©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CBSE COMPLEMENTARY MATERIAL CHEMISTRY (HINGLISH)

STRUCTURE OF ATOM

Multiple Choice Questions Mcq

1. What is the packet of enegry called?
A. Electron
B. Photon
C. Position
D. Proton

Answer: B

- Watch Video Solution

2. Orbital which is not possible
A. $2 p$
B. 3d
C. 3 s
D. $3 f$

Answer: D

D Watch Video Solution

3. The magnetic quantum number of an atom is releted to the
A. size of the orbital

B. spin angular momentum

C. orbital angular momentum

D. orientation of the orbital in space

Answer: D

D Watch Video Solution

4. The principal quantum number of an atom is related to the
A. size of the orbital

B. spin angular momentum

C. orbital angular momentum

D. orientation of the orbital in Space

Answer: A

D Watch Video Solution

5. The designation of a sub-shell with $n=4$
and $l=3$ is
A. 4 s
B. 4 p
C. 4 d
D. 4 f

Answer: D

- Watch Video Solution

6. What transition in the hydrogen spectrum
would have the same wavelength as the Balmer transition $n=4$ to $n=2$ of He^{+} spectrum?
A. $n=4$ to $n=1$
B. $n=3$ to $n=2$
C. $n=3$ to $n=1$
D. $n=2$ to $n=1$

Answer: D

D Watch Video Solution

7. The wave number of the first line of Balmer series of hydrogen is $15200 \mathrm{~cm}^{-1}$ The wave number of the first Balmer line of $L i^{2+}$ ion is
A. $15200 \mathrm{~cm}^{-1}$
B. $60800 \mathrm{~cm}^{-1}$
C. $76000 \mathrm{~cm}^{-1}$
D. $136,800 \mathrm{~cm}^{-1}$

Answer: D

D Watch Video Solution

8. An electron is moving in Bohr's fourth orbit.

Its de Broglie wavelength is λ. What is the circumference of the fourth orbit?
A. $2 / \lambda$
B. 2λ
C. 3λ
D. $3 / \lambda$

Answer: C

D Watch Video Solution
9. Which of the following statement is correct in relation to the hydrogen atom :
A. 3s-orbital is lower in energy than 3porbital
B. 3p-orbital is lower in energy than 3-dorbital
C. 3 s and 3 p orbitals all have the same
energy

D. $3 \mathrm{~s}, 3 \mathrm{p}$ and 3 d orbitals all have the same

energy

Answer: D

10. For principle quantum number $n=4$,the total number of orbitals having $\mathrm{l}=3$ is
A. 3
B. 7
C. 5
D. 9

Answer: B
11. The number of d-electron retained in $F e^{2}$ (At no. of $\left.F e=26\right)$ ion is.
A. 3
B. 4
C. 5
D. 6

Answer: D

D Watch Video Solution
12. Pauli exclusion principle helps to calculate the maximum number of electrons that can be accommodated in any
A. orbital
B. subshell
C. shell
D. All of these

Answer: A

1. Bohr's theory is based on ___ of radiation.
(Watch Video Solution
2. The angular momentum of the electron in
the 4th energy shell in the hydrogen atom is
3. Lines of Balmer series appear in
region.

- Watch Video Solution

4. The maximum number of electrons in $F e^{3+}$
(At. No. 26) is \qquad

- Watch Video Solution

5. Li^{2+} and $\mathrm{He}{ }^{+}$ions have spectrum similar to atom.

D Watch Video Solution
6. Bohr's atomic theory is not able to explain
the atomic spectra of atoms containing electron.

D Watch Video Solution
7. An electron in the first shell will have stability and ____-_ energy than an electron in the third shell.

