

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

1. Show that the equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ has no real solution.

Watch Video Solution

2. Solve for
$$x: 4^x - 3^{x-1/2} = 3^{x+1/2} - 2^{2x-1}$$
.

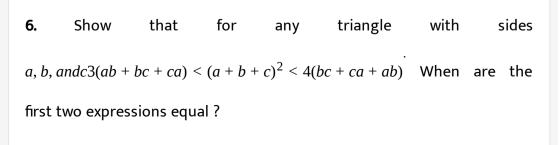
3. Solve for $x: \sqrt{x+1} - \sqrt{x-1} = 1$.

4. If
$$x, y \in Rand2x^2 + 6xy + 5y^2 = 1$$
, then a. $|x| \le \sqrt{5}$ b. $|x| \ge \sqrt{5}$ c. $y^2 \le 2$ d.
 $y^2 \le 4$

Watch Video Solution

5. If the roots $x^5 - 40x^4 + Px^3 + Qx^2 + Rx + S = 0$ are n G.P. and the sum of

their reciprocals is 10, then |S| is 4 b. 6 c. 8 d. none of these



7. For what values of m, does the system of equations 3x+my=m and 2x-

5y=20 has a solution satisfying the conditions x > 0, y > 0?

Watch Video Solution

8. Show that the square to
$$\left(\sqrt{26-15\sqrt{3}}\right)/\left(5\sqrt{2}-\sqrt{38+5\sqrt{3}}\right)$$
 is a

rational number.

Watch Video Solution

9. If α, β are the roots of $x^2 + px + q = 0$ and γ, δ are the roots of $x^2 + rx + s = 0$, evaluate $(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta)$ in terms of p, q, r, and s

Deduce the condition that the equation has a common root.

10. Let $f(x) = x^2 + bx + c$, where $b, c \in R$ If f(x) is a factor of both $x^4 + 6x^2 + 25$ and $3x^4 + 4x^2 + 28x + 5$, then the least value of f(x) is: (a.) 2 (b.) 3 (c.) 5/2 (d.) 4

Watch Video Solution

11. If the equation $ax^2 + bx + c = x$ has no real roots, then the equation $a(ax^2 + bx + c)^2 + b(ax^2 + bx + c) + c = x$ will have a four real roots b. no

real root c. at least two least roots d. none of these

Watch Video Solution

12. The value of expression $x^4 - 8x^3 + 18x^2 - 8x + 2$ when $x = 2 + \sqrt{3}$ a. 2 b.

1 c. 0 d. 3

13. The exhaustive set of values of a for which inequation

$$(a - 1)x^2 - (a + 1)x + a - 1 \ge 0$$
 is true $\forall x > 2$ $(a)(-\infty, 1)$ $(b)\left[\frac{7}{3}, \infty\right)$
 $(c)\left[\frac{3}{7}, \infty\right)$ (d) none of these
Watch Video Solution

14. If p, q, r, s are rational numbers and the roots of f(x) = 0 are eccentricities of a parabola and a rectangular hyperbola, where $f(x) = px^3 + qx^2 + rx + s$, then p + q + r + s = a. p b. -p c. 2p d. 0

Watch Video Solution

15. If
$$\left|z - \left(\frac{1}{z}\right)\right| = 1$$
, then a. $(|z|)_{max} = \frac{1 + \sqrt{5}}{2}$ b. $(|z|)_{m \in} = \frac{\sqrt{5} - 1}{2}$ c.
 $(|z|)_{max} = \frac{\sqrt{5} - 2}{2}$ d. $(|z|)_{m \in} = \frac{\sqrt{5} - 1}{\sqrt{2}}$

16. zo is one of the roots of the equation $z^{n}\cos\theta_{0} + z^{n-1}\cos\theta_{2} + \dots + z\cos\theta_{n-1} + \cos\theta_{n} = 2$, where $\theta \in R$, then (A) $\left|z_{0}\right| < \frac{1}{2}$ (B) $\left|z_{0}\right| > \frac{1}{2}$ (C) $\left|z_{0}\right| = \frac{1}{2}$

(D)None of these

Watch Video Solution

17. If a_0, a_1, a_2, a_3 are all the positive, then $4a_0x^3 + 3a_1x^2 + 2a_2x + a_3 = 0$ has least one root in (-1,0) if (a) $a_0 + a_2 = a_1 + a_3$ and $4a_0 + 2a_2 > 3a_1 + a_3$ (b) $4a_0 + 2a_2 < 3a_1 + a_3$ (c) $4a_0 + 2a_2 = 3a_1 + a_0$ and $4a_0 + a_2 < a_1 + a_3$ (d) none of these

18. If $1, z_1, z_2, z_3, \dots, z_{n-1}$ be the n, nth roots of unity and ω be a non-

real complex cube root of unity, then $\prod_{r=1}^{n-1} (\omega - z_r)$ can be equal to

Watch Video Solution

19. If $ax^2 + bx + c = 0$ has imaginary roots and a - b + c > 0 then the set of points (x, y) satisfying the equation $\left|a\left(x^2 + \frac{y}{a}\right) + (b+1)x + c\right| = \left|ax^2 + bx + c\right| + |x + y|$ consists of the region in the xy - plane which is on or above the bisector of I and III quadrant on or above the bisector of II and IV quadrant on or below the bisector of II and IV quadrant

Watch Video Solution

20. All the values of 'a' for which the quadratic expression $ax^2 + (a - 2)x - 2$ is negative for exactly two integral values of x may lie in

(a)
$$\left[1, \frac{3}{2}\right]$$
 (b) $\left[\frac{3}{2}, 2\right)$ (c) $[1, 2)$ (d) $[-1, 2)$

