© ${ }^{\text {T doubtnut }}$

PHYSICS

BOOKS - CBSE COMPLEMENTARY MATERIAL PHYSICS (HINGLISH)

PROPERTIES OF MATTER

Very Short Answer Questions 1 Mark

1. Why a spring balance does not give correct measurements when it has been used for a

long time?

D Watch Video Solution

2. Why is a spring made of steel, not of copper?
A. Because steel is cheaper than copper
B. Because steel is more elastic than
copper
C. Because steel is less elastic than copper
D. Because steel is in abundance on earth

Answer: B

- Watch Video Solution

3. Draw stress-strain curve for elastomers
(elastic tissue of Aorta)

- Watch Video Solution

4. How are we able to break a wire by repeated bending ?
A. It is an easy process
B. Repeated bending cause elastic fatigue
C. It is a wrong question.
D. None

Answer: B

D Watch Video Solution
5. The bulk modulus for an incompresssible liquid is
6. Define Poisson's ratio ? Does it have any unit ?
(Watch Video Solution

7. What is elastic fatigue?

D Watch Video Solution

8. Why is it easier to swim in sea water than in
the river water?

- Watch Video Solution

9. Railway tracks are laid on large sized wooden, iron or cement sleepers. Why?

D Watch Video Solution
10. The dams of water reservoir are made thick near the bottom. Why?

- Watch Video Solution

11. It is difficult to stop bleeding from a cut in human body at high altitude. Why?

- Watch Video Solution

12. The blood pressure in human is greater at the feet than at the brain. Why?

- Watch Video Solution

13. What is viscosity and coefficient of viscosity? What are SI units of coefficient of viscosity?

D Watch Video Solution
14. Machine parts are jammed in winter. Why?

D Watch Video Solution

15. The cloud's are seen floating in the sky. Why?

D Watch Video Solution
16. Antiseptics have low surface tension. Why?
17. What are the effects of (1) temperature on the angle of contact (2) impurity on the surface tension?

- Watch Video Solution

18. For solids with elastic modulus of rigidity,
the shearing force is proportional to shear strain. On what factor does it depend in case of fluids ?
19. How does rise in temperature effect (i) viscosity of gases (ii) viscosity of liquids ?

D Watch Video Solution

20. As a result of addition of detergent to a
liquid the angle of contact .

- Watch Video Solution

21. Write the dimensions of coefficient of viscosity and surface tension.

D Watch Video Solution

22. Name the CGS and SI units of the coefficient of viscosity.

D Watch Video Solution

23. A parachute is advised to be used by a person, while jumping out of an aeroplane.

Explain why?

D Watch Video Solution

24. Why two boats moving in parallel directions close to each other get attracted?

D Watch Video Solution

25. A molecule of a liquid which reaches the
surface from interior gains energy because
26. It is easy to wash clothes in hot water because its :-

D Watch Video Solution

27. Mercury does not wet glass. This is the property of liquid known as
28. The end of a glass tube becomes round on heating due to

D Watch Video Solution
29. The' raincoats are made water proof by coating with a material, which

- Watch Video Solution

30. What happens when a capillary tube of insufficient length is dipped in a liquid?

- Watch Video Solution

31. Does it matter if one uses gauge instead of absolute pressures in applying Bernoulli's equation. Explain.

- Watch Video Solution

32. State Wein's displacement law for black body radiation.

- Watch Video Solution

33. State Stefan-Boltzmann law. Write the CGS
and SI units of Stefan-Boltzmann constant.

D Watch Video Solution
34. Name two physical changes that occur on heating a body.

D Watch Video Solution
35. Distinguish between heat and temperature.

D Watch Video Solution
36. Which thermometer is more sensitive a mercury or gas thermometer ?

- Watch Video Solution

37. A metal disc has a hole in it. When the disc is heated, the size of the hole

D Watch Video Solution
38. The substance which contracts on heating is

D Watch Video Solution
39. A gas is free to expand what will be its specific heat?

