© 'doubtnut

CHEMISTRY

BOOKS - CBSE COMPLEMENTARY MATERIAL CHEMISTRY
 (HINGLISH)

EQUILIBRIUM

Multiple Choice Question Mcq

1. For the hypothetical reactions, the equilibrium constant (k) values are given
$A \Leftrightarrow B: k_{1}=2$
$B \Leftrightarrow C: K_{2}=4$
$C \Leftrightarrow D: K_{3}=8$
The equilibrium constant (K) for the reaction $A \Leftrightarrow D$ is
B. 24
C. 12
D. 64

Answer:

- Watch Video Solution

2. The equilibrium constant for the reaction
$S O_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow S O_{3}(g)$ is $5 \times 10^{-2} \mathrm{~atm}^{-1 / 2}$
The equilibrium constant for the reaction
$2 \mathrm{SO}_{3}(g) \Leftrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g})$ would be
A. 100 atm
B. $25 \times 10^{-4} \mathrm{~atm}$
C. 400 atm
D. $125 \times 19^{-6} \mathrm{~atm}^{-3 / 2}$

- Watch Video Solution

3. $A(g)+3 B(g) \rightarrow 4 C(g)$ Initially concentration of A is equal to that of B. The equilibrium concentrations of A and C are equal. $K c$ is :
A. 4
B. $1 / 8$
C. B
D. 16

Answer:

- Watch Video Solution

4. For the reaction $\mathrm{CO}(g)+\mathrm{Cl}_{2}(g) \Leftrightarrow \operatorname{COCl}_{2}(g)$ the value of $\left(\frac{K_{c}}{K_{P}}\right)$ is equal to :
A. RT
B. RT
C. $1 / R T$
D. 1.0

Answer:

- Watch Video Solution

5. At $90^{\circ} C$ pure water has $K_{w}=10^{-12}$. The solution with pH value 6.5 is
A. Acidic
B. Basic
C. Amphoteric
D. Data insufficient

Answer:

6. 40 ml of 0.1 M ammonia is mixed with 20 ml of 0.1 MHCI . What is the pH of the mixture ? ($p K_{b}$ of ammonia solution is 4.74.)
A. 4.74
B. 2.26
C. 9.26
D. 5

Answer:

Watch Video Solution

7. If the $p K_{a}$ of a weak and acid HA is 4.80 and the $p K_{b}$ of a weak base $B O H$ is 4.78 . Then, the pH of an aqeuous solution of the corresponding salt, BA will be
B. 4.79
C. 9.22
D. 10.0

Answer:

- Watch Video Solution

8. If ' P ' M is the solubility of $K A 1\left(\mathrm{SO}_{4}\right)_{2}$, then $K_{\text {sp }}$ is equal to
A. p^{3}
B. $4 p^{4}$
C. p^{4}
D. $4 p^{3}$

Answer:

1. Equilibrium state can be achieved if a reversible reaction is carried out in closed or open container.

- View Text Solution

2. For a reaction $2 A(g) \Leftrightarrow B(g) Q_{c}>K$ if ' A ' is added maintaining
$Q_{c}>K$, the reaction will move in backward direction.

- View Text Solution

3. For the reaction at equilibrium
$\mathrm{CaCO}_{3} \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
What $\mathrm{CaO}(s)$ is removed reaction moves in forward direction.

- Watch Video Solution

4. For a reaction $a A+b B \Leftrightarrow c C+d D$ at equilibrium $G^{\theta}=0$ always.

- View Text Solution

5. For a reaction at equilibrium $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \Leftrightarrow 2 \mathrm{HCl}(g)$
$K=4, \quad$ the calue of $\frac{K_{b}[\mathrm{HCl}]^{2}}{K_{f}\left[\mathrm{H}_{2}\right]\left[\mathrm{Cl}_{2}\right]}$ is 1.

- View Text Solution

6. For the electrolyte $A_{2} B$ if K_{sp} is solubility product then its solubling ' S ' M is $\left[K_{\mathrm{sp}}\right]^{1 / 2} \div 4$.