Watch Video Solution

21. If the equation $z^3 + (3 + i)(z^2) - 3z - (m + i) = 0$, $m \in R$, has at least

one real root, then sum of possible values of m, is

Watch Video Solution

22. If a + b + c = 0, $a^2 + b^2 + c^2 = 4$, then $a^4 + b^4 + c^4$ is _____.

Watch Video Solution

23. Let P(x) and Q(x) be two polynomials. If $f(x) = P(x^4) + xQ(x^4)$ is divisible by $x^2 + 1$, then

24. Find the solution set of the system x + 2y + z = 1 2x - 3y - w = 2

 $x \ge 0, y \ge 0, z \ge 0, w \ge 0$

Watch Video Solution

25. If
$$amp(z_1z_2) = 0$$
 and $|z_1| = |z_2| = 1$, then $z_1 + z_2 = 0$ b. $z_1z_2 = 1$ c. $z_1 = z_2$ d. none of these

Watch Video Solution

26. mn squares of equal size are arranged to form a rectangle of dimension m by n, where m and n are natural numbers. Two square will be called neighbors if they have exactly one common side. A number is written in each square such that the number written in any square is the arithmetic mean of the numbers written in its neighboring squares. Show that this is possible only if all the numbers used are equal.

27. If the points A(z), B(-z), andC(1-z) are the vertices of an equilateral triangle *ABC*, then (a)sum of possible z is $\frac{1}{2}$ (b)sum of possible z is 1 (c)product of possible z is $\frac{1}{4}$ (d)product of possible z is $\frac{1}{2}$

Watch Video Solution

28. Form a quadratic equation whose roots are -4and6.

Watch Video Solution

29. If
$$\left| \frac{z - z_1}{z - z_2} \right| = 3$$
, where z_1 and z_2 are fixed complex numbers and z is a

variable complex number, then z lies on a (a).circle with z_1 as its interior point (b).circle with z_2 as its interior point (c).circle with z_1 as its exterior point (d).circle with z_2 as its exterior point

30. If a, b, c are odd integere then about that $ax^2 + bx + c = 0$, does not

have rational roots

Watch Video Solution

31. if
$$arg(z + a) = \frac{\pi}{6}$$
 and $arg(z - a) = \frac{2\pi}{3}$ then

Watch Video Solution

32. Values (s)(-i)¹/₃ is/are
$$\frac{\sqrt{3} - i}{2}$$
 b. $\frac{\sqrt{3} + i}{2}$ c. $\frac{-\sqrt{3} - i}{2}$ d. $\frac{-\sqrt{3} + i}{2}$

Watch Video Solution

33. if $\cos\theta$, $\sin\phi$, $\sin\theta$ are in g.p then check the nature of roots of $x^2 + 2\cot\phi$. x + 1 = 0

34. Given $z = (1 + i\sqrt{3})^{100}$, then [Re(z)/Im(z)] equals (a)2¹⁰⁰ b. 2⁵⁰ c. $\frac{1}{\sqrt{3}}$ d. $\sqrt{3}$

35. If a ,b ,c are non zero rational no then prove roots of equation $(abc^{2})x^{2} + 3a^{2}cx + b^{2}cx - 6a^{2} - ab + 2b^{2} = 0 \text{ are rational.}$

Watch Video Solution

36. If ab + bc + ca = 0, then solve $a(b - 2c)x^2 + b(c - 2a)x + c(a - 2b) = 0$.

Watch Video Solution

37. $If(\cos\theta + i\sin\theta)(\cos 2\theta + i\sin 2\theta)...$. $(\cos n\theta + i\sin n\theta) = 1$ then the value of

 θ is:

38. The polynomial $x^6 + 4x^5 + 3x^4 + 2x^3 + x + 1$ is divisible by_____ where ω is one of the imaginary cube roots of unity. (a) $x + \omega$ (b) $x + \omega^2$ (c) $(x + \omega)(x + \omega^2)$ (d) $(x - \omega)(x - \omega^2)$

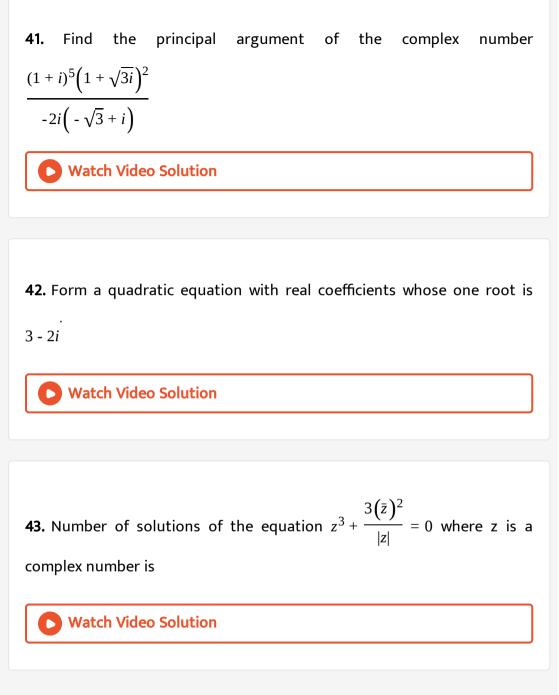
Watch Video Solution

39. If roots of equation $3x^2 + 5x + 1 = 0$ are $(\sec\theta_1 - \tan\theta_1)$ and $(\csc\theta_2 - \cot\theta_2)$. Then find the equation whose roots are $(\sec\theta_1 + \tan\theta_1)$ and $(\csc\theta_2 + \cot\theta_2)$.