D Watch Video Solution
40. Is the bulb of a thermoeter made of diathermic or adiabatic wall ?

D Watch Video Solution
41. What is the absorptive power of a perfectly black body ?

- Watch Video Solution

42. At what temperature does a body stop radiating ?

D Watch Video Solution

43. If Kelvin temperature of an ideal black body is doubled, what will be the effect on energy radiated by it ?

D Watch Video Solution
44. In which method of heat transfer does gravity not play any part ?

- Watch Video Solution

45. Give a plot of Fahrenheit temperature versus Celsius temperature.

- Watch Video Solution

46. Why in winters birds swell their feathers?

- Watch Video Solution

47. A brass disc fits snugly in a hole in a steel
plate. Should you heat or cool this system to
losen the disc from the hole ? given that $\alpha_{b}>\alpha_{F} e$.

D Watch Video Solution

Short Answer Type Questions 2 Marks

1. A wire of length L and area of cross section A
is made of a material of Young's modulus Y. If
it is stretched by an amount x, the work done is given by

D Watch Video Solution

2. what is meant by elastic potential energy?

Deerive an expression for the elastic potential energy of streched wire. Prove that its elasic energy density is equal to $\frac{1}{2} \mathrm{x}$ stress x strain
3. Define the term bulk modulus. Give its SI unit. Give the relation between bulk modulus and compressibility.

- Watch Video Solution

4. Define shear modulus. With the help of a diagram explain how shear modulus can be calculated.
5. Which one is more elastic rubber or steel?

Explain.

D Watch Video Solution

6. Two wires P and Q of same diameter are
loaded as shown in the figure. The length of
wire P is $L \mathrm{~m}$ and its young's modulus is $\mathrm{Y} N /$
m^{2} while length of wire Q is twice that of P
and its material has young's modulus half that
of P. Compute the ratio of their elongation.

D View Text Solution
7. In an emergency, the vacuum brake is used to stop, the high speed train. How does this
vacuume brake work?

D Watch Video Solution
8. Define surface tension and surface energy.

Obtain a relation between them.

D Watch Video Solution

9. VELOCITY OF EFFLUX: TORRICELLI'S THEOREM

D Watch Video Solution

10. Using dimensional method obtain, Stoke's
law expression for viscous force $\mathrm{F}=6 \pi \eta a \nu$.

- Watch Video Solution

11. The fig (a) \& (b) refer to the steady flow of a non-viscous liquid which of the two figures is incorrect ? Why ?

- View Text Solution

12. The fig. below shows a thin liquid supporting a small weight $4.5 \times 10^{-2} \mathrm{~N}$. What
is the weight supported by a film of same liquid at the same temperature in fig. (b) \& (c).

Explain your answer.

D View Text Solution

13. Two soap bubbles of different deameters
are in contact with a certain portion common
to both the bubbles. What will be the shape of
the common boundary as seen from inside the
smaller bubble? Support your answer with a neat diagram. Give reason for your answer.

D Watch Video Solution

14. During blood transfusion the needle is inserted in a vein where gauge pressure is p_{g} and atmospheric pressure is p. At what height must the blood container be placed so that blood may just enter the vein. Given density of blood is p .
15. Explain why we cannot remove a filter paper from a funnel by blowing air into its narrow end.

D Watch Video Solution

16. On a hot day, a car is left in sunlight with all
the windows closed. After sometimes, it is
found that air inside the car is considerably
warmer than the air outside. Explain why?
17. If a capillary tube is immersed at first in cold water and then in hot water, the height of capillary rise will be smaller in the second case. How can this be explained?

- Watch Video Solution

18. If a drop of water falls on a very hot iron, it does not evaporates for a long time. Give reason.

- Watch Video Solution

19. If the earth did not have an atmosphere, it would become intoleraby cold. Why?

- Watch Video Solution

20. The coolant in a chemical or nuclear plant
(i.e. the liquid used to prevent different parts of a plant from getting too hot) should have hight specific heat, comment?
21. A sphere, a cube and a disc made of same material and of equal masses heated to same temperature of $200^{\circ} \mathrm{C}$. These bodies are then kept at same lower temperature in the surrounding, which of these will cool
fastest, (ii) slowest, explain.

