©゙doubtnut

CHEMISTRY

BOOKS - CBSE COMPLEMENTARY MATERIAL CHEMISTRY (HINGLISH)

CHEMICAL KINETICS

Multiple Choice Questions

1. The half life period of a first order reaction is 100° seconds. Its rate constant is:
A. $0.693 \mathrm{sec}^{-1}$
B. $6.93 \times 10^{-3} \mathrm{sec}^{-1}$
C. $6.93 \times 10^{-2} \mathrm{sec}^{-1}$
D. None of these

Answer: B

- Watch Video Solution

2. In Arrehenius equation if a graph is plotted between logK and $1 / T$, the slope of the curve will be:
A. $\frac{-E_{a}}{R}$
B. $\frac{-E_{a}}{2.303 R}$
C. $\frac{E_{a}}{R}$
D. $\frac{E_{a}}{2.303 R}$

(Watch Video Solution

3. The rate low for a reaction $2 C+D \rightarrow A+E$ is
$\frac{-d[D]}{d t}=K[C]^{2}[D]$
if C is present in large excess, the order of the reaction will be:
A. zero
B. first
C. second
D. third

Watch Video Solution

4. What is the activation energy for the reverse of this reaction?
$\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
Data for the given reaction is $\Delta \mathrm{H}=54 \mathrm{KJ} / \mathrm{mol}$ and $\varepsilon_{a}=57.2 \mathrm{KJ}$.

$$
\text { A. }-54 \mathrm{KJ}
$$

B. 3.2 KJ
C. 60.2 KJ
D. 111.2 KJ

Answer: B
5. The rate constant of a reaction becomes equal to the pre exponential factor when:
A. the absolute temperature is zero
B. the activation energy is infinity
C. the absolute temperature is infinity
D. the activation energy is zero

Answer: C

- Watch Video Solution

6. The following graph show that the reaction is:

Time

A. zero order
B. first order
C. second order
D. fractional order

Watch Video Solution

7. A second order reaction between A and B is elementary reaction:
$\mathrm{A}+\mathrm{B} \rightarrow$ Product
rate law expression of this reaction will be:
A. Rate $=K[A][B]$
B. Rate $=K[A]^{0}[B]^{2}$
C. Rate $=K[A]^{2}[B]^{0}$
D. Rate $=K[A]^{3 / 2}[B]^{1 / 2}$

Answer: A
8. The order and molecularity of the chain reaction, $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \xrightarrow{h v} \mathrm{HCl}$
A. 2, 0
B. 0,2
C. 1, 1
D. 3,0

Answer: B

- Watch Video Solution

9. Which of the following is pseudo first order reaction?
A. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
B. $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
C.

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

D.

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

Answer: D

- View Text Solution

10. A large increase in the rate of a reaction for a rise in temperature is due to
A. Increase in the number of collisions
B. Increase in the number of activated molecules
C. Lowering of activation energy
D. Shortening of the mean free path.

Answer: B

- Watch Video Solution

11. For a creactionj, the following data were obtained:

Concentration $(\mathrm{mol} / \mathrm{L})$	0.1	0.05	0.025	0.0125
Half life in (sec)	30	29.9	30.1	30

the order of reaction is:
A. 2
B. 1
C. 0
D. fractional

Answer: B

(D) Watch Video Solution

12. For the formation of SO_{3} in the following reaction, it is given that
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3} \quad E_{a}=$ Activation energy
$S O_{2}+1 / 2 O_{2} \rightarrow S O_{3} \quad E^{\prime}{ }_{a}=$ Activation energy
A. $E_{a}>E_{a}^{1}$
B. $E_{a}<E_{a}^{1}$
C. $E_{a}^{1}=E_{a}^{1 / 2}$
D. $E_{a}=E_{a}^{1}$
13. A first order reaction is 20% complete in one hour. At the end of 3 hrs the extent of the reaction is:
A. 60%
B. 52.2%
C. 63%
D. 44.4%

Answer: C

- Watch Video Solution

14. Radioactive decay is an example of:
A. first order
B. second order
C. zero order
D. 0.5 order

Answer: A

- Watch Video Solution

15. At $227^{\circ} C$, the presence of catalyst causes the activation energy of a reaction to decrease by 4.606 Kcal . The rate of the reaction will be increased by : -
A. 2 times
B. 10 times
C. 100 times
D. 1000 times