- Watch Video Solution

8. The space or three-dimensional region round the nucleus where there is maximum probability of finding an electron of specific energy is called an
9. According to ___ no two electrons in an atom will have all the four quantum numbers

D Watch Video Solution

10. When there are two electron is the same orbitals , they havespins.
11. The s-subhells have shape and the p subshells have

D Watch Video Solution

12. The maximum number of electrons on a

subshell is equal to where I =

D Watch Video Solution

True And False Type Questions

1. State whether the statement is true or false
.Bohr's theory cannot explain the spectra of multi-electron atoms.

- Watch Video Solution

2. Bohr's theory based on the Planck's quantum theory.

- Watch Video Solution

3. Size of orbital is determined by principal quantum number.

- Watch Video Solution

4. Fe^{2+} ion has more number of unpaired electrons than $F e^{3+}$.

- Watch Video Solution

5. The outer electronic configuration of chromium atom is $3 d^{4} 4 s^{2}$

D Watch Video Solution
6. The designation of an orbital $\mathrm{n}=4$ and $\mathrm{I}=0$ is

4s.

- Watch Video Solution

7. All photons of light have same energy.

- Watch Video Solution

8. $F e^{3+} h a s 3 d^{5}$ configuration

- Watch Video Solution

9. The number of subshells is always equal to
the order of the orbit.

- Watch Video Solution

10. Two electrons in the same orbital has antiparallel spin.

- Watch Video Solution

11. The second orbit in He^{+}ion has radius as
the first orbit in hydrogen atom.

- Watch Video Solution

12. Heisenberg principle is applicable to microscopic particles.

- Watch Video Solution

13. 3 s orbital has 2 radial nodes

- Watch Video Solution

Match The Columns

1. Match the following

List-I

a. Iyman series
b. Balmer series
c. Paschen series
d. Brackett series

List-II

p. Visible region
q. Infrared region

1. Absorption spectrum
s. Ultraviolet region

- Watch Video Solution

2. Match the following

List-I

a. Principal quantum number
b. Azimuthal quantum number
c. Magnetic quantum number
d. Spin quantum number

List-II

p. Spin of electrons
q. Size of orbital
r. Orientation of the orbital
s. Shape of the orbital

3. Match the following

List-I
a. 2 s
b. $2 p_{x}$
c. $3 \mathrm{~d}_{\mathrm{xy}}$
d. $3 \mathrm{~d}_{z^{2}}$

List-II

p. Dough not shape
q. Spherical
r. Dumb bell
s. Double dumb bell

(Watch Video Solution

4. Match the following

List-I
a. 2 s
b. ψ^{2}
c. Heisenberg's uncertainty
d. $3 \mathrm{~d}_{\mathrm{yz}}$

List-II
p. Two nodal planes
q. One radial node
r. Electron probability density principle
s. Microscopic particles

1. Assertion : Number of orbitals in 3rd shell is
2.

Reason : Number of orbitals for a particular value of $n=n^{2}$.
A. If both Assertion \& Reason are true and
the reason is the correct explanation of
the assertion.
B. If both Assertion \& Reason are true but
the reason is not the correct explanation
of the assertion.
C. If Assertion is true statement but

Reason is false.
D. If both Assertion and Reason are false
statements.

Answer: A

- Watch Video Solution

2. Assertion : Two nodal planes are present in
$3 d_{x y}$.

Reason : Number of nodal planes $=1$
A. If both Assertion \& Reason are true and
the reason is the correct explanation of
the assertion.
B. If both Assertion \& Reason are true but
the reason is not the correct explanation
of the assertion.
C. If Assertion is true statement but

Reason is false.
D. If both Assertion and Reason are false statements.

Answer: C

D Watch Video Solution
3. Assertion : The energy of an electron is mainly determined by principal quantum number.

Reason : The principal quantum number is the measure of the most probable distance of finding the electron around the nucleus.
A. If both Assertion \& Reason are true and
the reason is the correct explanation of
the assertion.
B. If both Assertion \& Reason are true but
the reason is not the correct explanation
of the assertion.
C. If Assertion is true statement but

Reason is false.
D. If both Assertion and Reason are false statements.

Answer: A

D Watch Video Solution

4. Assertion : An orbital cannot have more
than two electrons, moreover, if an orbital has two electrons they must have opposite spins.

Reason : No two electrons in an atom can have same set of all the four quantum numbers.
A. If both Assertion \& Reason are true and
the reason is the correct explanation of
the assertion.
B. If both Assertion \& Reason are true but
the reason is not the correct explanation
of the assertion.
C. If Assertion is true statement but

Reason is false.
D. If both Assertion and Reason are false statements.