Watch Video Solution

40. If roots of the equation $ax^2 + bx + c = 0$ be a quadratic equation and

 α , β are its roots then f(-x)=0 is an equation whose roots



44. If the roots of the quadratic equation $x^2 + px + q = 0$ are $\tan 30^0$ and $\tan 15^0$, respectively, then find the value of 2 + q - p

45. If *xandy* are complex numbers, then the system of equations (1 + i)x + (1 - i)y = 1, 2ix + 2y = 1 + i has Unique solution No solution Infinite number of solutions None of these

Watch Video Solution

46. If *a*, *b*, *andc* are in A.P. and one root of the equation $ax^2 + bc + c = 0is2$, the find the other root

47. If
$$z = x + iy\left(x, y \in R, x \neq -\frac{1}{2}\right)$$
, the number of values of z satisfying $|z|^n = z^2|z|^{n-2} + z|z|^{n-2} + 1$. $(n \in N, n > 1)$ is

Watch Video Solution

48. If
$$K + |K + z^2| = z | {}^2(K \in R^-)$$
, then possible argument of z is

Watch Video Solution

49. If α is the root (having the least absolute value) of the equation $x^2 - bx - 1 = 0 (b \in R^+)$, then prove that $-1 < \alpha < 0$.

Watch Video Solution

50. If α , β are roots of $x^2 - 3x + a = 0$, $a \in R$ and $\alpha < 1 < \beta$ then find the

value of a.

51. If z=x+iy and $x^2 + y^2 = 16$, then the range of ||x| - |y|| is

52. If a < b < c < d, then for any real non-zero λ , the quadratic equation

 $(x - a)(x - c) + \lambda(x - b)(x - d) = 0$, has real roots for

Watch Video Solution

53. If
$$k > 0$$
, $|z| = |w| = k$, and $\alpha = \frac{z - \bar{w}}{k^2 + z\bar{w}}$, then $Re(\alpha)$ (A) 0 (B) $\frac{k}{2}$ (C) k (D)

None of these

Watch Video Solution

54. The quadratic $x^2 + ax + b + 1 = 0$ has roots which are positive integers, then $(a^2 + b^2)$ can be equal to a.50 b. 37 c. 61 d. 19

55. The sum of values of x satisfying the equation $(31 + 8\sqrt{15})^{x^2 - 3} + 1 = (32 + 8\sqrt{15})^{x^2 - 3}$ is (a) 3 (b) 0 (c) 2 (d) none of

these

Watch Video Solution

56. Let a complex number $\alpha, \alpha \neq 1$, be a root of hte evation $z^{p+q} - z^p - z^q + 1 = 0$, where p, q are distinct primes. Show that either $1 + \alpha + \alpha^2 + \alpha^{p-1} = 0$ or $1 + \alpha + \alpha^2 + \alpha^{q-1} = 0$, but not both together.

Watch Video Solution

57. If α , β are real and distinct roots of $ax^2 + bx - c = 0$ and p, q are real and distinct roots of $ax^2 + bx - |c| = 0$, where (a > 0), then $(a)\alpha, \beta \in (p, q)$ (b). $\alpha, \beta \in [p, q]$ (c). $p, q \in (\alpha, \beta)$ (d). none of these **58.** Let $a \neq 0$ and p(x) be a polynomial of degree greater than 2. If p(x) leaves remainders a and -a when divided respectively, by x + a and x - a, the remainder when p(x) is divided by $x^2 - a^2$ is (a) 2x (b) -2x (c) x (d) -x

Watch Video Solution

59. Prove that there exists no complex number z such that $|z| < \frac{1}{3}$ and $\sum_{n=1}^{n} a_r z^r = 1$, where $|a_r| < 2$.

Watch Video Solution

60. A quadratic equation with integral coefficients has two different prime numbers as its roots. If the sum of the coefficients of the equation is prime, then the sum of the roots is a. 2 b. 5 c. 7 d. 11

61. Find the centre and radius of the circle formed by all the points represented by z = x + iy satisfying the relation $\left|\frac{z - \alpha}{z - \beta}\right| = k(k \neq 1)$, where α and β are the constant complex numbers given by $\alpha = \alpha_1 + i\alpha_2, \beta = \beta_1 + i\beta_2$.

Watch Video Solution

62. If *a*, *b*, *c* are three distinct positive real numbers, the number of real and distinct roots of $ax^2 + 2b|x| - c = 0$ is 0 b. 4 c. 2 d. none of these

Watch Video Solution

63. Find the non-zero complex number z satisfying $z = iz^2$

64. Let *a*, *b* and *c* be real numbers such that 4a + 2b + c = 0 and ab > 0. Then the equation $ax^2 + bx + c = 0$ has (A) real roots (B) Imaginary roots (C) exactly one root (D) roots of same sign

A. only one root

B. null

C. null

D. null

Watch Video Solution

65. If $|z| \le 1$, $|w| \le 1$, then show that $|z - w|^2 \le (|z| - |w|)^2 + (argz - argw)^2$

66. If α , β are the roots of the equation $x^2 - 2x + 3 = 0$ obtain the equation

whose roots are α^3 - $3\alpha^2$ + 5α - 2 and β^3 - β^2 + β = 5

67. For complex numbers z and w, prove that $|z|^2w - |w|^2z = z - w$, if and

only if z = w or $z\bar{w} = 1$.

Watch Video Solution

68. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then the value of

$$\frac{a\alpha^2 + c}{a\alpha + b} + \frac{a\beta^2 + c}{a\beta + b}$$
 is a.
$$\frac{b(b^2 - 2ac)}{4a}$$
 b.
$$\frac{b^2 - 4ac}{2a}$$
 c.
$$\frac{b(b^2 - 2ac)}{a^2c}$$
 d. none of these

69. Let z_1 and z_2 be the roots of the equation $z^2 + pz + q = 0$, where the coefficients p and q may be complex numbers. Let A and B represent z_1 and z_2 in the complex plane, respectively. If $\angle AOB = \theta \neq 0$ and OA = OB, where O is the origin, prove that $p^2 = 4q\cos^2(\theta/2)$