D View Text Solution

22. Why do the pendulum clocks go slow in summer and fast in winter?

D Watch Video Solution

23. Why do the brake drums of a car get heated, when the car moves down a hill at a constant speed?

D Watch Video Solution
24. The plots of intensity versus wavelength
for three black bodies at temperature T_{1}, T_{2}
and T_{3} respectively are shown.

Arrange the temperature in decreasing order.

Justify your answer

D View Text Solution

25. The triple point of water is a standard fixed
point in modern thermometry. Why ? Why
melting point of ice or boiling point of water not used as standard fixed points.(as was originally done in celsius scale)

D Watch Video Solution

Short Answer Type Questions 3 Marks

1. The knowledge of elasticity useful in selecting metal ropes show its use, in cranes
for lifting heavy loads, when rope of steel is used (Elastic limit $30 \times 10^{7} \mathrm{Nm}^{-2}$) if load of

100000 kg is to be lifted.

What should be the radius of steel rope ?

What should we do to increase flexibility of such wire?

D View Text Solution

2. Stress-strain curve for two wires of material
A and B are as shown in Fig.
which material in more ductile ?

D View Text Solution
3. Stress-strain curve for two wires of material
A and B are as shown in Fig.
which material has greater value of young modulus ?

D View Text Solution

4. Stress-strain curve for two wires of material
A and B are as shown in Fig.
which of the two is stronger material ?

D View Text Solution
5. Stress-strain curve for two wires of material
A and B are as shown in Fig.
which material is more brittle ?

- View Text Solution

6. State Pascal's law.Give the construction and working of Hydraulic brakes.

- Watch Video Solution

7. A manometer reads the pressure of a gas in
an enclosure as shown in the fig. (a) when
some of the gas is removed by a pump, the manometer reads as in fig (b). The liquid used in manometer is mercury and the atmospheric pressure is 76 cm of mercury, (i) Give absolute
and gauge pressure of the gas in the enclosure for cases (a) and (b).

- View Text Solution

8. Define Capillarity and angle of contact.

Derive an expression for the ascent of a liquid in a capillary tube.
9. The terminal velocity of a tiny droplet is $\mathrm{v} . \mathrm{N}$ number of such identical droplets combine together forming a bigger drop. Find the terminal velocity of the bigger drop.

- Watch Video Solution

10. Two spherical soap bubble coalesce. If ν be
the change in volume of the contained air, A is
the change in total surface area then show
that $3 P V+4 \mathrm{AT}=0$ where T is the surface tension and P is atmospheric pressure.

D Watch Video Solution

11. Give the principle of working of venturimeter. Obtain an expression for volume of liquid flowing through the tube per second.

D Watch Video Solution
12. A big size balloon of mass M is held stationary in air with the help of a small block of mass $M / 2$ tied to it by a light string such that both float in mid air. Describe the motion of the balloon and the block when the string is cut. Support your answer with calcutations

D Watch Video Solution

13. Two vessels have the same base area but
differnent shapes. The first vessel takes twice
the vloume of water that the second vessel
requires to fill up to a paricular common
height. Is the force exerted by water on the base of the vessel the same in the two case? If so, why do the vessels filled with water to that same height give different reading on a weighting scale?

- Watch Video Solution

14. A liquid drop of diameter D breaks up into

27 tiny drops. Find the resulting change in
energy. Take surface tension of the liquid as σ

D Watch Video Solution

15. Define the coefficients of linear expansion.

Deduce relation between it and coefficient of superficial expansion and volume expansion.

D Watch Video Solution

16. Two rods of different metals of coefficient
of linear expansion α_{1} and α_{2} and initial
length l_{1} and l_{2} respectively are heated to the same temperature. Find relation in $\alpha_{1}, \alpha_{2}, l_{1}$ and l_{2} such that difference between their lengths remain constant.