Answer: A

- Watch Video Solution

One Word Answer Type Questions

1. Write the name of the theory which explain
the wave nature of light.
2. Write the name of the theory which explain the Black body radiations and photo electric effect

- Watch Video Solution

3. If the length of the crest of a wave is 4 pm .

Write the wavelength of this wave.
4. A radiation emitted from a hot iron is photon or quantum?

D Watch Video Solution

5. Which d-orbital does not have four lobes?

D Watch Video Solution

6. What is the lowest value of n that allows g orbitals to exist?
7. The quantum number not obtained from the schrodinger's wave equation is

- Watch Video Solution

8. Define Aufbau principle. Which of the following orbitals are possible ? $1 \mathrm{p}, 2 \mathrm{~s}, 2 \mathrm{p}$ and 3 f .

9. Write the name of non-directional subshell.

- Watch Video Solution

10. Write the name of quantum number which determines the orientation of orbitals ?

- Watch Video Solution

11. Write the name of quantum number which
determines the shape of orbitals.

- Watch Video Solution

12. How many orbitals are present in gsubshell?

- Watch Video Solution

1 Mark Questions

1. Write the relation between frequency and wave number.

Watch Video Solution

2. Cs shows maximum photoelectric effect, why
?

- Watch Video Solution

3. Distinguish between a photon and quantum.
4. Why line spectra is regarded as the fingerprints of atoms?

D Watch Video Solution

5. What is the value of the Bohr's radius for the third orbit of hydrogen atom?

- Watch Video Solution

6. What type of metals are used in photoelectric cells ? Give one example.
7. Which series of lines of the hydrogen spectrum lie in the visible region'?

- Watch Video Solution

8. Mention the physical significance of Ψ and Ψ^{2}
9. Why did Heisenberg's uncertainty principle replace the concept of definite orbit by the concept of probability?

- Watch Video Solution

10. What is uncertain in uncertainty principle?

- Watch Video Solution

11. Can a moving cricket ball have a wave character?

D Watch Video Solution
12. Heisenberg uncertainty principle has no significance in our every day life. Explain.

- Watch Video Solution

13. Write the Schrodinger wave equation.

- Watch Video Solution

14. Why uncertainty in position is more when uncertainty in velocity is less for an electron?

- Watch Video Solution

15. What are the four quantum numbers of 19th electron of copper ? (Given : Atomic number of copper $=29$)

-

16. a. How many sub-shell are associated with
$n=4 ?$
b. How many electron will be present in the sub-shell having m_{s} value of $-1 / 2$ for $n=4$?

- Watch Video Solution

17. Write the electronic configuration of $N i^{3+}$.
(At. No. of $\mathrm{Ni}=28$)
18. How many radial and angular nodes are present in 2 p orbital.

D Watch Video Solution

2 Mark Questions

1. Define black body and black body radiations.
2. What transition in the hydrogen spectrum would have the same wavelength as the Balmer transition $n=4$ to $n=2$ of He^{+} spectrum?

D Watch Video Solution

3. What transition of $L i^{+2}$ spectrum will have
same wavelength as that of second line of Balmer series in He^{+}spectrum ?
4. Calcultte the enrgy required for the process

$$
H e^{+}(g) \rightarrow H e^{2+}(g)+e
$$

The ionization energy for the H -atom in the grounds state is $2.18 \times 10^{-18} \mathrm{Jatom}^{-1}$.

- Watch Video Solution

5. Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.
6. To which orbit the electron in H atom will jump on absorbing 12.1 eV energy ?

- Watch Video Solution

7. Calculate the energy associated with the first orbit of He^{+}. What is the radius of this orbit?

- View Text Solution

8. What is the distance of separation between 3rd and 4th orbit of H -atom ?

D Watch Video Solution

9. The energy of the electron in the ground state of H -atom is -13.6 eV . The energy of the first excited state will be
10. Calculate the number of protons emitted in

10 hours by a 60 W sodium lamp emitting radiations of wavelength $6000 \AA$.