- Watch Video Solution

7. HCO_{3}^{-}is conjugate base of $\mathrm{H}_{2} \mathrm{CO}_{3}$.

- Watch Video Solution

8. $\mathrm{H}_{2} \mathrm{O}$ can act as acid as well as base.

- Watch Video Solution

9. The pH of buffer solution remain same when any amount of dilution is done.

- View Text Solution

10. For a salt $A B_{2}(s)$ solution if lonic product (I.P) $>K_{\text {sp }}$,then precipitation will take place.

- View Text Solution

Fill In The Blanks

1. At equilibrium rate of forward reaction is always equal to
2. $k_{P} \& k_{C}$ are for reaction at equilibrium of type $H_{2}(g)+B r_{2}(g) \Leftrightarrow 2 H B r(g)$.

- Watch Video Solution

> 3. If $\mathrm{CH}_{3} \mathrm{COOH}(1)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(1)+\mathrm{H}_{2} \mathrm{O}(1)$ is 4. Then Q_{c} and : K_{c} are

- View Text Solution

4. If $A+B-70 \mathrm{~J} / \mathrm{mol} \Leftrightarrow D$, reaction temperature is increased then reaction moves in \qquad direction.
5. Presence of catalyst will the equilibrium constant.

D Watch Video Solution

6. The conjugate acid of $\mathrm{H}_{2} \mathrm{O}$ is \qquad

- Watch Video Solution

7. On dilution, the degree of dissociation of acetic acid will.

- Watch Video Solution

8. The presence of $\mathrm{NH}_{4} \mathrm{Cl}$ in $\mathrm{NH}_{4} \mathrm{OH}$ solution will the degree of dissociation of $\mathrm{NH}_{4} \mathrm{OH}$.
9. If lonic product (IP) $<K_{\mathrm{sp}}$ for a salt solution of AB , then addition of AB further \qquad lead to precipitation initially.

- View Text Solution

10. K_{p} is always equal to K_{c} if Δn_{g} is \qquad

- Watch Video Solution

Match The Columns

Column- I
Column-II
A) $\mathrm{Na}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta \mathrm{H}=-$ ve
P) K increases with increase in temp
B) $2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g}): \Delta \mathrm{II}=+\mathrm{ve}$
Q) K decreases wilh increase in temperature
C) $\mathrm{X}(\mathrm{g}) \rightleftharpoons 2 \mathrm{Y}(\mathrm{g}) \Delta \mathrm{H}=+\mathrm{ve}$
R) Pressure has no effect
D) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2} ; \Delta \mathrm{H}=+\mathrm{ve}$
1.
S) Product moles increases due to addition of inert gast at constant pressure.

D View Text Solution

Coloumn-I

A) Salt of weak acid and weak base
B) Salt of weak Acid and strong Base
C) Salt ol strong acid and strong hase
D) Salt ol strong actd and weak base

Column-II

P) $\mathrm{pHI}=1 / 2\left(\mathrm{pK}_{w}+\mathrm{pK}_{4}+\log _{\mathrm{c}}\right)$
Q) $\mathrm{pII}=1 / 2\left(\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{k}}-\mathrm{pk}_{\mathrm{h}}\right)$
R) $\mathrm{pl}=1 / 2\left(\mathrm{pK}_{\mathrm{w}}-\mathrm{pK}_{\mathrm{l}}-\log _{\mathrm{s}}\right)$
s) $\mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{w}}\right)$
2.

- View Text Solution

Assertion Reason Type Question

1. Assertion (A): The endothermic reactions are favoured at lower temperature and the exothermic reactions are favoured at higher temperature.

Reason (R) : when a system in equilibrium is disturbed by changing the temperature, it will tend to adjust itself so as to overcome the effect of the change.
A. If both the statements are true and statement -2 is the correct explanation of statement-I
B. If both the statements are true but statement-2 is not the correct
explanation of statement-I
C. If statement-I is true and statement-2 is false
D. If statement-I is false and statement-2 is true.