Answer: C

D Watch Video Solution

16. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ occurs as,
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ and follows first order kinetics, hence:
A. the reaction is bimolecular
B. the reaction is unimolecular
C. $\frac{t_{1}}{2} \propto a^{\circ}$
D. unit of $K=\frac{m o l}{L} \sec ^{-1}$

- Watch Video Solution

17. Rate of which reactions increases with temperature:
A. of any reaction
B. of exothermic reaction
C. of endothermic reaction
D. of none

Answer: A
18. For the reaction, $\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+\mathrm{O}_{2}$,

Given $\frac{-d}{d t}\left[N_{2} O_{5}\right]=K_{1}\left[N_{2} O_{5}\right]$
$\frac{d}{d t}\left[N O_{2}\right]=K_{2}\left[N_{2} O_{5}\right]$
$\frac{d}{d t}\left[O_{2}\right]=K_{3}\left[N_{2} O_{5}\right]$, the relation in between of $K_{1} K_{2} K_{3}$ is
A. $2 K_{1}=K_{2}=2 K_{3}$
B. $K_{1}=K_{2}=K_{3}$
C. $2 K_{1}=4 K_{2}=K_{3}$
D. $2 K_{1}=2 K_{2}=3 K_{3}$

Answer: A
19. Which of the following statement is/are correct about order of reaction:
A. order of reaction is determined experimentally
B. order of reaction can not have fractional value
C. it does not necessarily depend on stoichiometric coefficients
D. it is the sum of power of concentration terms in rate low expression
20. Which one is correct for first order reaction.
A. $\frac{t_{75 \%}}{t_{50 \%}}=1.5$
B. $\frac{t_{75 \%}}{t_{50 \%}}=3$
C. $\frac{t_{99.9 \%}}{t_{50 \%}}=10$
D. $\frac{t_{87.5 \%}}{t_{50 \%}}=3$

Answer: C::D

(D) Watch Video Solution

21. Match the column and found out correct option.
(A) zero order reaction
P. unit of K is $\frac{\mathrm{L}}{\mathrm{mol}} \cdot \mathrm{sec}^{-1}$
(B) first order reaction
Q. unit of K is $\frac{\mathrm{mol}}{\mathrm{L}} \cdot \mathrm{sec}^{-1}$
(C) second order reaction
R. unit of K is sec^{-1}
A. $A-R, B-Q, C-P$
B. A-P, B-Q, C-R
C. $A-Q, B-R, C-P$
D. $A-R, B-P, C-Q$

Answer: C

- Watch Video Solution

22. Statement 1: Lower the activation energy, faster is the reaction.

Statement 2 : Catalyst does not affect activation energy of the reaction.
A. Statement 1: is true, Statement 2 is true, and

Statement 2 is a correct explanation of statement 1

B. Both statement are true but statement 2 is not a correct explanation for statement 1
C. Statement 1 is true and statement 2 is false
D. Statement 1 is false and Statement 2 is true

Answer: C

(Watch Video Solution

23. For first order reaction: $\frac{t_{99.9}}{t_{50}}=\mathrm{x}$, Here x is
A. 3
B. 5
C. 7
D. 10

Answer: D

(Watch Video Solution

24. The reactions taking place in one step is called reactions.

(Watch Video Solution

25. The order of reaction is determined.

Very Short Answer Type Questions

1. The rate law for a reaction is Rate $=K[A][B]^{3 / 2}$

Can the reaction be an elementary process ? Explain.

- Watch Video Solution

2. For the reaction $3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$, how are the rate of reaction expressions $-\frac{d\left[\mathrm{H}_{2}\right]}{d t}$ and $\frac{d\left[\mathrm{NH}_{3}\right]}{d t}$ inter-related ?
3. Identify the reaction order from the following rate constant :
$k=2.3 \times 10^{-5}$ litre $\mathrm{mol}^{-1} \mathrm{sec}^{-1}$

(Watch Video Solution

4. After five half-life periods for a first order reaction, what fraction of reactant remains ?

(Watch Video Solution

5. What is the effect of adding catalyst on free energy change (ΔG) of a reaction ?
6. What value of k is predicted for the rate constant by

Arrhenius equation is $\mathrm{T} \rightarrow \infty$? Is this value physically reasonable?