- Watch Video Solution

11. Which has a higher energy, a photon of violet light with wavelength 4000 Ã... or a photon of red light with wavelength 7000Ã...? [$\left.h=6.62 \times 10^{-34} J s\right]$
12. A 100 watt bulb emits monochromatic light of wavelength 400 nm . Calculate the number of photons emitted per second by the bulb.

- Watch Video Solution

13. What are the maximum number of emission lines when the excited electron of a H atom in $\mathrm{n}=4$ drops to the ground state ?

- Watch Video Solution

14. Which has more energy, light radiation of wavelength 400 pm or light radiation of frequency $10^{15} \mathrm{~Hz}$?

- Watch Video Solution

15. Find the energy of electron in 4th shell of $L i^{2+}$ ion.

- Watch Video Solution

16. What is the wave number of an electron with shortest wavelength radiation in Lyman spectrum of He^{+}ion?

- Watch Video Solution

17. Write short note on :

Continuous and discontinuous spectrum.

- Watch Video Solution

18. Write short note on :

Absorbtion and emission spectrum.

D Watch Video Solution

19. Calculate the mass of a photon with wavelength $3.6 \AA$.

- Watch Video Solution

20. Calculate the mass of the photon with wavelength of 5 pm .

D Watch Video Solution

21. On the basis of uncertainty principle show that an electron cannot exist with in atomic nucleus. (Given : Nuclear radius $=10^{-15} \mathrm{~m}$)

D Watch Video Solution

22. The effect of uncertainty principle is significant only for motion of microscopic particles and is negligible for the macroscopic particles. Justify the statement with the help of a suitable example.

D Watch Video Solution

23. What is the difference between the terms orbit and orbital?
24. Show that the circumference of the Bohr orbit for the hydrogen atom is an integral multiple of the de Broglie wavelength associated with the electron revolving around the orbit.

- Watch Video Solution

25. Comment on "Bohr's model is against the

Heisenberg uncertainty principle".
26. What are the similarities and difference in

2 s and $2 p_{x}$ orbitals and 1 s and 2 s orbitals?

- Watch Video Solution

27. Draw shape of $d_{x^{2}-y^{2}}$ orbital.
(D) Watch Video Solution
28. With the help of Pauli's exclusion principle and the concept of atomic numbers for orbtials, show that an M shell can not accommodate more than 18 electrons.

- Watch Video Solution

29. Designate each subshell with $\mathrm{n}=4$.

- Watch Video Solution

30. List the possible values for all the quantum numbers for the following subshell.
(a) $2 p(b) 4 f$

- Watch Video Solution

31. Write down the electronic configuration of
$F e^{3+}$ and Ni^{2+}. How many unpaired electrons are present? (Given Atomic number,
$\mathrm{Fe}=26, \mathrm{Ni}=28)$.
32. Out of principal, angular, magnetic and spin quantum number, which quantum number determines the?
(a) Shape of the orbital
(b) Number of orbitals in an orbit
(c) Size of the orbital
(d) Spin orientation of the electron.

- Watch Video Solution

33. What is Hund's rule of maximum multiplicity ? Explain by taking example of nitrogen.

- Watch Video Solution

34. Explain why :
(i) The three electrons present in $2 p$ sub-shell of nitrogen remain unpaired.
(ii) In potassium , the $19^{\text {th }}$ electron enters 4 s sub-shell instead of 3d sub-shell.
(iii) Chromium has configuration $3 d^{5} 4 s^{1}$ and not $3 d^{4} 4 s^{2}$.

D Watch Video Solution

35. Chromium has the electronic configuration

 $4 s^{1} 3 d^{5}$ rather than $4 s^{2} 3 d^{4}$ because
- Watch Video Solution

36. What is the difference between the notations I and L ?
37. Nitrogen has 7 proton, 7 electron and 7 neutrons. Calculate the number of electron, protons and neutrons in N^{3-} ion.

- Watch Video Solution

38. Which one is having higher energy ?
(a) Last electron of Cl^{-}or last electron of
O^{2-}

Watch Video Solution

3 Marks Questions

1. The energy associated with the first orbit in
the hydrogen atom
$-2.18 \times 10^{-18} \mathrm{~J}$ atom $^{-1}$. What is the energy associated with the fourth orbit?
2. From the given data calculate the radius of the third orbit of a hydrogen atom.

