© ${ }^{\text {T doubtnut }}$

CHEMISTRY

BOOKS - CBSE COMPLEMENTARY MATERIAL CHEMISTRY (HINGLISH)

COORDINATION COMPOUNDS

1. Which of the following complexes formed by Cu^{2+} ions is most stable?
A. $\left.C u^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right)\right\}^{2}, \log K=11.6$
B. $C u^{2+}+4 C N^{-} \rightarrow\left[C u(C N)_{4}\right]^{2-}, \log K=27.3$

> C. $\mathrm{Cu}^{2+}+2 e n \rightarrow\left[\mathrm{Cu}(e n)_{2}\right]^{2+}, \log K=15.4$
> D. $\left.\mathrm{Cu} u^{2+}+4 \mathrm{H}_{2}\right) \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}: \log K=8.9$

Answer: B

- Watch Video Solution

2. The colour of the coordination compounds depends on the crystal field splitting. What will be the correct order of absorption of wavelength of light of the visible region, for the complexes,
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}-(6)\right]^{3+} \cdot\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3+} \cdot\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\right.$
A.

$$
\left[\mathrm{CO}(\mathrm{CN})_{6}\right]^{3-}>,\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}
$$

B.

$$
\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{CO}(\mathrm{CN})_{6}\right]^{3-}
$$

C.

$$
\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{CO}(\mathrm{CN})_{6}\right]^{3-}
$$

D.

$$
\left[\mathrm{CO}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}
$$

Answer: C

- Watch Video Solution

3. When $0.1 \mathrm{~mol} \mathrm{CoCl}_{3}\left(\mathrm{NH}_{3}\right)_{5}$ is treated with excess of $\mathrm{AgNO}_{3}, 0.2$ mole of AgCl are obtained. The conductivity of solution will correspond to
A. 1:3 electrolyte
B. 1:2 electrolyte
C. 1:1 electrolyte
D. 3:1 electrolyte

Answer: B

- Watch Video Solution

4. The correct IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is
A. Diamminedichloridoplatinum(II)
B. Diamminedichlorideplatinum(IV)
C. Diamminedichlorideplatinum(0)
D. Diamminedichlorideplatinum(IV)

Answer: A

- Watch Video Solution

5. The stabilization of coordination compound due to chelation is called the chelate effect. Which of the following is the most stable complex species?
A. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
B. $\left[F e(C N)_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3+}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: C

- Watch Video Solution

6. Indicate the complex ion which shows geometrical isomerism.
A. $\left.\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right) \mathrm{Cl}_{2}\right]^{+}$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]$
C. $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[C O(C N)_{5}(N C)\right]^{3-}$

Answer: A
7. The CFSE for octahedral $\left[\mathrm{CoCl}_{6}\right]^{4-}$ is $18,000 \mathrm{~cm}^{-1}$. The CFSE for tetrahedral $\left[\mathrm{CoCl}_{4}\right]^{2-}$ will be
A. $18000 \mathrm{~cm}^{-1}$
B. $16,000 \mathrm{~cm}^{-1}$
C. $8000 \mathrm{~cm}^{-1}$
D. $20000 \mathrm{~cm}^{-1}$

Answer: C

- Watch Video Solution

8. Due to the presence of ambidenate ligands coordination compounds show isomerism. Palladium complexes of the
type $\left[P d\left(C_{6} H_{5}\right)_{2}(S C N)_{2}\right] \&\left[P d\left(C_{6} H_{5}\right)_{2}(N C S)_{2}\right]$ are
A. Linkage isomers.
B. Coordination isomers
C. Ionisation isomers
D. Geometrical isomers

Answer: A

D Watch Video Solution

9. The compounds $\left[\mathrm{CO}\left(\mathrm{SO}_{4} \mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right]$ and [
$\left[\mathrm{CO}\left(\mathrm{SO}_{4} \mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}$ represent.
A. Linkage isomerism
B. Ionisation isomerism
C. Coodrination isomerism
D. No isomerism

Answer: D

- View Text Solution

10. Which of the following species is not impected to be a
ligand?
A. NO
B. NH_{4}^{+}
C. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

D. CO

Answer: B

D View Text Solution

11. What kind of isomerism exist between $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (violet) and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)$ (greyish green)?
A. Linkage isomerism
B. Saluate isomerism
C. Ionisation isomerism
D. Coodrination isomerism
12. IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$ is:
A. Platinum disminechlorite
B. Chloronitriti-N-ammine platinum(II)
C. Diamminechloridonitritr-N-platinum(II)
D. Diamminechlornitrite-N-platinate(II)