Watch Video Solution

70. If $a \in (-1, 1)$, then roots of the quadratic equation $(a - 1)x^2 + ax + \sqrt{1 - a^2} = 0$ are

A. a. Real

B. b. Imaginary

C. c. both equal

D. d. none of these

71. The maximum value of
$$\left| arg\left(\frac{1}{1-z}\right) \right|$$
 for $|z|=1, z \neq 1$ is given by.

Watch Video Solution

72. If one root is square of the other root of the equation $x^2 + px + q = 0$, then the relation between *pandq* is $p^3 - q(3p - 1) + q^2 = 0$ $p^3 - q(3p + 1) + q^2 = 0$ $p^3 + q(3p - 1) + q^2 = 0$ $p^3 + q(3p + 1) + q^2 = 0$

Watch Video Solution

73. If $z^4 + 1 = \sqrt{3}i$ (A) z^3 is purely real (B) z represents the vertices of a square of side $2^{\frac{1}{4}}$ (C) z^9 is purely imaginary (D) z represents the vertices of a square of side $2^{\frac{3}{4}}$

74. Let α, β be the roots of the quadratic equation $ax^2 + bx + c = 0$ and $\delta = b^2 - 4a \cdot If\alpha + \beta, \alpha^2 + \beta^2 \alpha^3 + \beta^3$ are in G.P. Then a. = 0 b. $\neq 0$ c. b = 0 d. c = 0

Watch Video Solution

75. If x = a + bi is a complex number such that $x^2 = 3 + 4i$ and $x^3 = 2 + 11i$, where $i = \sqrt{-1}$, then (a + b) equal to

Watch Video Solution

76. Let α , β be the roots of $x^2 - x + p = 0$ and γ , δ are roots of $x^2 - 4x + q = 0$. If α , β , γ , δ are in G.P., then the integral value of *pandq*, respectively, are -2, -32 b. -2, 3 c. -6, 3 d. -6, -32

77. If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then the set of possible values of a is (1) (-3, 3) (2) (-3, ∞) (3) $(3, \infty)$ (4) (- ∞ , -3)

78. If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 - 2cx + b^2$ are such that min

f(x) > maxg(x), then the relation between b and c is

Watch Video Solution

79. Let z be a complex number such that the imaginary part of z is

nonzero and $a = z^2 + z + 1$ is real. Then a cannot take the value

80. For the equation $3x^2 + px + 3 = 0$, p > 0, if one of the root is square

of the other, then p is equal to 1/3 b. 1 c. 3 d. 2/3

81. Let *z*, *w* be complex numbers such that $\bar{z} + i\bar{w} = 0$ and $argzw = \pi$ Then argz equals

Watch Video Solution

82. Let $f(x) = (1 + b^2)x^2 + 2bx + 1$ and let m(b) be the minimum value of

f(*x*) As *b* varies, the range of *m*(*b*) is (a) [0, } b. $\left(0, \frac{1}{2}\right)$ c. $\frac{1}{2}$, 1 d. (0, 1]

Watch Video Solution

83. For any two complex numbers z_1 and z_2 , prove that Re ($z_1 z_2$) = Re

z_1 Re z_2 – Imz_1 Imz_2

84. If $\alpha and\beta$ are the roots of the equation $x^2 + bx + c = 0$, where c < 0 < b

then (a) 0< α < β (b) α < 0 < β^2 < α^2 (c) α < β <0 (d) α < 0 < α^2 < β^2

Watch Video Solution

85. If $\omega \neq 1$ be an imaginary cube root of unity and $(1 + \omega^2)^n = (1 + \omega^4)^n$, then the least positive value of *n* is (a) 2 (b) 3 (c) 5 (d) 6

Watch Video Solution

86. If b > a, then the equation (x - a)(x - b) - 1 = 0 has (a) both roots in (a, b) (b) both roots in $(-\infty, a)$ (c) both roots in $(b, +\infty)$ (d)one root in $(-\infty, a)$ and the other in $(b, +\infty)$

87. Let $z_1 and z_2$ be complex numbers such that $z_1 \neq z_2$ and $|z_1| = |z_2|$. If z_1 has positive real part and z_2 has negative imaginary part, then $\frac{z_1 + z_2}{z_1 - z_2}$ may be (a)zero (b) real and positive (c)real and negative (d) purely imaginary

Watch Video Solution

88. The equation $\sqrt{x+1} - \sqrt{x-1} = \sqrt{4x-1}$ has a. no solution b. one

solution c. two solution d. more than two solutions

Watch Video Solution

89. If
$$z_1, z_2$$
 are complex number such that $\frac{2z_1}{3z_2}$ is purely imaginary number, then find $\left|\frac{z_1 - z_2}{z_1 + z_2}\right|$.

90. If the roots of the equation $x^2 - 2ax + a^2 - a - 3 = 0$ are real and less than 3, then (a)a < 2 b. $2 < -a \le 3$ c. `34

Watch Video Solution

91. If
$$z(1 + a) = b + icanda^2 + b^2 + c^2 = 1$$
, then $[(1 + iz)/(1 - iz) =$
A. $\frac{a + ib}{1 + c}$
B. $\frac{b - ic}{1 + a}$
C. $\frac{a + ic}{1 + b}$
D. none of these

Watch Video Solution

92. A value of b for which the equation $x^2 + bx - 1 = 0$, $x^2 + x + b = 0$ have

one root in common is $-\sqrt{2}$ b. $-i\sqrt{3}$ c. $\sqrt{2}$ d. $\sqrt{3}$

 $A = \begin{bmatrix} argz_1 & argz_3 & argz_3 \\ argz_2 & argz_2 & argz_1 \\ argz_3 & argz_1 & argz_2 \end{bmatrix}$ Then A divisible by $arg(z_1 + z_2 + z_3)$ b.