Answer: D

- Watch Video Solution

2. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: The melting point of ice decreases with increase of pressure.

STATEMENT-2: Ice contracts on melting .
A. If both the statements are true and statement -2 is the correct explanation of statement-I
B. If both the statements are true but statement-2 is not the correct explanation of statement-I
C. If statement-I is true and statement-2 is false
D. If statement-I is false and statement-2 is true.

Answer: A

- Watch Video Solution

3. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1:The gas phase reaction $P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$ shifts to the right on increasing pressure.

STATEMENT-2: When pressure increase, equilibrium shifts towards more number of moles.
A. If both the statements are true and statement -2 is the correct explanation of statement-I
B. If both the statements are true but statement-2 is not the correct explanation of statement-I
C. If statement-I is true and statement-2 is false
D. If statement-I is false and statement-2 is true.

Answer: C

- Watch Video Solution

4. Assertion (A) : The equilibrium is not static but a dynamic one.

Reason (R) : The chemical equilibrium is an apparent state of rest in which two opposing reactions are proceeding at the same rate.
A. If both the statements are true and statement -2 is the correct explanation of statement-I
B. If both the statements are true but statement-2 is not the correct explanation of statement-I
C. If statement-I is true and statement-2 is false
D. If statement-I is false and statement-2 is true.

Answer: A

- Watch Video Solution

5. Statement-1 : The catalyst does not affect the equilibrium constant.

Statement-2 : Because for the catalysed reaction and uncatalysed reaction ΔH remains same and equilibrium constant depends on ΔH.
A. If both the statements are true and statement -2 is the correct explanation of statement-I
B. If both the statements are true but statement-2 is not the correct explanation of statement-I
C. If statement-I is true and statement-2 is false
D. If statement-I is false and statement-2 is true.

Answer: A

- Watch Video Solution

6. Statement-1 : If water is heated to $50^{\circ} \mathrm{C}$, the pH will increase.

Statement-2 : K_{w} increases with increase in temperature.
A. If both the statements are true and statement -2 is the correct explanation of statement-I
B. If both the statements are true but statement- 2 is not the correct explanation of statement-I
C. If statement-I is true and statement-2 is false
D. If statement-I is false and statement-2 is true.

Answer: D

- Watch Video Solution

7. Statement-1: Addition of $\mathrm{HCl}(\mathrm{aq})$. to $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$. decrease the ionisation of $\mathrm{CH}_{3} \mathrm{COOH}$ (aq).

Statement-2 : Due to common ion effect H^{+}, ionisation of $\mathrm{CH}_{3} \mathrm{COOH}$ decreases.
A. If both the statements are true and statement -2 is the correct explanation of statement-1
B. If both the statements are true but statement-2 is not the correct explanation of statement-।
C. If statement-I is true and statement-2 is false
D. If statement-I is false and statement-2 is true.

D View Text Solution

8. Statement-1: Sparingly soluble salts AB and $X Y_{2}$ with the same solubility product, will have different solubility.

Statement 2: Solubility of sparingly soluble salts depends upon solubility product.
A. If both the statements are true and statement -2 is the correct explanation of statement-I
B. If both the statements are true but statement- 2 is not the correct explanation of statement-I
C. If statement-I is true and statement-2 is false
D. If statement-I is false and statement-2 is true.

Answer: B

9. Statement-1 : The ionisation constants of weak diprotic acid are in the order of $K a_{1}>K a$.

Statement-2 : Removal of H^{+}from anion is difficult as compared to neutral atom.
A. If both the statements are true and statement -2 is the correct explanation of statement-I
B. If both the statements are true but statement-2 is not the correct explanation of statement-।
C. If statement-I is true and statement-2 is false
D. If statement-l is false and statement-2 is true.

Answer: A

10. Assertion : In a titration of weak monoprotic acid with strong base, the $p H$ at the half equivalent point is $p K_{a}$.