D Watch Video Solution

3. A bulb emits light of wavelength $4500 \AA$.The bulb is rated as 150 W and 8% of the energy
is emmitted as light. How many photons are emitted by the bulb per second?

- Watch Video Solution

4. When light with a wavelength of 400 nm falls on the surface of sodium, electrons with a kinetic energy of $1.05 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$ are emitted.

What is the minimum energy needed to remove an electron from sodium ?

D Watch Video Solution

5. When light with a wavelength of 400 nm
falls on the surface of sodium, electrons with
a kinetic energy of $1.05 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$ are
emitted.

What is the maximum wavelength of light that will cause a photoelectron to be emitted ?

- Watch Video Solution

6. Calculate the number of waves by a Bohr electron in one complete revolution in its third orbit.
7. What should be the ratio of the velocities of
CH_{4} and O_{2} molecules so that they are associated with de Broglie waves of equal wavelength?

- Watch Video Solution

8. Calculate the wavelength of an electron that
has been accelerated in a particle accelerator through a potential difference of 1 kv . $\left[\right.$ Given $\left.1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right]$
9. (i) Discuss the similarities and differences between a 1 s and 2 s orbital.
(ii) Draw the shape of $d_{z^{2}}$.

- Watch Video Solution

10. Calculate the wavelength of a tennis ball of mass 60 gm moving with a velocity of 10 m per second. $\left(h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right)$
11. Calculate the wavelength of 1000 kg rocket moving with a velocity of $3000 \mathrm{~km} / \mathrm{hr}$. $\left(h=6.626 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right)$

- Watch Video Solution

12. Calculate the uncertain it in the velocity of
a cricket ball of mass 150 g , if uncertainity in
its position is of the order of $1 \AA$.
13. (a) What is de-Broglie wavelength for an electron moving with velocity of light?
(b) What is the angular momentum of electron in 5th shell?

D Watch Video Solution

14. Two particle A and B have wavelength
$\lambda_{A}=5 \times 10^{-10} \mathrm{~m}$ and $\lambda_{B}=10 \times 10^{10} \mathrm{~m}$.
Find their frequency , wave number and
energies. Which has more penetrating power and why?

D Watch Video Solution

15. (a) Which has max. uncertainty regarding positin and why ? Electron, proton and neutron.
(b) Find the number of waves associated with a light radiation of time period 5 ns .

- Watch Video Solution

16. (a) Write the maximum number of electron in a subshell with $\mathrm{I}=3$ and $\mathrm{n}=4$.
(b) Write the maximum number of electron that can be associated with the following set of quantum numbers ? $\mathrm{n}=3,1=1$ and $m_{l}=-1$
(c) Write the maximum number of electron
that can be accomodated in an atom in which
the highest principal quantum number value is 4 .
17. i. Write the electronic conifigurations of the following ions:
a. H^{Θ}, b. $N a^{\oplus}$, c. O^{2-}, d. F^{Θ}
ii. What are the atomic numbers of elements
whose outermost electrons are represented by
a. $3 s^{1}$, b. $2 p^{3}$, c. $3 p^{5}$?
iii. Which atoms are indicated by the following configurations?
a. $[H e] 2 s^{1}$, b. $[N e] 3 s^{2} 3 p^{3}$, c. $[A r] 4 s^{2} 3 d^{1}$

Watch Video Solution

18. Calculate :

(a) Total number of spherical nodes in $3 p$ orbital.
(b) Total number of nodal planes in $3 p$ orbital.
(c) Nodal planes in 3d orbital.

- Watch Video Solution

5 Marks Questions

1. (a) Define Photoelectric effect? Mention its one practical application in daily life.
(b) Electrons are emitted with zero velocity from a mental surface when it is exposed to radiation of wavelength 6800 Å. Calculate thresholds freqency (V_{o}) and work function (W_{o}) of the mental.
2. (a) The electronic in Bohr's orbit is negative.