D Watch Video Solution

17. Explain why : (a) A body with large reflectivity is a poor emitter. (b) A brass tumbler feels much colder then a wooden tray on a chilly day. (c) an optical pyrometer (for measuring high temperatures) calibrated for
an ideal black body correct value for the temperature when the same piece is in the
furnace. (d) The earth without its atmosphere would be inshospitably cold. (e) Heating system based on circulation of steam are more effecient in warming a building than those based on circulation of hot water.

D Watch Video Solution

18. Explain why a brass tumbler feels much colder than a wooden tray on a chilly day.

Watch Video Solution

19. Draw a graph to show the anomalous behaviour of water. Explain its importance for sustaining life under water.

D Watch Video Solution

20. A brass wire $1.8 m$ long at $27^{\circ} C$ is held taut with little tension between two rigid supports. If the wire cooled to a temperature of $-39^{\circ} C$, what is the tension developed in
the wire, if its diameter is 2.0 mm ? Coefficient of linear expansion of brass
$=2.0 \times 10^{-5} /{ }^{\circ} C$, Young's modulus of brass $=0.91 \times 10^{11} P a$.

- Watch Video Solution

21. Define (i) Specific heat capacity (ii) Heat capacity (iii) Molar specific heat capacity at constant pressure and at constant volume and write their units.
22. What is latent heat ? Give its units. With
the help of a suitable graph, explain the terms
latent heat of fusion and latent heat of vaporisation.

D Watch Video Solution

23. State and explains the three modes of transfer of heat. Explains how the loss of heat due to these three modes is minimised in a thermos flask.

- Watch Video Solution

24. Define coefficient of thermal conductivity.

Two metal slabs of same area of cross-section,
thickness d_{1} and d_{2} having thermal conductivities K_{1} and K_{2} respectively are kept in contact. Deduce expression for equivalent thermal conductivity.
(D) View Text Solution

1. On what factors does the rate of heat conduction in a metallic rod in the steady
state depend? Write the necessary expression
and hence define the coefficient of thermal
conductivity. Write its units and dimensions also.

D Watch Video Solution

Numericals

1. An aluminium wire 1 m in length and radius 1
mm is loaded with a mass of 40 kg hanging
vertically. Young's modulus of Al is
$7.0 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$. Calculate (a) tensile stress
(b) change in length (c) tensile strain and (d) the force constant of such a wire.

- View Text Solution

2. The average depth of ocean is 2500 m .

Calculate the fractional compression $\left(\frac{\Delta V}{V}\right)$
of water at the bottom of ocean, given that the bulk modulus of water is $2.3 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$.

D View Text Solution

3. A force of $5 \times 10^{3} \mathrm{~N}$ is applied tangentially to the upper face of a cubical block of steel of side 30 cm . Find the displacement of the upper face relative to the lower one, and the angle of shear. The shear modulus of steel is 8.3×10^{10} pa.
4. How much pressure should be applied on a litre of water if it is to be compressed by 0.1% ?
(Bulk modulus of water= 2100 MPa)

D Watch Video Solution

5. Calculate the pressure at a depth of 10 m in an Ocean. The density of sea water is $1030 \mathrm{~kg} / \mathrm{m}^{3}$. The atmospheric pressure is 1.01×10^{5} pa.
6. In car lift compressed air exerts a force F_{1} on a small piston having a radius of 5 cm . This pressure is transmitted to a second piston of radius 15 cm . If the mass of the car to be lifted is 1350 kg , what is F_{1} ? What is the pressure necessary to ac complish this task ?

D Watch Video Solution

7. How much pressure will man of weight 80 kg
f exert on the ground when (i) he is lying and
(ii) he is standing on his feet? Given that the area of the body of the man is $0.6 \mathrm{~m}^{2}$ and that of a foot is $80 \mathrm{~cm}^{2}$.