Reason : At half equivalence point, it will form acidic buffer at its maximum capacity where [acid] $=[$ salt $]$.
A. If both the statements are true and statement -2 is the correct explanation of statement-1
B. If both the statements are true but statement-2 is not the correct explanation of statement-।
C. If statement-I is true and statement-2 is false
D. If statement-I is false and statement-2 is true.

Answer: A

- Watch Video Solution

1. What is sum of $p H+p O H$ at $25^{\circ} C$?

- Watch Video Solution

2. Write the Henderson Hasselbalch equation for acidic buffer

- Watch Video Solution

3. How is degree of dissociation related with concentration terms and Ka , for weak electrolyte.

- View Text Solution

4. How NH_{3} is defined as Lewis base?
5. How are K_{p} and K_{c} related ?

- View Text Solution

6. How does K affected for endothermic reaction if temperature is increased?

- View Text Solution

7. What is the effect of catalyst on K ?

- Watch Video Solution

8. How is pH scale affected by increasing temperature?

- Watch Video Solution

9. What is the conjugate base of HCO_{3}^{-}?

- Watch Video Solution

10. What is the nature of $\mathrm{CH}_{3} \mathrm{COOH}$ in conc. HCl solution?

- View Text Solution

1 Mark Questions

1. Define physical equilibrium. Give an example also.

- Watch Video Solution

2. Why is there a fizz when a soda water bottle is opened?
3. In a reversible reaction, two substances are in equilibrium. If the concentration of each one is reduced to half, the equilibrium constant will be

- Watch Video Solution

4. Write the expression for equilibrium constant K_{p} for the reaction,
$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$.

- Watch Video Solution

5. Classify the equilibrium as homogeneous or heterogeneous :
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q) .+\mathrm{H}_{2} \mathrm{O}(1) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q) .+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)$.

- Watch Video Solution

6. Discuss the position of equilibrium if the following reaction is carried out in the presence of catalyst.
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

- Watch Video Solution

7. pH of black coffee is 5.0 at $25^{\circ} \mathrm{C}$. Is black coffee acidic or basic ?

- View Text Solution

8. Arrange the following in increasing acidic strength $H C l, H B r, H F, H I$

- View Text Solution

9. Arrange the following in increasing Lewis base strange
$\mathrm{NH}_{3}, \mathrm{BiH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}, \mathrm{SbH}_{3}$
10. Arrange following in increasing pH value
$0.1 \mathrm{MCH}_{3} \mathrm{COOH}, 0.1 \mathrm{MNaCl}, 0.1 \mathrm{MHCl}, 0.1 \mathrm{MNaOH}, 0.1 M \mathrm{NH}_{4} \mathrm{OH}$

- View Text Solution

11. Arrange following in increasing order of degree of hydrolysis.
$0.1 \mathrm{MNH}_{4} \mathrm{OH}, 0.01 \mathrm{MNH}_{4} \mathrm{OH}, 10^{-5} \mathrm{MNH}_{4} \mathrm{OH}, 10^{-3} \mathrm{MNH} 4 \mathrm{OH}, 10^{-6} \mathrm{M}$

- View Text Solution

12. Arrange following in increasing order of acidic strengh $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HCOOH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{COOH}$

- View Text Solution

13. Arrange following in increasing order of basic strength in gas phase $\mathrm{NH}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{NH}_{2}$
14. Arrange the following pkb in increasing order

- View Text Solution

15. Arrange the basic strength of following
$F^{-}, B r^{-}, C 1^{-}, I^{-}$

- View Text Solution

16. Arrange the following in increasing base strength

$$
\mathrm{CH}_{3}^{-}, \mathrm{NH}_{2}^{+}, \mathrm{OH}^{-}, \mathrm{F}^{-}
$$

- View Text Solution

2 Mark Questions

1. The standard Gibbs energy change at 300 k for the reaction $2 A \Leftrightarrow B+C$ is $2494.2 J$. At a given temperature, and time. the composition of the reaction mixture is $[A]=1 / 2,[B]=2,[C]=1 / 2$.