How will you account for it ?
(b) The ionisation energy of hydrogen atom is
13.6 eV . What will be the energy of the first orbit of He^{+}and Li^{2+} ions are ?

D View Text Solution

3. (a) Define the following terms:
(i) Threshold frequency (ii) Work function.
(b) The work function for Cs atom is 1.9 eV .

Find threshold wavelength $\left(\lambda_{0}\right)$ and threshold frequency $\left(v_{0}\right)$ of this light radiation. If Cs metal is irradiated with a radiation of wavelength 500 nm find kinetic energy and velocity of emitted electron.

D Watch Video Solution

4. (a) State de Broglie equation . Write its significance .
(b) A beam of helium atoms moves with a
velocity of $2.0 \times 10^{3} \mathrm{~ms}^{-1}$. Find the
wavelength of the particle constituting the beam.
$\left(h=6.626 \times 10^{-34} J s\right)$

D Watch Video Solution

5. (a) State Heisenbergs uncertainty principle.

Give its mathematical expression. Also give its
significance.
(b) Calculate the uncertainity in the position of a dust particle with mass equal to 1 mg if
the uncertainity in its velocity is $5.5 \times 10^{-20} m s^{-1}$.

D Watch Video Solution

6. (a) Write short notes on: (i) Aufbau principle
(ii) Pauli's principle (iii) Hund's rule.
(b) Write the electronic configuration of the following ions :
(i) Fe^{3+} (ii) $\mathrm{Cu}{ }^{+}$[Given Atomic number of Fe and Cu are 26 \& 29]
7. (a) Draw the shapes of the following orbitals.
(i) $3 d_{x y}$ (ii) $d_{x^{2}}$

What is the total number of orbitals associated with the principal quantum number $\mathrm{n}=3$?
(c) Using s,p,d,f notations , describe the orbital with the following quantum numbers :-
8. (a) A neutral atoms has $2 \mathrm{~K}, 8 \mathrm{~L}$ and 15 M electrons. Find the total numbers of electrons in s, p, d and f subshell.
(b) How many unpaired electrons are present in the following ions:
$\mathrm{Al}^{+}, \mathrm{Cr}^{2+}, \mathrm{Co}^{3+}$ and Mn^{2+}
(Given Atomic number : $\mathrm{Al}=13, \mathrm{Cr}=24, \mathrm{Co}=27 \&$
$M n=25$)
(c)One electron is present in 4 f subshell. What
is the sum $n+l+m_{1}+m_{s}$ values assuming
'f' subshell follows -3 to +3 order of filling electron .

- Watch Video Solution

9. Answer the following :
(a) $n+I$ value for 14 th electron in an atom.
(b) Increasing order of filling electron in $4 f, 5 p$ and 6d subshells.
(c) ' m ' and ' I ' value for last electron of Mg
atom. (Given atomic number of Mg is 12)
(d) Subshell in which last electron is present in

Ga. (Given Atomic number of Ga is 31)
(e) Sum of spin of all the electron in element having atomic number 14.

- Watch Video Solution

Unit Test

1. Designation for an orbital with $\mathrm{n}=4$ and $\mathrm{I}=$ 3 is
A. 4 s
B. 4 p
C. 4 d
D. 4 f

Answer:

- Watch Video Solution

2. Maximum number of unpaired electrons in
chromium is (1) (Given: Atomic number of $\mathrm{Cr}=$
24)

A. 4
B. 5
C. 6
D. 7

Answer:

- Watch Video Solution

3. Which series of lines of the hydrogen spectrum lie in the visible region'?

- Watch Video Solution

4. Write the Schrodinger wave equation.

5. Which of the following is not possible?

A. $2 p$
B. 3d
C. $3 f$
D. $4 p$

Answer:

6. Write four difference between orbit and orbital

- Watch Video Solution

7. Calculate the wave number for the longest wavelength transition in the paschen series of atomic hydrogen.

D Watch Video Solution
8. Calculate the uncertainty in the position of a dust particle with mass equal to 1 mg if the uncertainty in its velocity is $5.5 \times 10^{-20} \mathrm{~ms}^{-1}$

- Watch Video Solution