D Watch Video Solution

8. The menual of a car instructs the owner to
inflate the tyres to pressure of 200 kPa . (a)

What is the recommended gauge pressure ?
(b) What is the recommended absolute pressure ? (c) If after the required inflation of the tyres, the car is driven to a mountain peak. where the atmospheric pressrre is 10% below that at sea level, what will be the tyre gauge read ? Atmospehric pressure $=1.01 \times 10^{5} \mathrm{~Pa}$.

D Watch Video Solution

9. Calculate excess pressure in an air bubble of
radius 6 mm . Surface tension of liquid is 0.58

N/m.

D View Text Solution

10. Terminal velocity of a copper ball of radius

2 mm through a tank of oil at $20^{\circ} \mathrm{C}$ is $6.0 \mathrm{~cm} / \mathrm{s}$.

Compare coefficient of viscosity of oil. Given
$p_{c u}=8.9 \times 103 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{o i l}=1.5 \times 103 \mathrm{~kg} / \mathrm{m}^{3}$

- View Text Solution

11. Calculate the velocity with which a liquid emerges from a small hole in the side of a tank of large cross-sectional area if the hole is 0.2 m below the surface liquid $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right.$.

D View Text Solution

12. A soap bubble of radius 1 cm expands into
a bubble of radius 2 cm . Calculate the increase
in surface energy if the surface tension for soap is 25 dyne/cm.
13. A glass plate of $0.2 m^{2}$ in area is pulled with a velocity of $0.1 \mathrm{~m} / \mathrm{s}$ over a larger glass plate that is at rest. What force is necessary to pull the upper plate if the space between them is 0.003 m and is filled with oil of $\eta 0.01$ Ns / m^{2}.
14. The cross-sectional area of water pipe entering the basement is $4 \times 10^{-4} m^{2}$. The pressure at this point is $3 \times 10^{5} \mathrm{Nm}^{-2}$ and the speed of water is $2 m s^{-1}$. This pipe tapers to a cross-sectional area of $2 \times 10^{-4} m^{2}$ when it reaches the second floor 8 m above. Calculate the speed and pressure at the 2 nd floor
15. A large bottle is fitted with a siphon made of capillary glass tubing. Compare the times taken to empty the bottle when it is filled. (i) with water (ii) with petrol of density 0.8 cgs units. The viscosity of water and petrol are 0.1 and 0.2 cgs units repectively.

- Watch Video Solution

16. The breaking stress for a metal is
$7.8 \times 10^{9} \mathrm{Nm}^{-2}$. Calculate the maximum
length of the wire of this metal which may be suspended breaking. The density of the metal $=7.8 \times 10^{3} \mathrm{kgm}^{-3}$. Take $\mathrm{g}=10 \mathrm{Nkg}^{-1}$

D Watch Video Solution

17. Two stars radiate maximum energy at wavelength $3.6 \times 10^{-7} \mathrm{~m}$ and $4.8 \times 10^{-7} \mathrm{~m}$ respectively. What is the ratio of their temperature?

18. Find the temperature of $149^{\circ} \mathrm{F}$ on kelvin

 scale.D View Text Solution
19. A metal piece of 50 g specific heat $0.6 \mathrm{cal} /$
$g^{\circ} C$ initially at $120^{\circ} \mathrm{C}$ is dropped in 1.6 kg of
water at $25^{\circ} \mathrm{C}$. Find the final temperature or mixture.

D View Text Solution
20. A blacksmith fixes iron ring on the rim of
the wooden wheel of a bullock cart. The diameter of the rim and the ring are $5.243 m$ and 5.231 m respectively at $27^{\circ} \mathrm{C}$. To what temperature should the ring be heated so as to fit the rim of the wheel ? Coefficient of linear expansion of iron $=1.20 \times 10^{-5} \mathrm{~K}^{-1}$

D Watch Video Solution

21. 100 g of ice at $0^{\circ} \mathrm{C}$ is mixed with 100 g of water at $80^{\circ} \mathrm{C}$. The resulting temperature is
$6^{\circ} \mathrm{C}$. Calculate heat of fusion of ice.