The reaction proceed in the

$$
(R=8.314 \mathrm{~J} / \mathrm{K} \mathrm{~mol},=2.718)
$$

2. The equilibrium constant for
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ is K , then calculate equilibrium constant for $1 / 2 N_{2}(g)+1 / 2 O_{2}(g) \Leftrightarrow N O(g)$.

- View Text Solution

3. For the reversible reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$ at $500^{\circ} \mathrm{C}$, the value of Kp is $1.44 \times 10^{-5} \mathrm{~atm}^{-2}$. Find the K_{c} value.

- View Text Solution

4. The equilibrium constant at 298 K for the reaction $A+B \Leftrightarrow C+D$ is 100 If the initial concentration of all the four species were 1 M each, then equilibrium concentration of D will be
5. For the reaction
$\mathrm{NH}_{4} \mathrm{COONH}_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)$
If equilibrium pressure is 3 atm. Find the value of Kp

- View Text Solution

6. A buffer solution with pH 9 is to be prepared by mixing $\mathrm{NH}_{4} \mathrm{Cl}$ that should be added to one litre of
$1.0 \mathrm{mNH}_{4} \mathrm{OH} k b 1.8 \times 10^{-5}$

- View Text Solution

7. Calculate the solubility of silver chloride in water at room temperature if the $K_{s p}$ of AgCl is 1.6×10^{-10}

- View Text Solution

8. Calculate the molar solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 0.10 mNaOH . The ionic product of $\mathrm{Ni}(\mathrm{OH})_{2}$ is 2.0×10^{-15}.

- View Text Solution

9. Calculate the pH of $10^{-8} \mathrm{M} \mathrm{HCl}$ solution.

- View Text Solution

10. How many grams of NaOH must be dissolved in IL of the solution to give it a pH value of L^{2} ?

- View Text Solution

3 Mark Questions

1. The equilibrium constant for the reaction $H_{2}(g)+B r_{2}(g) \Leftrightarrow 2 H B r(g)$ at $1024 K$ is 1.6×10^{5}. Find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at 1024 K .

- View Text Solution

2. For the reaction $2 \mathrm{BrCl} \Leftrightarrow \mathrm{Br}_{2}(g)+C l_{2}(g) K_{c}$ is 32 at 500 K . If initially pure BrCl is present at a concentration of 3.30×10^{-3}, M , what is its molar concentration in the mixture at equilibrium?

- View Text Solution

3. What is the equilibrium constant K_{p} and K_{c} for the reaction $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ if the pressure is 1.0 atm in $8.0 L$ container at equilibrium.
4. The K_{p} for the reaction, $N_{2} O_{4}(g) \Leftrightarrow \mathrm{NO}_{2}(g)$ is 640 mm at 775 K .

Calculate the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium pressure of 160 mm . At what pressure the dissociation will be 50%.

- View Text Solution

5. Show that degree of dissociation (α) for the dissociation of $P C l_{5}$ into $P C l_{3}$ and $C l_{2}$ at pressure P is given by $\alpha=\left[\frac{k p}{P+k p}\right]^{1 / 2}$

- Watch Video Solution

6. How much of $0.3 \mathrm{MNH}_{4}$ should be mixed with 30 mL of $\mathrm{NH}_{4} \mathrm{Cl}$ to give a buffer solution of $p H 10 . p k_{b}$ for $\mathrm{NH}_{4} \mathrm{OH}$ is 4.75 .

- View Text Solution

7. Predict whether a precipitate will be formed or not on mixing 20 mL of 20 mL of 0.001 NNaCl solution with 80 mL of $0.01 \mathrm{MAgNO}_{3}$ solution. $K_{s p}$ for $A g C l$ is 1.5×10^{-10}.

- View Text Solution

8. The values of Ksp of two sparingly soluble salts $N i(O H)_{2}$ and AgCN are 2.0×10^{-15} and 6.0×10^{-17} respectively. Which salt is more soluble. Explain

- Watch Video Solution

9. The ionization constant of propanoic acid is 1.32×10^{-15}. Calculate the degree of ionization if its solution is 0.05 M . What will be its degree of ionization if the solution is 0.01 M in HCl solution.