 $arg(z_1, z_2, z_3)$ c. all numbers d. cannot say

Watch Video Solution

94. Let p and q be real numbers such that $p \neq 0$, $p^3 \neq q$, and $p^3 \neq -q$ if α and β are nonzero complex numbers satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$, then a quadratic equation having α/β and β/α as its roots is A. $(p^3 + q)x^2 - (p^3 + 2q)x + (p^3 + q) = 0$ B. $(p^3 + q)x^2 - (p^3 - 2q)x + (p^3 + q) = 0$ C. $(p^3 + q)x^2 - (5p^3 - 2q)x + (p^3 - q) = 0$ D. $(p^3 + q)x^2 - (5p^3 + 2q)x + (p^3 + q) = 0$

95. If $\cos \alpha + 2\cos \beta + 3\cos \gamma = \sin \alpha + 2\sin \beta + 3\sin \gamma = 0$, then the value of $\sin 3\alpha + 8\sin 3\beta + 27\sin 3\gamma$ is $\sin(a+b+gamma)$ b. $3\sin(\alpha + \beta + \gamma)$ c. $18\sin(\alpha + \beta + \gamma)$ d. $\sin(\alpha + 2\beta + 3)$

Watch Video Solution

96. Let α , β be the roots of the equation $x^2 - px + r = 0$ and $\alpha/2$, 2β be the roots of the equation $x^2 - qx + r = 0$, then the value of r is (1) $\frac{2}{9}(p-q)(2q-p)$ (2) $\frac{2}{9}(q-p)(2p-q)$ (3) $\frac{2}{9}(q-2p)(2q-p)$ (4) $\frac{2}{9}(2p-q)(2q-p)$

Watch Video Solution

97. If center of a regular hexagon is at the origin and one of the vertices on the Argand diagram is 1 + 2i, then its perimeter is $2\sqrt{5}$ b. $6\sqrt{2}$ c. $4\sqrt{5}$ d. $6\sqrt{5}$

98. Let *a*, *b*, *c* be the sides of a triangle, where $a \neq b \neq c$ and $\lambda \in R$. If the roots of the equation $x^2 + 2(a + b + c)x + 3\lambda(ab + bc + ca) = 0$ are real.

Then
$$\mathbf{a}.\lambda < \frac{4}{3}$$
 $\mathbf{b}.\lambda > \frac{5}{3}$ $\mathbf{c}.\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$ $\mathbf{d}.\lambda \in \left(\frac{4}{3}, \frac{5}{3}\right)$

Watch Video Solution

99. Let z be a complex number satisfying equation $z^p - z^{-q} = 0$, where $p, q \in N$, then (A) if p = q, then number of solutions of equation will be infinite. (B) if p = q, then number of solutions of equation will be finite. (C) if $p \neq q$, then number of solutions of equation will be p + q + 1. (D) if $p \neq q$, then number of solutions of equation will be p + q = 1.

Watch Video Solution

100. Let *S* be the set of all non-zero real numbers such that the quadratic equation $\alpha x^2 - x + \alpha = 0$ has two distinct real roots $x_1 and x_2$ satisfying the

inequality $|x_1 - x_2| < 1$. Which of the following intervals is (are) a subset

(s) of S?
$$\left(\frac{1}{2}, \frac{1}{\sqrt{5}}\right)$$
 b. $\left(\frac{1}{\sqrt{5}}, 0\right)$ c. $\left(0, \frac{1}{\sqrt{5}}\right)$ d. $\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

Watch Video Solution

101. A complex number z is rotated in anticlockwise direction by an angle α and we get z' and if the same complex number z is rotated by an angle α in clockwise direction and we get z' then

A. z',z,z" are in G.P

B. z'2+z"2=2z2cos2alpha

C. z'+z"=2zcosalpha

D. z',z,z" are in H.P

102. For real x, the function $\frac{(x-a)(x-b)}{x-c}$ will assume all real values provided a)a > b > c b)a < b < c c) a > c < b d) $a \le c \le b$

Watch Video Solution

103. If z_1, z_2 are two complex numbers $(z_1 \neq z_2)$ satisfying $|z_1^2 - z_2^2| = |z_1^2 + z_2^2 - 2(z_1)(z_2)|$, then $a \cdot \frac{z_1}{z_2}$ is purely imaginary b. $\frac{z_1}{z_2}$ is purely real c. $|argz_1 - argz_2| = \pi d \cdot |argz_1 - argz_2| = \frac{\pi}{2}$

Watch Video Solution

104. The quadratic equation p(x) = 0 with real coefficients has purely imaginary roots. Then the equation p(p(x)) = 0 has A. only purely imaginary roots B. all real roots C. two real and purely imaginary roots D. neither real nor purely imaginary roots

105. If from a point P representing the complex number z_1 on the curve |z| = 2, two tangents are drawn from P to the curve |z| = 1, meeting at points $Q(z_2)$ and $R(z_3)$, then :

Watch Video Solution

106. Let α and β be the roots $x^2 - 6x - 2 = 0$, with $\alpha > \beta$ If $a_n = \alpha^n - \beta^n$ for

or
$$n \ge 1$$
 then the value of $\frac{a_{10} - 2a_8}{2a_9}$ is (a) 1 (b) 2 (c) 3 (d) 4

Watch Video Solution

107. If $|z - 3| = \min \{|z - 1|, |z - 5|\}$, then Re(z) equals to

Watch Video Solution

108. For the following question, choose the correct answer from the codes (a), (b), (c) and (d) defined as follows: Statement I is true, Statement

Il is also true; Statement II is the correct explanation of Statement I. Statement I is true, Statement II is also true; Statement II is not the correct explanation of Statement I. Statement I is true; Statement II is false Statement I is false; Statement II is true. Let a, b, c, p, q be the real numbers. Suppose α, β are the roots of the equation $x^2 + 2px + q = 0$ and $\alpha, \frac{1}{\beta}$ are the roots of the equation $ax^2 + 2bx + c = 0$, where $\beta^2 \notin \{-1, 0, 1\}$ Statement I $(p^2 - q)(b^2 - ac) \ge 0$ and Statement II $b \notin pa \text{ or } c \notin qa$

