

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

TRIANGLE AND ITS ANGLES

Others

1. In a Triangle
$$ABC, \angle B=105^0, \angle C=50^0,$$

Find / A

Watch Video Solution

2. The sum of two angles of a triangle is equal to its third angle. Determine the measure of the third angle.

3. Of the three angles of a triangle, one is twice the smallest and another is three times the smallest. Find the angles.

4. If the angle of a triangle are in the ratio 2:3:4, determine three angles.

5. The sum of two angles of a triangle is 80^{0} and their difference is 20^{0} . Find all the angles.

6. In a $\triangle ABC$, if $2\angle A=3\angle B=6\angle C$, determine $\angle A$, $\angle B$ and $\angle C$

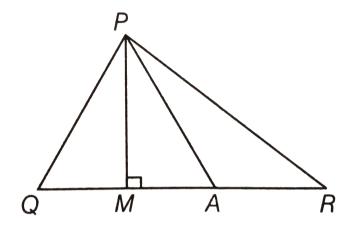
7. A,B,C are the three angles of a triangle. If

$$A-B=15^{\circ},\;B-C=30^{\circ},$$
 find

 $\angle A$. $\angle B$ and $\angle C$

8. In Figure AB||DC , if $x=\frac{4y}{3}$ and $y=\frac{3z}{8}$, find $\angle BCD$, $\angle ABC$ and $\angle BAD$.

$$DOD$$
, $\angle ADO$ and $\angle DAD$


9. A triangle ABC is right angles at AAL is drawn perpendicular to BC . Prove that

$$\angle BAL = \angle ACB$$

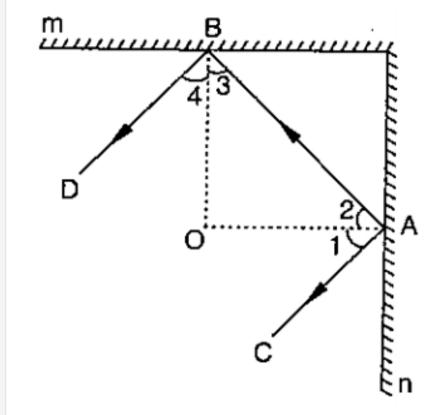
10. In the given figure , $\angle Qgt \angle R$, PA is the bisector of $\angle QPR$ and PM $\perp QR$.

Prove that $\angle APM = 1/2(\angle Q - \angle R)$.

Watch Video Solution

11. If two parallel lines are intersected by a transversal, prove that the bisectors of the interior angles on the same side of transversal intersect each other at right angles.

12. In Figure, $TQ\ and\ TR$ are the bisectors of


$$ngle Q~and~ ngle R$$
 respectively. If $ngle QPR=80^0 and~ ngle PRT=30^0,$ determine

$$\angle TQR$$
 and $\angle QTR$

13. In Figure, m and n are two plane mirrors perpendicular to each other. Show that the incident

ray CA is parallel to the reflected ray BD

14. In $\triangle ABC$, $\angle B=45^{0}$, $\angle C=55^{0}$ and bisector of $\angle A$ meets BC at a point D. Find

 $\angle ADB \ and \ \angle ADC$

15. In Figure, prove that PM=PN= root 3 × a

16. In a TriangleABC, if $\angle A=55^0,$ $\angle B=40^0,$ find $\angle C$

17. If the angles of a triangle are in the ratio 1:2:3, determine three angles.

Watch Video Solution

18. The angles of a triangle are $(x-40)^0, \ (x-20)^0 \ and \ \left(\frac{1}{2}x-10\right)^0.$ find the value of $x\cdot$

Watch Video Solution

19. The angle of a triangle are arranged in ascending order of magnitude. If the difference between two consecutive angles is 10^0 , find the three angles.

20. Two angles of a triangle are equal and the third angle is greater than each of those angles by 30° . Determine all the angles of the triangle.

21. If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right triangle.

Watch Video Solution

22. ABC is a triangle in which $\angle A=72^0$, the internal bisectors of angles B and C meet in O. Find the magnitude of $\angle BOC$

Watch Video Solution

23. The bisectors of base angles of a triangle cannot enclose a right angle in any case.

24. If the bisectors of the base angles of a triangle enclose an angle of 135^{0} , prove that the triangle is a right triangle.

25. In a triangle ABC, $\angle ABC = \angle ACB$ and the bisectors of $\angle ABC$ and $\angle ACB$ intersect at O such that $\angle BOC = 120^{\circ}$. Show that $\angle A = \angle B = \angle C = 60^{\circ}$.

26. Can a triangle have: Two right angles? (ii) Two obtuse angles? Two acute angles (iv) All angles more than 60^{0} ? All angles less than 60^{0} ? (vi) All angles equal to 60^{0}

27. If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.

28. An exterior angle of a triangle is 110^0 , and one of the interior opposite angles is 30^0 . Find the other two angles of the triangle.