- View Text Solution

10. Calculate the pH of a solution obtained by mixing 50 ml of 0.2 M HCl with 49.9 mL of 0.2 m NaOH solution.

- Watch Video Solution

Hots Questions

1. The molar solubility of $\mathrm{Cd}(\mathrm{OH})_{2}$ is $1.84 \times 10^{-5} \mathrm{M}$. Calculate the expected solubility of $\mathrm{Cd}(\mathrm{OH})_{2}$ in a buffer solution of $\mathrm{pH}=12$.

- View Text Solution

2. An aqueous solution contains an unknown concentration of Ba^{2+}. When 50 ml of a 1 M solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is added. BaSO_{4} just begins to precipitate. The final volume is 500 ml . The solubility product of BaSO_{4} is 1×10^{-10} Find the original concentration.
3. An aqueous solution contains 0.10 M H 2 S and 0.20 M HCl . If the equilibrium constants for the formation of HS^{-}from $H_{2} S$ is 1.0×10^{-7} and that of S^{2-} from $4 S^{-}$ions is 1.2×10^{-13} , then find the concentration of S^{-2} ions in aqueous solution

- View Text Solution

4. How many litres of water must be added to 1 litre of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2 ?

- View Text Solution

5. A certain buffer solution contains equal concentration of X^{-}and $H X$.The K_{b} for X^{-}is 10^{-10}. Find the pH of the buffer .

- View Text Solution

6. The \% yield of Ammonia as a function of time in the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H<O$ at $\quad(P, T)$ is given below:

Time

If this reaction is conducted at $T_{2}>T_{1}$, then plot the \% yield of NH_{3} as a function of time on same graph

- View Text Solution

7. Consider the reaction $\mathrm{NH}_{4} \mathrm{COONH}_{2}(s) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)$ at a certain temperature, the equilibrium pressure of the system is 0.318 atm .

Find K_{p} of the decomposition of ammonium carbonate.
8. The equilibrium constant for the reaction $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ is 5 . How many moles of CO_{2} must be added to 1 litre container already containing 3 moles each of CO and $\mathrm{H}_{2} \mathrm{O}$ to make 2 M equilibrium concentration of CO ?

- View Text Solution

9. At constant temperature, the equilibrium constant K_{p}
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$ is given by
$k_{p}=\frac{4 x^{2} P}{1-x}$ were, $\mathrm{P}=$ Pressure and $\mathrm{X}=$ Extent of reaction
How does the value of K_{p} change on following changes
(a) 'P' increases
(b) X changes
(c) ' P ' decreases

- View Text Solution

10. When two reactants A and B are mixed to give product ' c ' and ' p ' the reaction quotient ' Q ' at the initial stages of the reaction will be?

View Text Solution

Unit Test

1. What is the $p H 10^{-3} \mathrm{M} \mathrm{HCl}$ solution ?
A. 1
B. 11
C. 3
D. 14

Answer: C

- Watch Video Solution

2. Write the conjugate base of $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$.

- Watch Video Solution

3. What is the nature of following reaction

Exothermic or endothermic
$A+B-70 J \rightarrow C$

- Watch Video Solution

4. The
pKa of
$\mathrm{CH}_{3} \mathrm{COOH}$ and pKb of $\mathrm{NH}_{4} \mathrm{OH}$ are 4.76 and 4.75 respectively. Calculate the pH of $\mathrm{CH}_{3} \mathrm{COONH}_{4}$.

- Watch Video Solution

5. Calculate the molar solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 0.1 M KOH solution . The $K_{s p}$ for $\mathrm{Ni}(\mathrm{OH})_{2}$ is 2.0×10^{-15}.
6. Ionization constant of Benzoic acid is 6.46×10^{-5} and $K_{s p}$ for silver benzoate is 2.5×10^{-13}. How many times is silver benzoate more soluble in buffer of pH 3.19 compared to its solubility in pure water

$$
\left[H^{+}\right]=6.46 \times 10^{-4}
$$

- Watch Video Solution