Answer: C

- View Text Solution

13. Atomic number of Mn . Fe and Co are 25, 26 and 27
octahedral complex ions are diamagnetic?
A. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[M n(C N)_{6}\right]^{3-}$
C. $\left[F e(C N)_{6}\right]^{4-}$
D. $\left[F e(C N)_{6}\right]^{3-}$

Answer: A::C

- Watch Video Solution

14. Which of the following options are correct for $\left[F e(C N)_{6}\right]^{3-}$ complex ?
A. $d^{2} s p^{3}$ hybridisation
B. $s p^{3} d^{2}$ hybridisation
C. paramagnetic
D. diamagnetiic

Answer: A::C

- Watch Video Solution

15. Identify the optically active compounds from the following
A. $\left[C O(e n)_{3}\right]^{3+}$
B. trans $\left[\mathrm{CO}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
C. Cis $\left[\mathrm{CO}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$

$$
\text { D. }\left[\mathrm{Cr}(\mathrm{NH})_{3}-(5) \mathrm{Cl}\right]
$$

Answer: A::C

- Watch Video Solution

16. Match the complen ions given in column 1 with the hybridisation and number of unpaired electrons given in column 2 ad assign the correct code.
Column I
Column II
(A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(1) $d s p^{2}$
(B) $\left[\mathrm{CO}(\mathrm{CN})_{4}\right]^{2-}$
(2) $s p^{3} d^{2}$
(C) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(3) $d^{2} s p^{3}$
(D) $\left[M n F_{6}\right]^{4-}$
(4) $s p^{3}$
(5) $s p^{3} d^{2}$
A. A-3, B-1, C-5, D-2
B. $A-4, B-3, C-2, D-1$
C. $A-3, B-2, C-4, D-1$
D. $A-4, B-1, C-2, D-3$

Answer: (b)

- View Text Solution

17. Match the complen ions given in column 1 with the hybridisation and number of unpaired electrons given in column 2 ad assign the correct code.
Column 1
Column 2
(A) $\left[\mathrm{CO}(\mathrm{NCS})\left(\mathrm{NH}_{3}\right)_{5}\right]\left(\mathrm{SO}_{3}\right)$
$(1)+4$
(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{SO}_{4}$
(2) 0
(C) $\left[C O\left(S_{2} O_{3}\right)_{3}\right] N a_{4}$
$(3)+1$
(D) $\left[\mathrm{CO}_{2}(\mathrm{CO})_{8}\right]$
$((4)+2)$
$(5)+3$
A. $A-1, B-2, C-4, D-5$
B. $A-4, B-3, C-2, D-1$
C. $\mathrm{A}-5, \mathrm{~B}-1, \mathrm{C}-4, \mathrm{D}-2$
D. $A-4, B-2, C-2, D-3$

Answer: (d)

- View Text Solution

18. Assertion (A) Toxic metal ions are removed by the chelating ligands.

Reason (R) Chelate complexes tend to be more stable.
A. Both assertion and reason are True, and reason is the correct explanation of the assertion.
B. Both assertion and reason are True, but reason is not
the correct explanation of the assertion
C. Assertion is True, but reason is fasle.
D. Both assertion and reason are false

Answer: (a)

- Watch Video Solution

19. Assertion (A) $\left[F e(C N)_{6}\right]^{3-}$ ion shows magnetic moment corresponding to two unpaired electrons. Reason (R) Because it has $d^{2} s p^{3}$ type hybridisation.
A. Both assertion and reason are True, and reason is the correct explanation of the assertion.
B. Both assertion and reason are True, but reason is not the correct explanation of the assertion
C. Assertion is True, but reason is fasle.
D. Both assertion and reason are false

Answer: (d)

D Watch Video Solution

20. The coordination number of metal M in the complen
$\left.{ }^{[M(e n)}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{ClBr}\right]^{-}$is

5	6	8	4	2	0

Very Short Answer Type Questions

1. What aer ambidentate ligands? Give an example.

- Watch Video Solution

2. Write the IUPAC name of $\left[\mathrm{PtCl}_{2}(e n)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$.

- Watch Video Solution

3. What is a chelate ligand? Give one example

- Watch Video Solution

4. How many geometrical isomers are possible for the $\left[N i\left(N H_{3}\right)_{4}\right]^{2+}$?

D Watch Video Solution

5. Define coordination polyhedron.

- Watch Video Solution

6. Give the chemical formula of potassium hexacyano ferrate (II)
7. Give one use of Ziegler Natta catalyst.

- Watch Video Solution

8. Name the metal present in: (i) Chlorophyll
(ii) Haemoglobin
(iii) Vit. B-12
(iv) cis platin

- Watch Video Solution

9. The chemical formula of Wilkinson's catalyst is :
10. Which of the two is more stable- $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ or $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

- Watch Video Solution

11. Arrange the following complexes in order of increasing electrical conductivity: $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$

- Watch Video Solution

Short Answer I Type Questions

1. Calculate the magnetic moments of the following complexes: (i) $\left[F e(C N)_{6}\right]^{-4}$
(ii) $\left[F e F_{6}\right]^{-3}$

- Watch Video Solution

2. Explain the following : (i) NH_{3} act as a lihand but NH_{4}^{+} does not.
(ii) $\mathrm{CN}^{\wedge}(-)^{\wedge}$ is a ambidetate ligand.