Watch Video Solution

109. Minimum value of $|z_1 - z_2|$ as $z_1 \& z_2$ over the curves $\sqrt{3}$

Watch Video Solution

110. All the values of *m* for whilch both the roots of the equation $x^2 - 2mx + m^2 - 1 = 0$ are greater than -2 but less than 4 lie in the interval A `-2 B. *m* > 3

C. `-1 D. 1 < *m* < 4

Watch Video Solution

111. If $p = a + b\omega + c\omega^2$, $q = b + c\omega + a\omega^2$, and $r = c + a\omega + b\omega^2$, where $a, b, c \neq 0$ and ω is the complex cube root of unity, then (a) p + q + r = a + b + c (b) $p^2 + z^2 + r^2 = a^2 + b^2 + c^2$ (c) $p^2 + z^2 + r^2 = -2(pq + qr + rp)$ (d) none of these

Watch Video Solution

112. If the roots of the quadratic equation $(4p - p^2 - 5)x^2 - (2p - 1)x + 3p = 0$ lie on either side of unit, then the number of integer values of p is a.1 b. 2 c. 3 d. 4

113. If $z_1 = 5 + 12i$ and $|z_2| = 4$, then

A. (a) maximum
$$(|z_1 + iz_2|) = 17$$

B. (b) minimum $(|z_1 + (1 + i)z_2|) = 13 + 4\sqrt{2}$

C. (c) minimum
$$\left| \frac{z_1}{z_2 + \frac{4}{z_2}} \right| = \frac{13}{4}$$

D. (d) maximum
$$\left| \frac{z_1}{z_2 + \frac{4}{z_2}} \right| = \frac{13}{3}$$

1 1

Watch Video Solution

114. If roots of $x^2 - (a - 3)x + a = 0$ are such that at least one of them is

greater than 2, then a. $a \in [7, 9]$ b. $a \in [7, \infty]$ c. $a \in [9, \infty)$ d. $a \in [7, 9]$

115. If |z - 1| - 1, then arg((z - 1 - i)/z) can be equal to $\pi/4 (z - 2)/z$ is purely imaginary number (z - 2)/z is purely real number If $arg(z) = \theta$, where $z \neq 0$ and thy is acute, then $1 - 2/z = itan\theta$

Watch Video Solution

116. Let $f(x) = ax^2 + bx + ca$, b, $c \in R$. If f(x) takes real values for real values of x and non-real values for non-real values of x, then (a)a = 0 (b) b = 0(c) c = 0 (d) nothing can be said about a, b, c.

Watch Video Solution

117. Write a linear equation representing a line which is parallel to y-axis and is at a distance of 2 units on the positive side of x-axis

118. If both roots of the equation $ax^2 + x + c - a = 0$ are imaginary and c > -1, then

A. a) 3a >2+4c

B. b) 3a<2+4c

C. c) c < a

D. d) none of these

119. If
$$|z| = 1$$
 and $w = \frac{z-1}{z+1}$ (where $z \neq -1$), then $Re(w)$ is 0 (b) $\frac{1}{|z+1|^2}$
 $\left|\frac{1}{|z+1|}\right|, \frac{1}{|z+1|^2}$ (d) $\frac{\sqrt{2}}{|z|1|^2}$
Watch Video Solution

120. The set of all possible real values of a such that the inequality $(x - (a - 1))(x - (a^2 - 1)) < 0$ holds for all $x \in (-1, 3)$ is (0, 1) b. $(\infty, -1]$ c. $(-\infty, -1)$ d. $(1, \infty)$

121. Column I, Column II (Locus) parallelogram, p.
$$z_1 - z_4 = z_2 - z_3$$

rectangle, q. $|z_1 - z_3| = |z_2 - z_4|$ rhombus, r. $\frac{z_1 - z_2}{z_3 - z_4}$ is purely real square,
s. $\frac{z_1 - z_3}{z_2 - z_4}$ is purely imaginary, t. $\frac{z_1 - z_2}{z_3 - z_2}$ is purely imaginary
Watch Video Solution

122. The interval of *a* for which the equation $tan^2x - (a - 4)tanx + 4 - 2a = 0$ has at least one solution $\forall x \in [0, \pi/4] \ a \in (2, 3)$ b. $a \in [2, 3]$ c. $a \in (1, 4)$ d. $a \in [1, 4]$

123. The range of *a* for which the equation $x^2 + ax - 4 = 0$ has its smaller root in the interval (-1, 2)is a. $(-\infty, -3)$ b. (0, 3) c. $(0, \infty)$ d. $(-\infty, -3) \cup (0, \infty)$

Watch Video Solution

124. Let z and ω be two complex numbers such that $|z| \le 1$, $|\omega| \le 1$ and $|z - i\omega| = |z - i\overline{\omega}| = 2$, then z equals (a)1 or i (b). i or -i (c). 1 or -1 (d). i or -1

Watch Video Solution

125. Consider the equation $x^2 + 2x - n = 0$ where $n \in N$ and $n \in [5, 100]$ The total number of different values of n so that the given equation has integral roots is a.8 b. 3 c. 6 d. 4

126. If
$$n_1, n_2$$
 are positive integers, then
 $(1+i)^{n_1} + (1+i^3)^{n_1} + (1+i^5)^{n_2} + (1+i^7)^{n_2}$ is real if and only if :
Watch Video Solution

127. The total number of values a so that $x^2 - x - a = 0$ has integral roots,

where $a \in Nand6 \le a \le 100$, is equal to a.2 b. 4 c. 6 d. 8

128. If
$$i = \sqrt{-1}$$
, then $4 + 5\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} + 3\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{365}$ is equal to
(1) $1 - i\sqrt{3}$ (2) $-1 + i\sqrt{3}$ (3) $i\sqrt{3}$ (4) $-i\sqrt{3}$

Watch Video Solution

129. Let $P(x) = x^3 - 8x^2 + cx - d$ be a polynomial with real coefficients and with all it roots being distinct positive integers. Then number of possible

va	lue	of	С	is	

Watch Video Solution

130. If arg(z) < 0, then arg(-z) - a r g(z) equals π (b) $-\pi$ (d) $-\frac{\pi}{2}$ (d) $\frac{\pi}{2}$

Watch Video Solution

131. Let
$$P(x) = \frac{5}{3} - 6x - 9x^2 and Q(y) = -4y^2 + 4y + \frac{13}{2}$$
 if there exists unique pair of real numbers (x, y) such that $P(x)Q(y) = 20$, then the value of $(6x + 10y)$ is ____.

