the similar figures are congruent if their areas are equal. (Yes/No).

- Watch Video Solution

2. State the basic proportionality theorem.

Watch Video Solution
3. Thales Theorem (Basic Proportionality Theorem)

- Watch Video Solution

4. Pythagoras Theorem
5. Sides of two similar triangles are in the ratio $4: 9$. Areas of these triangles are in the ratio. $2: 3$ (b) $4: 9$ (c) $81: 16$ (d) $16: 81$

- Watch Video Solution

6. Match the Following:

Column I
(a) If corresponding angles are equal in two triangles, then the two triangles are similar.
(b) If sides of one triangle are proportional to the sides of the other triangle, then the two triangles are similar.
(c) If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

Column II

(i) SAS similarity criterion
(ii) ASA similarity criterion
(iii) AAA similarity criterion
(iv) SSS similarity criterion

- Watch Video Solution

7. In the following figure, $X Y\left|\mid Q R\right.$ and $\frac{P X}{X Q}=\frac{P Y}{Y R}=\frac{1}{2}$ then

A. $X Y=Q R$
B. $X Y=\frac{1}{3} Q R$
C. $X Y^{2}=Q R^{2}$
D. $X Y=\frac{1}{2} Q R$

Answer: A:C
8. In the following figure, $Q A \perp A B$ and $P B \perp A B$, then AQ is

A. 15 units
B. 8 units
C. 5 units
D. 9 units

Answer: A

9. Theorem 6.6 : The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
A. ratio of their corresponding sides.
B. ratio of their corresponding altitudes.
C. ratio of the square of their corresponding sides.
D. ratio of their perimeter.

Answer: A::C::D

- Watch Video Solution

10. The areas of two similar triangles are $144 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$. If one median of the first triangleis 16 cm , length of corresponding median of the second triangle is
A. 9 cm
B. 27 cm
C. 12 cm
D. 16 cm

Answer: A::B::C

- Watch Video Solution

11. In a right triangle ABC , in which $\angle C=90^{\circ} a m d C D \perp A B$. If $\mathrm{BC}=\mathrm{a}$, $C A=b, A B=c$ and $C D=p$, then

A. $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
B. $\frac{1}{p^{2}} \neq \frac{1}{a^{2}}+\frac{1}{b^{2}}$
C. $\frac{1}{p^{2}}<\frac{1}{a^{2}}+\frac{1}{b^{2}}$
D. $\frac{1}{p^{2}}>\frac{1}{a^{2}}+\frac{1}{b^{2}}$

Answer: A:B

- Watch Video Solution

12.

$\triangle A B C \sim \triangle D E F, \operatorname{ar}(\triangle D E F)=100 \mathrm{~cm}^{2}$ and $\frac{A B}{D E}=\frac{1}{2}$, then $\operatorname{ar}(\mathrm{D}$
A. $50 \mathrm{~cm}^{2}$
B. $25 \mathrm{~cm}^{2}$
C. $4 \mathrm{~cm}^{2}$
D. $200 \mathrm{~cm}^{2}$
13. If the three sides of a triangle are $\mathrm{a}, \sqrt{3} a$ and $\sqrt{2} a$, then the measure of the angle opposite to longest side is
A. 45°
B. 30°
C. 60°
D. 90°

Answer:

- Watch Video Solution

14. vertical pole of length 3 m casts a shadow of 7 m and a tower casts a shadow of 28 m at a time. The height of tower is
B. 12 m
C. 14 m
D. 16 m

Answer: A::B::C

- Watch Video Solution

15. The lengths of the diagonals of a rhombus are 16 cm and 12 cm . Then, the length of the side of the rhombus is
A. 9 cm
B. 10 cm
C. 8 cm
D. 20 cm

Answer: A::C

16. If $\triangle A B C \sim \triangle E D F$ and $\triangle A B C$ is not similar to $\triangle D E F$, then which of the following is not true?
A. $B C . E F=A C . F D$
B. $A B . E F=A C . D E$
C. $B C . D E=A B . E F$
D. $B C . D E=A B . F D$

Answer: C

- Watch Video Solution

17. Pythagoras theorem

- Watch Video Solution

18. State the basic proportionality theorem.
19. Is the triangle with sides $12 \mathrm{~cm}, 16 \mathrm{~cm}$ and 18 cm a right triangle?

- Watch Video Solution

20.

$\triangle A B C \sim \triangle Q R P, \frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle P Q R)}=\frac{9}{4}, A B=18 \mathrm{~cm}, B C=15 \mathrm{~cm}$, then find the length of PR.