Watch Video Solution

7. Determine the order of reaction :

Step 1. $2 \mathrm{NO}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}$ Slow

Step 2. $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ Fast

D Watch Video Solution

8. What is the order of reaction whose rate constant has

- Watch Video Solution

9. Why are reactions of higher order less in number?

(Watch Video Solution

10. What will be effect of temperature on rate constant ?

D Watch Video Solution

11. State a condition under which a bimolecular reaction is
kinetically first order reaction.

D View Text Solution

12. Why can't molecularity of any reaction be equal to zero?

- Watch Video Solution

13. The rate constant of a reaction is $3 \times 10^{2} \mathrm{~min}^{-1}$. What is its order of reaction ? (On the basis of units of rate constant)

(Watch Video Solution

14. Three-fourth of a reaction is completed in 32 minutes.

What is the half life period of this reaction ?

D View Text Solution

15. What is meant by an elementary reaction ?

(Watch Video Solution

16. Give one example of a reaction where order and molecularity are equal ?

- View Text Solution

17. For a reaction $R \rightarrow P$, the rate becomes 2 times when the concentration of the reactant P is increased 4 times.

What is the order of reaction?

(Watch Video Solution

18. The rate constant of a zero order reaction in A is $0.003 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$. How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M ?

D View Text Solution

19. In a reaction $2 \mathrm{~A} \rightarrow$ Products, the concentration of A decreases from $0.5 \mathrm{~mol} L^{-1}$ in 10 minutes. Calculate the rate during this interval.

D View Text Solution

20. In some cases large number of colliding reactant molecules have energy more than threshold energy even then the reaction is slow. Why?

- Watch Video Solution

21. Give an example of a reaction having fractional order.

(Watch Video Solution

22. Decomposition reaction of ammonia on Pt surface has rate constant $=2.5 \times 10^{-1} \mathrm{~mol} L^{-1} \mathrm{sec}^{-1}$. What is order of reaction ?

D Watch Video Solution

23. What is order of radioactive decay?
24. For a reaction $A+B \rightarrow$ Product, the rate law is given by $\mathrm{r}=k[A]^{1 / 2}[B]^{2}$. What is the order of the reaction ?

- View Text Solution

Short Answer I Type Questions

1. The rate of a particular reaction quadruples when the temperature changes from 293 K to 313 K . Calculate activation energy in $\mathrm{KJ} / \mathrm{mol}$.
2. If the decomposition of nitrogen oxide as $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ follows a first order kinetics .

Calculate the rate constant for a 0.05 M solution if the instantaneous rate is $1.5 \times 10^{-6} \mathrm{~mol} / \mathrm{l} / \mathrm{s}$?

(D) Watch Video Solution

3. If the decomposition of nitrogen oxide as
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ follows a first order kinetics. $\mathrm{K}=3.0 \times$ $10^{\wedge}(-5) \sec ^{\wedge}(-1)$.

What concentration of $N_{2} O_{5}$ would give a rate of $2.45 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1} ?$
4. Write the difference between order and molecularity of reaction.

- Watch Video Solution

5. Consider the decomposition reaction :
$2 \mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{\mathrm{OH}^{-} / \mathrm{I}^{-}} 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
This reaction takes place in two steps as given below :
Step 1. $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{IO}^{-}$(slow)
Step 2. $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{IO}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{I}^{-}+\mathrm{O}_{2}$ (fast)
Determine rate law expression.

- Watch Video Solution

6. Consider the decomposition reaction :
$2 \mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{\mathrm{OH}^{-} / \mathrm{I}^{-}} 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
This reaction takes place in two steps as given below :

Step 1. $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{IO}^{-}$(slow)
Step 2. $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{IO}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{I}^{-}+\mathrm{O}_{2}$ (fast)

Determine the order of reaction.

(Watch Video Solution

7. The decomposition of hydrocarbon follows the equation $k=\left(4.5 \times 10^{11} s^{-1}\right) e^{-28000 K / T}$

Calculate E_{a}.
8. A reaction is of second order with respect to a reactant.

How is the rate of reaction affected if the concentration of the reactant is reduced to half ? What is the unit of rate constant of such a reaction ?

D Watch Video Solution

9. For a first order reaction, time taken for half of the reaction to complete is t_{1} and $\frac{3}{4}$ of the reaction to complete is t_{2}. How are 't_(1)and $t_{-}(2)$ related?

10.

What is the order of the reaction?

- Watch Video Solution

11.

What is the slope of the curve?

(D) Watch Video Solution

12. Derive an expression to calculate time required for completion of zero order reaction.
13. For the reaction $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$

How is the rate of formation of ammonia related to the rate of disappearance of H_{2} ?