- Watch Video Solution

3. Mention the main postulates of Werner theory.
4. Draw the structure of: (i) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ (ii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$ - Watch Video Solution
5. How does EDTA help as a cure for lead poisoning?

- Watch Video Solution

6. Explain homoleptic and heteroleptic complexes.

- Watch Video Solution

7. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic while $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is diamagnetic though both are tetrahedral. Why?

- Watch Video Solution

8. The oxidation number of cobalt in the complex: (i)
$K\left[C o(C O)_{4}\right]$
(ii) $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{-3}$

- Watch Video Solution

9. What are $t_{2 g}$ and e_{g} orbitals?

- Watch Video Solution

10. What is the solution in which photographic film is washed? What reaction takes place?

D Watch Video Solution

11. What is spectrochemical series?

D Watch Video Solution
12. What are the assumptions of Crystal Field theory.

- Watch Video Solution

13. CuSO_{4} is colourless while $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is coloured. Why?

- Watch Video Solution

14. What is the difference between inner and outer orbital complexes?

- Watch Video Solution

15. How is stability of coordination compound determined in a aqueous solution?

- Watch Video Solution

16. In a complex ion $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$,
(i) Identify the ligand.
(ii) Oxidation number of metal ion.

D Watch Video Solution

17. Explain how the nature of ligand affects the stability of complex ion.

- Watch Video Solution

18. What is meant by denticity of a ligand? Find out denticity of: (i) $\mathrm{C}_{2} \mathrm{O}_{4}^{-2}$
(ii) EDTA

(Watch Video Solution

Short Answer li Type Questions

1. A coordiantion compound has the formula $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$.

It does not liberate NH_{3} but forms a precipitate with
AgNO_{3}. Write the structure and IUPAC name of the complex compound. Does it show geometrical isomerism?

D Watch Video Solution

2. Why does a tetrahedral complex of the type $\left[M A_{2} B_{2}\right]$ not show geometrical isomerism?
3. The molar conductivity of the complex $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ is found to be same as that of $3: 1$ electrolyte. What is the structural formula. Name and number of geometrical isomer of the complex.

D Watch Video Solution

4. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is coloured while $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is colourless. Why?

- Watch Video Solution

5. Describe with an example of each, the role of coordination compounds in :
(i) Biological System
(ii) Analytical Chemistry
(iii) Medicinal Chemistry

- Watch Video Solution

6. Write the type of isomerism exhibited by the following complexes:
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$
(ii) $\left[\mathrm{Co}(e n)_{3}\right]^{+3}$
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$

- Watch Video Solution

7. Explain the following:
(i) CO is stronger ligand than NH_{3}.
(ii) Low spin octahedral complexes of nickel are not known.
(iii) Aqueous solution of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is coloured.

- View Text Solution

8. Write all the geometrical isomers of
$\left[P t\left(\mathrm{NH}_{3}\right)(B r)(C l)(p y)\right]$ and how many of these will exhibit optical isomers?

- Watch Video Solution

Long Answer Type Questions

1. A metal ion M^{n+} having d^{4} valence electronic configuration combines with three didentate ligands to form a complex compound. Assuming $\Delta_{\circ}>P$:
(i) Draw the diagram showing d-orbital splitting during this comples formation.
(ii) What type of hybridisation will M^{n+} have?
(iii) Name the type of isomerism exhibited by this complex.
(iv) Write the electronic configuration of metal M^{n+}

- Watch Video Solution

2. (i) Discuss the nature of bonding in metal carbonyls.
(ii) Draw figure to show the splitting of d-orbitals in an octahedral crystal field and write electronic configuration of Mn^{2+} ion when:
(a) $p>\Delta$ 。
(b) $\Delta \circ>p$

- Watch Video Solution

3. (i) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ are of differet colours in dilute solution. Why?
(ii) A complex is prepared by mixig CoCl_{3} and NH_{3} in the molar ratio of 1: 2. 0.1 M solution of this complex was foind to be freeze at $-0.372^{\circ} \mathrm{C}$. What is the formula of the complex ? $K_{f}=1.86^{\circ} \frac{C}{M}$