- Watch Video Solution

21. In the given Fig., $\angle M=\angle N=46^{\circ}$, Express x in terms of a, b and c .

- Watch Video Solution

22. In the given Fig. $\triangle A H K \sim \triangle A B C$. If $\mathrm{AK}=10 \mathrm{~cm}, \mathrm{BC}=3.5 \mathrm{cmj}$ and HK=7CM, find

- Watch Video Solution

23. It is given that $\triangle D E F \sim \triangle R P Q$. Is it true to say that $\angle D=\angle R$ and $\angle F=\angle P$? Why?

- Watch Video Solution

24. If the corresponding Medians of two similar triangles are in the ratio 5
: 7. Then find the ratio of their sides.

- Watch Video Solution

25. An aeroplane leaves an airport and flies due west at a speed of 2100 $\mathrm{km} / \mathrm{hr}$. At the same time, another aeroplane leaves the same place at airport and flies due south at a speed of $2000 \mathrm{~km} / \mathrm{hr}$. How far apart will be the two planes after 1 hour?

- Watch Video Solution

26. The areas of two similar $\triangle A B C$ and $\triangle D E F$ are $225 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$ respectively. If the longest side of the larger triangle
$\triangle A B C$ be 30 cm , find the longest side of the smaller triangle DEF.

- Watch Video Solution

27. In the given figure, if $\triangle A B C \sim \triangle P Q R$, find the value of x ?

- Watch Video Solution

28. In the given figure, $\mathrm{XY} \| \mathrm{QR}$ and $\frac{P X}{X Q}=\frac{P Y}{Y R}=\frac{1}{2}$, find $\mathrm{XY}: \mathrm{QR}$.

- Watch Video Solution

29. In the given figure, find the value of x which will make $D E|\mid A B$?

- Watch Video Solution

30. If $\triangle A B C \sim \triangle D E F, B C=3 E F$ and $\operatorname{ar}(D A B C)=117 \mathrm{~cm}^{2}$ find area $(\triangle D E F)$.

- Watch Video Solution

31. If $\triangle A B C$ and $\triangle D E F$ are similar triangles such that $\angle A=45^{\circ}$ and $\angle F=56^{\circ}$, then find angle C
32. If the ratio of the corresponding sides of two similar triangles is $2: 3$, then find the ratio of their corresponding attitudes.

- Watch Video Solution

Short Answer Type Questions I

1. In the given Fig. $\mathrm{PQ}=24 \mathrm{~cm}, \mathrm{QR}=26 \mathrm{~cm}, \angle P A R=90^{\circ}$, $\mathrm{PA}=6 \mathrm{~cm}$ and $A R=$ 8 cm , find $\angle Q P R$.

2. In the given Fig., $D E \| A C$ and $D F \| A E$. Prove that $\frac{F E}{B F}=\frac{E C}{B E}$

- Watch Video Solution

3. In a $A B C, A D \perp B C$ and $A D^{2}=B D \times C D$. Prove that $A B C$ is a right triangle.

- Watch Video Solution

4. In the given Fig., D and E are points on sides AB and CA of $\triangle A B C$ such that $\triangle B=\angle A E D$. Show that $\triangle A B C \sim \triangle A E D$.

- Watch Video Solution

5. In the given fig., $\mathrm{AB}|\mid \mathrm{DC}$ and diagonals AC and BD intersects at O . If OA $=3 x-1$ and $O B=2 x+1, O C=5 x-3$ and $O D=6 x-5$, find the value of x.

6. In the given Fig. $P Q R$ is a triangle, right angled at Q. If $X Y \| Q R, P Q=6$ $\mathrm{cm}, \mathrm{PY}=4 \mathrm{~cm}$ and $P X: X Q=1: 2$. Calculate the lengths of $P R$ and $Q R$.

- Watch Video Solution

7. In the given figure, $A B \| D E$. Find the length of $C D$.

- Watch Video Solution

8. In the given figure, $A B C D$ is a parallelogram. $A E$ divides the line segment $B D$ in the ratio 1 : 2 . If $B E=1.5 \mathrm{~cm}$ find $B C$.

A. 2
B. 3
C. 5
D. 7

Answer: 3

(Watch Video Solution

9.

In
the
given
figure,
$\triangle O D C \sim \triangle O B A, \angle B O C=115^{\circ}$ and $\angle C D O=70 . \quad$ Find,
$\angle D O C,(i i) \angle D C O,(i i i) \angle O A B,(i v) \angle O B A$.