- Watch Video Solution

14. The rate of a gaseous reaction is halved when the volume of the vessel is doubled. What is the order of reaction?

- Watch Video Solution

15. A reaction which is first order with respect to A has rate constant $6 \mathrm{~min}^{-1}$. If we start with $[A]=0.5 \mathrm{~mol} \mathrm{~L}^{-1}$, when
would [A] reach the value of $0.05 M L^{-1}$?

- View Text Solution

16. The conversion of the molecules X to Y follows second order kinetics. If the concentration of X is increased to three times, how will it affect the rate of formation of Y ?

- View Text Solution

17. A first order reaction has a rate constant of $1.15 \times 10^{-3} \mathrm{~s}^{-1}$. How long will 5 g of this reactant take to reduce to 3 g ?
18. $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$. If rate of formation of NO is $6 \times 10^{-4} \mathrm{~atm} \mathrm{~min}^{-1}$, calculate the rate of formation of $\mathrm{H}_{2} \mathrm{O}$.

D Watch Video Solution

19. Consider a certain reaction $A \rightarrow$ Products with $k=2.0 \times 10^{-2} s^{-1}$. Calculate the concentration of A remaining after $100 s$ if the initial concentration of A is $1.0 \mathrm{~mol}^{-1}$.

- Watch Video Solution

20. Explain with an example, what is a pseudo first order raction ? The graphs (A and B) given below are plots of rate of reaction Vs concentration of the reactant. Predict the order from the graphs.

View Text Solution

21. Differentiate between :Average rate and instantaneous rate of a chemical reaction.

- Watch Video Solution

22. Differentiate between :Molecularity and order of reaction.
23. Show that in case of a first order reaction, the time required for 99.9% of the reaction to take place is about 10 times that the required for half the reaction.

- Watch Video Solution

24. For the reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{CO}_{2}+\mathrm{NO}$, the experimentally determined rate expression below 400 K is rate $=k\left[N O_{2}\right]^{2}$. What mechanism can be proposed for this reaction?
25. The half life period of a first order reaction is 60 min .

What percentage will be left after 240 min .

- Watch Video Solution

26. Time for half change for a first order reaction is 25 min .

What time will be required for 99% reaction ?

- Watch Video Solution

Short Answer Type li Questions

1. The rate constant for first order reaction is $60 / \mathrm{s}$. How much time will it take to reduce the concentration of the
reaction to $1 / 10$ of its initial value ?

- Watch Video Solution

2. The rates of most reactions double when their temperature is raised from 298 K to 308 K . Calculate their activation energy.

Watch Video Solution

3. A first order reaction takes 69.3 min for 50% completion.

Set up on equation for determining the time needed for 80\% completion.
4. The activation energy of a reaction is $94.14 \mathrm{KJ} / \mathrm{mol}$ and the value of rate constant at $40^{\circ} C$ is $1.8 \times 10^{-1} \mathrm{sec}^{-1}$. Calculate the frequency factor A.

D Watch Video Solution

5. The rate constants of a reaction at 500 K and 700 K are $0.02 s^{-1}$ and $0.07 s^{-1}$ respectively. Calculate the values of E_{a} and A.

(Watch Video Solution

6. The rate constants of a reaction at 700 K and 760 K are
$0.011 \mathrm{M}^{-1} s^{-1}$ and $0.105 \mathrm{M}^{-1} s^{-1}$ respectively.

Calculate the values of Arrhenius parameters.

- Watch Video Solution

7. The initial concentration of $N_{2} O_{5}$ in the first order reaction

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}
$$

was
$1.24 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ at 318 K . The concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 60 minutes was $0.20 \times 10^{-2} \mathrm{~mol} \mathrm{~L}{ }^{-1}$. Calculate the rate constant of the reaction at 318 K .

D Watch Video Solution

8. The following data were obtained during the first order thermal decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ at constant volume :
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{O}_{2}$
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{O}_{2}$

S. No.	Time per second	Total pressure (atm)
1	0	0.5
2	100	0.512

Calculate rate constant.

- Watch Video Solution

9. A first order reaction is 20% complete in 20 minutes.

Calculate the time taken for the reaction to go to 80% completion.

- Watch Video Solution

10. For a first order reaction, calculate the ratio between the time taken to complete $3 / 4 t h$ of the reaction and time to
complete half of the reaction.