29. The sides BC, CA and AB of a triangle ABC, are produced in order, forming exterior angles $\angle ACD$, $\angle BAE$ and $\angle CBF$. Show that $\angle ACD + \angle BAE + \angle CBF = 360^0$

30. In Figure, $QT\perp PR,\ egin{array}{ll} \angle TQR=40^\circ\ and\ egin{array}{ll} \angle SPR=30^\circ, \end{array}$ find $x\ and\ y.$

if

31. In Figure, side QP and RQ of PQR are produced to point S and T respectively. If $\angle SPR = 135^0$ and $\angle PQT = 110^\circ$, find $\angle PRQ$

Watch Video Solution

32. In Figure, $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$. If $YO\ and\ ZO$ are bisectors of $\angle XYZ\ and\ \angle XZY$ respectively of XYZ, find $\angle OZY\ and\ \angle YOZ$.

33.

In

Figure,

if

 $AB \mid DE, \angle BAC = 35^{0} and \angle CDE = 53^{0},$

find $\angle DCE$

Watch Video Solution

34. In Figure, if lines $PQ\ and\ RS$ intersect at a point T such that

 $\angle PRT = 40^{\circ}, \ \angle RPT = 95^{\circ} \ and \ \angle TSQ = 75^{\circ},$

find $\angle SQT$.

Watch Video Solution

35. In Figure, $PQ \perp PS, \; PQSR, \; \angle SQR = 28^{0} and \angle QRT = 65^{0},$

if

then find the values of x and y

36. The side BC of a ABC is produced on both sides. Show that the sum of the exterior angles so formed is greater than $\angle A$ by two right angles.

37. Sides BC, CA and BA of a triangle ABC are produced to D, Q, P respectively as shown in Figure. If $\angle ACD = 100^0 and \angle QAP = 35^0$, find all the angles of the triangle.

38. In Figure, the side BC of $\triangle ABC$ is produced to form ray BD as shown. Ray CE is drawn parallel to BA. Show directly, without using the angle sum property of a triangle that $ACD = \angle A + \angle B$ and deduced that $\angle A + \angle B + \angle C = 180^\circ$.

rattii video Solution

39. Prove that the angle between internal bisector of one base angle and the external bisector of the other base angle of a triangle is equal to one-half of the vertical angle.

Watch Video Solution

40. The side BC of a ABC is produced, such that D is one ray BC. The bisector of $\angle A$ meets BC in L as shown in Figure. Prove that $\angle ABC + \angle ACD = 2\angle ALC$

41. The exterior angles, obtained on producing the base of a triangle both ways are $104^0 and\ 136^0$. Find all the angles of the triangle.

42. In a triangle ABC, the internal bisectors of $\angle B\ and\ \angle C$ meet at P and the external bisectors of $\angle B\ and\ \angle C$ meet at Q . Prove that $\angle BPC + \angle BQC = 180^0$

43. In Figure, the sides BC, CA and AB of a ABC have been produced to D, E and F respectively. If $\angle ACD=105^0$ and $\angle EAF=45^0$, find all the angles of the ABC

Watch Video Solution

44. Compute the value of x in each of the following figures:

Watch Video Solution

45. In Figure, AB divides $\angle DAC$ in the ratio

 $1:3\ and\ AB=DB$. Determine the value of x.

46. ABC is a triangle. The bisector of the exterior angle at B and the bisector of $\angle C$ intersect each other at D. Prove that $\angle D = \frac{1}{2} \angle A$.

47. In Figure, $AM \perp BC \ and \ AN$ is the bisector of $\angle A\cdot$ If $\angle B=65^0 and \ \angle C=33^0, \ {
m find} \ \angle MAN$

48. In a ABC, AD bisects $\angle A$ and $\angle C > \angle B$.

Prove that $\angle ADB > \angle ADC$.

49. In Figure, AE bisects $\angle CAD$ and $\angle B = \angle C \cdot$

Prove that $AE \mid \mid BC$

50. In Figure, $AB \mid DE$ Find $\angle ACD$

51. Which of the following statements are true (T) and which are false (F): Sum of the three angles of a triangle is 180^0 A triangle can have two right angles. All the angles of a triangle can be less than 60° All the angles of a triangle can be greater than 60° All the angles of a triangle can be equal to 60° A triangle can have two obtuse angles. A triangle can have at most one obtuse angles. In one angle of a triangle is obtuse, then it cannot be a right

angled triangle. An exterior angle of a triangle is less than either of its interior opposite angles. An exterior angle of a triangle is equal to the sum of the two interior opposite angles. An exterior angle of a triangle is greater than the opposite interior angles

statements true: Sum of the angles of a triangle is An exterior angle of a triangle is equal to the two opposite angles. An exterior angle of a triangle is always than either of the interior

opposite angles. A triangle cannot have more than right angles. A triangles cannot have more than obtuse angles.