D View Text Solution

22. Calculate heat required to convert 3 kg of water at $0^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$. Given specific heat capacity of $\mathrm{H}_{2} \mathrm{O}=4186 \mathrm{~J} \mathrm{~kg}^{-1} k^{-1}$ and latent heat of steam $=2.256 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.

D View Text Solution

23. Calculate the stress developed inside a tooth cavity that filled with copper. When hot tea at temperature $57^{\circ} \mathrm{C}$ is drunk. You can take body (tooth) temperature to be $37^{\circ} \mathrm{C}$ and
 $=140 \times 10^{9} \mathrm{Nm}^{-2}$.

D View Text Solution

Multiple Choice Questions Mcqs

1. A spring is stretched by applying a load to
its free end. The strain produced in the spring is
A. Volumetric
B. Shear
C. Longitudinal \& Shear
D. Longitudinal \& Shear

Answer:

D Watch Video Solution
2. The maximum load a wire can withstand without breaking, when its length is reduced to half of its original length, will
A. be double
B. be half
C. be for times
D. remain same

Answer:

- Watch Video Solution

3. A rigid bar of mass M is supported symmetrically by three wires each of length I.

Those at each end are of copper and the middle one is of iron. The ratio of their diameters, if each is to have the same tension, is equal to
A. $\frac{\text { Ycopper }}{\text { Yiron }}$
B. $\sqrt{\frac{\text { Yiron }}{\text { Ycopper }}}$
C. $\frac{Y^{2} \text { iron }}{Y^{2} \text { copper }}$
D. $\frac{\text { Yiron }}{\text { Ycopper }}$

Answer: B

- Watch Video Solution

4. A mild steel wire of Length 2 L and cross sectional Area A is stretched well within elastic
limit, horizontally between two pillars. A man m is suspended from the mid point of the wire strain in the wire is
A. $\frac{x^{2}}{2 L^{2}}$
B. $\frac{x}{L}$
C. $\frac{x^{2}}{L}$
D. $\frac{x^{2}}{2 L}$

Answer:

D View Text Solution

5. For an ideal liquid : (More than one option may be correct)
A. the bulk modulus is infinite
B. the bulk modulus is zero

C. the shear modulus is infinite

D. the shear modulus is zero

Answer:

D View Text Solution

6. The stress strain graph for this materials are
shown figure. (assume scale is same for both
graph)
A. Material (ii) is more elastic than material
(i) and hence material (ii) is more brittle.
B. Material (i) \& (ii) have the same elasticity
and the same brittleness.
C. Material (ii) is elastic over the larger
region of strain as compared to (i)
D. Material (ii) is more brittle than material
(i)

Answer:

7. A tall cylinder is filled with viscous oil. A round pebble is dropped from the top with zero initial velocity. From the plot shown in figure, indicate the one that represents the velocity (v) of the pebble as a function of time (t)
A.
B.
c.

Answer:

D Watch Video Solution

8. An ideal fluid flows through a pipe of circular cross-section made of two sections with diameters 2.5 cm and 3.75 cm . The ratio of the velocities in the two pipes is
A. $9: 4$
B. $3: 2$
C. $\sqrt{3}: \sqrt{2}$
D. $\sqrt{2}: \sqrt{3}$

Answer:

D Watch Video Solution

9. The angle of contact at the interface of water glass is 0° ethylalcohol-glass is 0° mercury glass is 140° and methyliodide-glass is 30° A glass capillary is put in a through
containing one of these four liquids. It is observed that the meniscus is convex. The liquid in the through is
A. Water
B. Ethylalcohol
C. Mercury
D. Methyl iodide

Answer:

D Watch Video Solution
10. A bimetallic strip is made of aluminum \& steel $\left(\alpha_{A I}>\alpha_{\text {steel }}\right)$. On heating the strip will
A. remain straight
B. get twisted
C. will bend with aluminum on concave side
D. will bend with steel on concave side.