132. If
$$z_1, z_2, z_3$$
 are complex numbers such that $|z_1| = |z_2| = |z_3| = \left|\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right| = 1$ then $|z_1 + z_2 + z_3|$ is equal to

133. if a < c < b, then check the nature of roots of the equation

 $(a - b)^2 x^2 + 2(a + b - 2c)x + 1 = 0$

134. Q. Let z_1 and z_2 be nth roots of unity which subtend a right angle at

the origin, then n must be the form 4k.

Watch Video Solution

135. If a + b + c = 0 then check the nature of roots of the equation

 $4ax^2 + 3bx + 2c = 0$ where $a, b, c \in \mathbb{R}$

136. The complex numbers z_1, z_2 and z_3 satisfying $\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - i\sqrt{3}}{2}$ are the vertices of triangle which is (1) of area zero (2) right angled isosceles(3) equilateral (4) obtuse angled isosceles

0	Watch	Video	Solution	

137. Find the value of a for which the sum of the squares of the roots of

the equation $x^2 - (a - 2)x - a - 1 = 0$ assumes the least value.

Watch Video Solution

138. For all complex numbers z_1, z_2 satisfying $|z_1| = 12$ and $|z_2 - 3 - 4i| = 5$

, find the minimum value of $\begin{vmatrix} z_1 - z_2 \end{vmatrix}$

139. If x_1 , and x_2 are the roots of $x^2 + (\sin\theta - 1)x - \frac{1}{2}(\cos^2\theta) = 0$, then find the maximum value of $x_1^2 + x_2^2$

Watch Video Solution

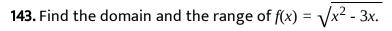
140. If
$$y = \sec(\tan^{-1}x)$$
, then $\frac{dy}{dx}atx = 1$ is (a) $\frac{\cos\pi}{4}$ (b) $\frac{\sin\pi}{2}$ (c) $\frac{\sin\pi}{6}$ (d) $\frac{\cos\pi}{3}$

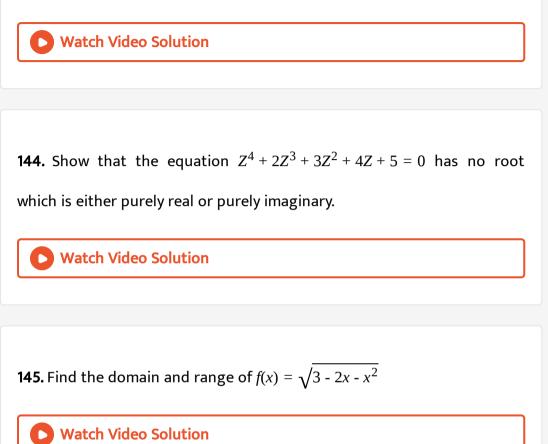
Watch Video Solution

141. If $p, q \in \{1, 2, 3, 4, 5\}$, then find the number of equations of form $p^2x^2 + q^2x + 1 = 0$ having real roots.

Watch Video Solution

142. If
$$a^2 + b^2 = 1$$
 then $\frac{1+b+ia}{1+b-ia} = 1$ b. 2 c. $b+ia$ d. $a+ib$





146. If
$$x \in (0, \pi/2)$$
 and $\cos x = 1/3$, then prove that

$$\sum_{n=0}^{\infty} \frac{\cos nx}{3^n} = \frac{3(3 - \cos x)}{10 - 6\cos x + \cos^2 x}$$
Watch Video Solution

147. Prove that if the equation $x^2 + 9y^2 - 4x + 3 = 0$ is satisfied for real values of *xandy*, *thenx* must lie between 1 and 3 and *y* must lie between-1/3 and 1/3.

148. Let
$$Z_p = r_p \left(\cos \theta_p + i \sin \theta_p \right), p = 1, 2, 3and \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} = 0.$$

Consider the ABC formed formed by $\frac{\cos 2\theta_1 + i \sin 2\theta_1}{Z_1}, \frac{\cos 2\theta_2 + i \sin 2\theta_2}{Z_2}, \frac{\cos 2\theta_3 + i \sin 2\theta_3}{Z_3}$ Prove that origin lies inside triangle ABC

Watch Video Solution

149. Find the least value of
$$\frac{\left(6x^2 - 22x + 21\right)}{\left(5x^2 - 18x + 17\right)}$$
 for real x

150. Let *a*, *b* and *c* be any three nonzero complex number. If |z| = 1 and '*z*' satisfies the equation $az^2 + bz + c = 0$, prove that $a.\bar{a} = c.\bar{c}$ and $|a||b| = \sqrt{ac(\bar{b})^2}$

Watch Video Solution

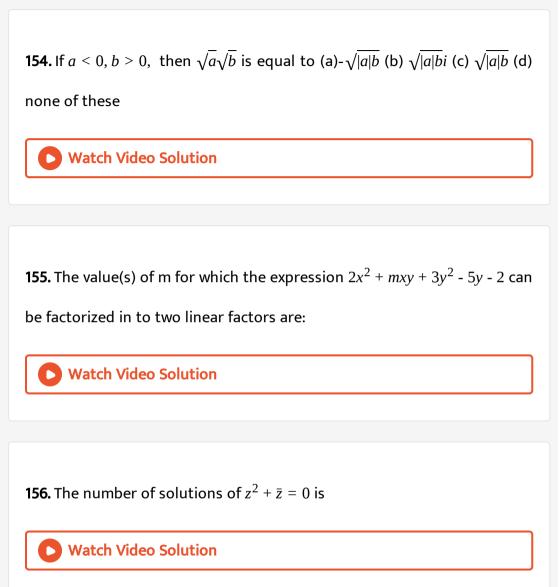
151. Find the range of the function $f(x) = x^2 - 2x - 4$.