G

53. Define a triangle.

54. Write the sum of the angles of an obtuse triangle.

55. In ABC, if $\angle B=60^{0}$, $\angle C=80^{0}$ and the bisectors of angles $\angle ABC$ and $\angle ACB$ meet at a point O, then find the measure of $\angle BOC$.

56. If the angle of a triangle are in the ratio 2:1:3, then find the measure of smallest angle.

57. If the angles $A,\ B\ and\ C$ of a $\ \triangle\ ABC$ satisfy the relation B-A=C-B, then find the measure of $\ /B.$

58. In ABC, if bisectors of $\angle ABC$ and $\angle ACB$ intersect at O at angle of 120^0 , then find the measure of $\angle A$

59. State exterior angle theorem

60. If the side BC of ABC is produced on both sides, then write the difference between the sum of the exterior angles so formed and $\angle A$.

61. In a triangle ABC, if $AB = AC \ and \ AB$ is produced to D such that BD = BC, find

 $\angle ACD: \angle ADC$

A. 1:3

B. 2:1

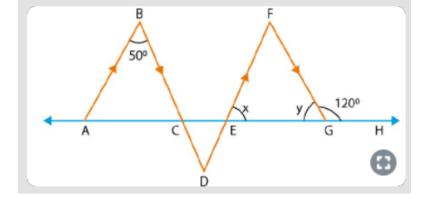
C.3:1

D. 1:2

Answer: C

Watch Video Solution

62. The sum of two angles of a triangle is equal to its third angle. Determine the measure of the third


angle.

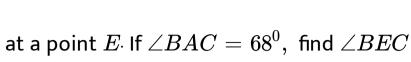
63. In Figure, if $AB||CD,\;EF||BC,\;\angle BAC=65^\circ$ and $\angle DHF=35^\circ,\;$ find $\angle AGH.$

64. In Figure, if $AB \mid \ \mid DF$ and $BD \mid \ \mid FG$ such that $\angle FGH = 120^\circ$ and $\angle B = 50^\circ$, find x~and~y.

A.
$$x=70^{\circ}$$
 , $y=60^{\circ}$

B.
$$x=60^{\circ}$$
 , $y=60^{\circ}$

C.
$$x=75^{\circ}$$
 , $y=65^{\circ}$


D.
$$x=80^{\circ}$$
 , $y=40^{\circ}$

Answer: A

Watch Video Solution

65. In Figure, side BC of ABC is produced to point D such that bisectors of $\angle ABC$ and $\angle ACD$ meet

Watch Video Solution

66. If all the three angles of a triangle are equal, then each one of them is equal to: (a) 90^0 (b) 45^0 (c) 60^0 (d) 30^0

67. If two acute angles of a right triangle are equal, then each acute is equal to (a) 30^{0} (b) 45^{0} (c) 60^{0} (d) 90^{0}

68. An exterior angle of a triangle is equal to 100^0 and two interior opposite angles are equal. Each of these angles is equal to (a) 75^0 (b) 80^0 (c) 40^0 (d) 50^0

69. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is (a) an isosceles triangle

(b) an obtuse triangle (c) an equilateral triangle

(d) a right triangle

- A. (a) an isosceles
- B. (b) an obtuse triangle
- C. (c) an equilateral triangle
- D. (d) a right triangle

Answer: (d) a right triangle

Watch Video Solution

70. Side BC of a triangle ABC has been produced to a point D such that $\angle ACD=120^{0}$. If $\angle B=\frac{1}{2}\angle A$, then $\angle A$ is equal to 80^{0} (b) 75^{0} (c) 60^{0} (d) 90^{0}

71. In ABC, $\angle B = \angle C$ and ray AX bisects the exterior angle

$$\angle DAC\dot{I}f$$
 $\angle DAX=70^{0},\;then$ $\angle ACB=$ (a) 35^{0}

(b)
$$90^0$$
 (c) 70^0 (d) 55^0

72. In a triangle, an exterior angle at a vertex is 95^{0} and its one of the interior opposite angle is 55^{0} , then the measure of the other interior angle is (a) 55^{0} (b) 85^{0} (c) 40^{0} (d) 90^{0}

Watch Video Solution

73. If the sides of a triangle are produced in order, then the sum of the three exterior angles so formed is (a) 90^{0} (b) 180^{0} (c) 270^{0} (d) 360^{0}