- Watch Video Solution

10. Perimeter of two equilateral triangles ABC and PQR are 144 m and 96 m , Find ar $(\triangle A B C): \operatorname{ar}(\triangle P Q R)$.
11. In the given figure, $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$ then prove that $\triangle P Q S \sim \triangle T Q R$.

- Watch Video Solution

2. In equilateral $\triangle A B C, A D \perp B C$. Prove that $3 B C^{2}=4 A D^{2}$.

- Watch Video Solution

3. In the given figure $\angle A B C=90^{\circ}$ and $C D \perp A B$. Prove that $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$

- Watch Video Solution

4. In Fig. 4.179, $A B C$ and $D B C$ are on the same base $B C$. If $A D$ and $B C$ intersect at O, prove that $\frac{\text { Area }(A B C)}{\text { Area }(D B C)}=\frac{A O}{D O}$ (FIGURE)

- Watch Video Solution

5. If AD and PS are medians of $\triangle A B C$ and $\triangle P Q R$ respectively where $\triangle A B C \sim \triangle P Q R$, Prove that $\frac{A B}{P Q}=\frac{A D}{P S}$.

- Watch Video Solution

6. In the given figure, DE \| AC. Which of the following is correct?
$x=\frac{a+b}{a y}$ or $x=\frac{a y}{a+b}$

- Watch Video Solution

7. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

- Watch Video Solution

8. A street light bulb is fixed on a pole 6 m above the level of the street. If a women of height 1.5 m casts a shadow of 3 m , then find how far she is away from the base of the pole.

- Watch Video Solution

9. Two poles of height a metres and b metres are p metres apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is given by $\frac{a b}{a+b}$ metres.

- Watch Video Solution

10. In the given figure $A B\|P Q\| C D, A B=x, C D=y$ and $P Q=z$. Prove that

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{z}
$$

Watch Video Solution
11. In the given figure $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle P S T=\angle P R Q$. Prove that PQR is an isoscles triangle.

- Watch Video Solution

12. In the figure, a point O inside $\triangle A B C$ is joined to its vertices. From a point D on $A O, D E$ is drawn parallel to $A B$ and from a point E on $B O, E F$ is
drawn parallel to BC.

(Watch Video Solution

13. Two triangles $B A C a n d B D C$, right angled at Aand D respectively, are drawn on the same base $B C$ and on the same side of $B C$. If $A C$ and $D B$ intersect at P, prove that $A P x P C=D P x P B$.

- Watch Video Solution

14. The Hypotenuse of a right triangle is 25 cm and out of the remaining two sides, one is larger than the other by 5 cm , find the lenghts of the other two sides.

- Watch Video Solution

15. In the given figure $\mathrm{DE} \| \mathrm{AC}$ and $\frac{B E}{E C}=\frac{B C}{C P}$. Prove that $\mathrm{DC} \| \mathrm{AP}$.

- Watch Video Solution

16. In a quadrilateral $\mathrm{ABCD}, \angle B=90^{\circ}$ and $A D^{2}=A B^{2}+B C^{2}+C D^{2}$ prove that $\angle A C D=90^{\circ}$.

Watch Video Solution

17. In the given figure, $D E \| B C, D E=3 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $\operatorname{ar}(\mathrm{DADE})=30 \mathrm{~cm}^{2}$.

Find ar
(BCED).

18. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

- Watch Video Solution

19. Ii $\triangle P Q R$, $\mathrm{PD} \perp \mathrm{QR}$ such that D lies on QR , if $\mathrm{PQ}=\mathrm{a}, \mathrm{PR}=\mathrm{b}, \mathrm{Q}=\mathrm{c}$ and $D R=d$, then prove that $(a+b)(a-b)=(c+d)(c-d)$.

- Watch Video Solution

20. The ratio of the the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides/altitudes.

- Watch Video Solution

21. In the given figure, the line segment $X Y$ is Parallel to $A C$ of $\triangle A B C$ and it divides the triangle into two parts of equal areas. Prove that
$\frac{A X}{A B}=\frac{\sqrt{2}-1}{\sqrt{2}}$

- Watch Video Solution

22. Through the vertex D of a parallelogram $A B C D$, a line is drawn to intersect the sides BA and BC produced at E and F respectively. Prove that $\frac{D A}{A E}=\frac{F B}{B E}=\frac{F C}{C D}$

- Watch Video Solution

23. Theorem 6.9 : In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.

- Watch Video Solution

24. Prove that is a right angle triangle, the square of the hypotenuse is equal the sum of the squares of other two sides.

- Watch Video Solution

25. Theorem 6.1 : If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

- Watch Video Solution