(Watch Video Solution

11. The following results have been obtained during the
kinetics studies of the reaction :
$2 A+B \rightarrow C+D$

Experiment	$[A] \mathrm{mol} \mathrm{L}^{-1}$	$[B] \mathrm{mol} \mathrm{L}^{-1}$	Initial rate of formation of D mol L-1 min^{-1}
I	0.1	0.1	6.0×10^{-3}
II	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.40×10^{-1}

Determine the rate law and the rate constant for the reaction.
12. The rate of reaction triples when the temperature changes from 293 K to 313 K . Calculate the energy of activation of the reaction assuming that it does not change with temperature.

- Watch Video Solution

13. The decomposition of A into product has value of K as $4.5 \times 10^{3} \mathrm{sec}^{-1}$ at $10^{\circ} \mathrm{C}$ and energy of activation $60 \mathrm{~kJ} / \mathrm{mol}$. At what temperature would K be $1.5 \times 10^{4} \mathrm{sec}^{-1}$.

- Watch Video Solution

14. Write rate law and order of the following reaction :
$A B+C_{2} \rightarrow A B_{2} C+C$ (slow)
$A B_{2}+C \rightarrow A B_{2} C$ (fast)

Watch Video Solution
15. Define activation energy of a reaction.

- Watch Video Solution

16. What is the relation between rate constant and activation energy of a reaction?
17. For a chemical reaction $R \rightarrow P$, the variation in the concentration (R) vs time (t) plot is given :

Predict the order of reaction.

D Watch Video Solution
18. For a chemical reaction $R \rightarrow P$, the variation in the concentration (R) vs time (t) plot is given :

Write down its rate law.

(Watch Video Solution

19. For a chemical reaction $R \rightarrow P$, the variation in the concentration (R) vs time (t) plot is given :
\square

What is the slope of the curve?

- Watch Video Solution

20. What do you understand by a first order reaction ? Show that for a first order reaction time required to complete a definite fraction of the reaction is independent of initial concentration.

- Watch Video Solution

21. In a pseudo first order reaction of hydrolysis of an ester in $\mathrm{H}_{2} \mathrm{O}$, the following results were obtained :

t/s	0	30	60	90
Ester (M/L)	0.55	0.31	0.17	0.085

Calculate the average rate of reaction between the time interval 30 to 60 sec .

(Watch Video Solution

22. In a pseudo first order reaction of hydrolysis of an ester in $\mathrm{H}_{2} \mathrm{O}$, the following results were obtained :

t / s	0	30	60	90
Ester (M/L)	0.55	0.31	0.17	0.085

Calculate the pseudo first order rate constant for the hydrolysis of ester.

- Watch Video Solution

23. The decomposition of NH_{3} on platinum surface is a zero order reaction. What would be the rate of production of N_{2} and H_{2} if $k=2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$?

- Watch Video Solution

Long Answer Type Questions

1. Define 'order of a reaction'.

- Watch Video Solution

2. Rates of reaction double with every 10° rise in temperature. If this generalization holds for a reaction in the temperature ranges 298 K to 308 K , what would be the value of activation energy for their reaction ? $R=8.314 \mathrm{~J}$ $K^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

3. What are pseudo order reaction ? Give example.
4. The rate constant ' k '. For a reaction varies with temperature 'T' according to the question.
$\log k=\log A-\frac{E_{a}}{2.303 R}\left(\frac{1}{T}\right)$
Where E_{a} is the activation energy. When a graph is plotted for $\log k v s 1 / T$, a straight line with a slope of -4250 K is obtained. Calcualte E_{a} for this reaction.

- Watch Video Solution

5. Determine the units of rate constant for first and zero order reaction.
6. Show that time required for the completion of 99% of the first order reaction is twice the 90% of completion of the reaction.

- Watch Video Solution

7. Define rate constant of reaction.

- Watch Video Solution

8. A first order reaction takes 40 min for 30% decomposition. Calculate $t_{1 / 2}$.
9. Determine the order of reaction and also determine the units of rate constant

- Watch Video Solution

10. The following data were given for thermal decomposition of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ at a constant volume :
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)$

Exp.	Time/s	Total p/atm
1	0	0.5
2	100	0.6

Calculate the rate of the reaction when total pressure is 0.65 atm .

- Watch Video Solution

11. The energy of activation for a reaction is $100 \mathrm{KJmol}^{-1}$.

The peresence of a catalyst lowers the energy of activation by 75%. What will be the effect on the rate of reaction at $20^{\circ} C$, other things being equal?
12. $A+2 B \rightarrow 3 C+2 D$

The rate of disappearance of B is $1 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$.
What will be (i) rate of reaction (ii) rate of change in the concentration of A and C ?

- Watch Video Solution