Watch Video Solution

74. In \triangle A B C , if $\angle A=100^0,\ AD$ bisects $\angle A\ and\ \angle AD\ \perp BC$. Then, $\angle ACD(a)50^0$ (b) 90^0

(c) 40^0 (d) 100^0

Watch Video Solution

75. An exterior angle of a triangle is 108^0 and its interior opposite angles are in the ratio 4:5. The angles of the triangle are (a) 48^0 , 60^0 , 72^0 (b) 50^0 , 60^0 , 70^0 (c) 52^0 , 56^0 , 72^0 (d) 42^0 , 60^0 , 76^0

Watch Video Solution

76. In a ABC, if $\angle A=60^0$, $\angle B=80^0$ and the bisectors of $\angle B$ and $\angle C$ meet at O, then $\angle BOC=$ (a) 60^0 (b) 120^0 (c) 150^0 (d) 30^0

77. If the bisectors of the acute angles of a right triangle meet at O, then the angle at O between the two bisectors is (a) 45^{0} (b) 95^{0} (c) 135^{0} (d) 90^{0}

78. Line segments $AB\ and\ CD$ intersect at O such

that
$$AC=DB$$
.

lf

$$\angle CAB = 45^{0} and \angle CDB = 55^{0}$$
, then $\angle BOD =$

(a)
$$100^0$$
 (b) 80^0 (c) 90^0 (d) 135^0

79. The bisects of exterior angles at B and C of triangle ABC meet at O. If $A=x^{\circ}$, then

$$BOC =$$

(a)
$$90^0 + rac{x^0}{2}$$

(b)
$$90^0 - \frac{x^0}{2}$$

(c)
$$180^0 + rac{x^0}{2}$$
 (d) $180^0 - rac{x^0}{2}$

Watch Video Solution

meet at
$$E, \,\,$$
 then $\angle E=\,\,$ (a) 25^0 (b) 50^0 (c) 100^0 (d) 75^0

Watch Video Solution

80. In a ABC, $\angle A = 50^0 and \ BC$ is produced to a

point D. If the bisectors of $\angle ABC$ and $\angle ACD$

81. The side BC of ABC is produced to a point D.

The bisector of $\angle A$ meets side BC in L. If

$$\angle ABC=30^0 and\ \angle ACD=115^0,$$
 then $\angle ALC=~85^0$ (b) $72rac{1}{2^0}$ (c) 145^0 (d) none of these

82. In Figure, if
$$EC \mid \ |\ AB,\ \angle ECD = 70^0 AND\ \angle BDO = 20^0$$
 ,

then $\angle OBD$ is: 20^0 (b) 50^0 (c) 60^0 (d) 70^0

83. In Figure, x+y=270 (b) 230 (c) 210 (d) 190^0

84. If the measures of angles of a triangle are in the ratio of 3:4:5, what is the measure of the smallest angle of the triangle? (a) 25^0 (b) 30^0 (c) 45^0 (d) 60^0

85. In Figure, if $AB \perp BC$, then x= 18 (b) 22 (c)

25 (d) 32

86. In Figure, what is z in terms of $and \ y$? x+y+180 (b) x+y-180 $180^0-(x+y)$ (d) $x+y+360^0$

87. In Figure, for which value of x is l_1l_2 ? 37 (b) 43 (c) 45 (d) 47

88. In Figure, what is y in terms of x? (a) $\frac{3}{2}x$ (b)

$$\frac{4}{3}x$$
 (c) x (d) $\frac{3}{4}x$

89. In Figure, if $l_1 \mid l_2$, the value of x is

(a)
$$22\frac{1}{2}$$

(b) 30

(c) 45

(d) 60

90. In Figure, what is the value of x? (a)35 (b) 45 (c) 50 (d) 60

91. In triangle RST, what is the value of x? (a) 40^{0}

(b) 90^0 (c) 80^0 (d) 100^0 Watch Video Solution

92. In Figure, the value of x is 65^0 (b) 80^0 (c) 95^0 (d) 120^0

93. In Figure, if $BP \mid \ \mid CQ$ and AC = BC , then the measure of x is (a) 20^0 (b) 25^0 (c) 30^0 (d) 35^0

Watch Video Solution

94. In Figure, AB and CD are parallel lines and transversal EF intersects them at P and Q respectively.

 $\angle APR=25^{0},\ \angle RQC=30^{0} and\ \angle CQF=65^{0},$ then

(a) $x=55^0,\;y=40^0$

(b) $x=50^0, \ y=45^0$

(c) $x=60^0, \ y=35^0$

(d) $x=35^0,\;y=60^0$

95. The base BC of triangle ABC is produced both ways and the measure of exterior angles formed are $94^0 and\ 126^0$. Then $\angle BAC(a)\ 94^0$ (b) 54^0 (c) 40^0 (d) 44^0