Answer:

11. A Uniform Metallic Rod rotates about its perpendicular bisector with constant angular speed. If it is heated uniformly to raise its temperating slightly
A. Its speed of rotation increases
B. Its speed of rotation decreases
C. Its speed of rotation remains same
D. Its speed increases because its moment of Inertia decreases.

Answer:

D View Text Solution

12. As the temperating is increases, the time period of pendulum
A. increases as its effective length
increases even though its centre of man
(CM) still reaming at the centre of the
bob
B. decreases as its effective length
increases even though its CM still remains at the centre of the bob
C. increases as its effective length
increases due to shifting of CM below
the centre of the bob
D. decreases as its effective length remains
same but the CM shifts above the centre of the bob.
13. Refer to the plot of temperating versus
time showing the changes in the state of ice on heating (not of scale)

Which of the following is correct :
A. The region $A B$ represents ice \& water in
thermal equilibrium
B. At B water stats boiling

C. At C all the water gets converted into

steam

D. C-D represents water \& steam in equilibrium at boiling point.

Answer:

D View Text Solution

14. A student records the initial length l, change in temperature ΔT and change in length Δl of a rod as follows :

If the first observation is correct. Choose the correct answer about $\quad 2^{\text {nd }}, 3^{\text {rd }) \& 4^{\wedge}(t h}$ observations
A. $2^{\text {nd }}$ observation correct
B. $3^{\text {rd }}$ observation correct
C. $4^{\text {th }}$ observation correct
D. $4^{\text {th }}$ observation incorrect

Answer:

15. The approximate depth of an ocean is 2700 m . The compressibility of water is $45.4 \times 10^{-11} \mathrm{~Pa}^{-1}$ and density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. What fractional compression of water will be obtained at the bottom of the ocean?
A. 1.0×10^{-2}
B. 1.2×10^{-2}
C. 1.4×10^{-2}
D. 0.8×10^{-2}

Answer:

D View Text Solution

16. The Young's Modulus of steel is twice that
of brass. Two wires of same length and of
same area of cross-section, one of steel and another of brass are suspended from the same roof. If then the weights added to the
steel and brass wires must be in the ratio of
A. 1:1
B. 1:2
C. 2:1
D. $4: 2$

Answer: C

D View Text Solution

17. Two rods of different materials having coefficients of thermal expansion α_{1}, α_{2} and

Young's Moduli Y_{1}, Y_{2} respectively are fixed between two rigid massive walls. The rods are
heated such that they undergo the same increase in temperature. There is no bending of the rods. If $\alpha_{1}: \alpha_{2}=2: 3$, the thermal stresses developed in the two rods are equal provided $Y_{1}: Y_{2}$ is equal to
A. $2: 3$
B. $1: 1$
C. $3: 2$
D. $4: 9$

Answer:
18. In the given figure, if the dimension of the two wires are the same and materials are different. Young's modulus is
A. More for A than B
B. More for B than A
C. Equal for A \& B
D. None of these

Answer:

D View Text Solution

19. The two ends of a metal rod are maintained
at temperatures $100^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$. The rate of heat flow in the rod is found to be $4.0 \mathrm{~J} / \mathrm{s}$. If
the ends are now maintained at temperatures
$200^{\circ} \mathrm{C}$ and $210^{\circ} \mathrm{C}$, the rate of flow of heat will be
A. $16.8 \mathrm{j} / \mathrm{s}$
B. $8.0 \mathrm{~J} / \mathrm{s}$
C. $4.0 \mathrm{~J} / \mathrm{s}$
D. $44.8 \mathrm{~J} / \mathrm{s}$

Answer:

D View Text Solution

20. Steam at $100^{\circ} \mathrm{C}$ is passed into 20 g of water at $10^{\circ} \mathrm{C}$, then water acquires a temperating of $80^{\circ} \mathrm{C}$, the man of water present will be [Take specific heat of water $=1$
cal $g^{-1 \circ} C^{-1}$ and Latent heat of steam $=540$
cal g^{-1}]
A. 24 g
B. 31.5 g
C. 42.5 g
D. 22.5 g

Answer:

- View Text Solution