Watch Video Solution

152. If
$$x = 9^{\frac{1}{3}}9^{\frac{1}{9}}9^{\frac{1}{27}}... \rightarrow \infty$$
, $y = 4^{\frac{1}{3}}4^{-\frac{1}{9}}4^{\frac{1}{27}}... \rightarrow \infty$ and $z = \sum_{r=1}^{\infty} (1+i)^{-r}$

then , the argument of the complex number w = x + yz is

153. Find the linear factors of $2x^2 - y^2 - x + xy + 2y - 1$.



157. If
$$a_1x^3 + b_1x^2 + c_1x + d_1 = 0$$
 and $a_2x^3 + b_2x^2 + c_2x + d_2 = 0$ have a pair

of repeated common roots, then prove that

 $\begin{vmatrix} 3a_1 & 2b_1 & c_1 \\ 3a_2 & 2b_2 & c_2 \\ a_2b_1 - a_1b_2 & c_1a_2 - c_2a_1 & d_1a_2 - d_2a_1 \end{vmatrix} = 0$

Watch Video Solution

158. Consider the equation $10z^2 - 3iz - k = 0$, where *z* is a following complex variable and $i^2 = -1$. Which of the following statements ils true? (a)For real complex numbers *k*, both roots are purely imaginary. (b)For all complex numbers *k*, neither both roots is real. (c)For all purely imaginary numbers *k*, both roots are real and irrational. (d)For real negative numbers *k*, both roots are purely imaginary.

Watch Video Solution

159. If x - c is a factor of order m of the polynomial f(x) of degree n (1 < m < n) , then find the polynomials for which x = c is a root.

160. If $z_1 and z_2$ are two complex numbers such that $|z_1| = |z_2| and arg(z_1) + arg(z_2) = \pi$, then show that z_1 , $z_1 = -\overline{z_2}$.

Watch Video Solution

161. Solve the equation $x^3 - 13x^2 + 15x + 189 = 0$ if one root exceeds the other by 2.

Watch Video Solution

162. Let z_1, z_2, z_3 be the three nonzero complex numbers such that

$$z_2 \neq 1, a = |z_1|, b = |z_2| andc = |z_3|$$
 Let $|abcbcacab| = 0$

 $ar \frac{g(z_3)}{z_2} = arg \left(\frac{z_3 - z_1}{z_2 - z_1}\right)^2$ orthocentre of triangle formed by

 $z_1, z_2, z_3, isz_1 + z_2 + z_3$ if triangle formed by z_1, z_2, z_3 is equilateral, then its area is $\frac{3\sqrt{3}}{2}|z_1|^2$ if triangle formed by z_1, z_2, z_3 is equilateral, then $z_1 + z_2 + z_3 = 0$

163. If $\tan\theta$ and $\sec\theta$ are the roots of $ax^2 + bx + c = 0$, then prove that

$$a^4 = b^2 \left(b^2 - 4ac \right)^2$$

Watch Video Solution

164. Given that the complex numbers which satisfy the equation $|z\bar{z}^3| + |\bar{z}z^3| = 350$ form a rectangle in the Argand plane with the length of its diagonal having an integral number of units, then area of rectangle is 48 sq. units if z_1, z_2, z_3, z_4 are vertices of rectangle, then $z_1 + z_2 + z_3 + z_4 = 0$ rectangle is symmetrical about the real axis $arg(z_1 - z_3) = \frac{\pi}{4}$ or $\frac{3\pi}{4}$

165. If the roots of the equation $x^2 - bx + c = 0$ are two consecutive integers, then find the value of $b^2 - 4c$

166. If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then the set of possible values of a is (1) (-3, 3) (2) (-3, ∞) (3) (3, ∞) (4) (- ∞ , -3)

Watch Video Solution

167. For what real values of a do the roots of the equation $x^2 - 2x - (a^2 - 1) = 0$ lie between the roots of the equation $x^2 - 2(a + 1)x + a(a - 1) = 0.$

168. If P and Q are represented by the complex numbers z_1 and z_2 such

that
$$\left|\frac{1}{z_2} + \frac{1}{z_1}\right| = \left|\frac{1}{z_2} - \frac{1}{z_1}\right|$$
, then a) *OPQ(whereO)* is the origin of

equilateral *OPQ* is right angled. b) the circumcenter of *OPQis* $\frac{1}{2}(z_1 + z_2)$ c) the circumcenter of *OPQis* $\frac{1}{3}(z_1 + z_2)$

Watch Video Solution

169. Find the value of *a* for which the equation a $\sin\left(x + \frac{\pi}{4}\right) = \sin 2x + 9$

will have real solution.

170. Given z = f(x) + ig(x) where $f, g: (0, 1) \rightarrow (0, 1)$ are real valued

functions. Then which of the following does not hold good?

a.z =
$$\frac{1}{1 - ix} + i\frac{1}{1 + ix}$$

b. z = $\frac{1}{1 + ix} + i\frac{1}{1 - ix}$

c.
$$z = \frac{1}{1 + ix} + i\frac{1}{1 + ix}$$

d. $z = \frac{1}{1 - ix} + i\frac{1}{1 - ix}$

Watch Video Solution

171. Let a, b and c be real numbers such that a + 2b + c = 4. Find the

maximum value of (ab + bc + ca)

Watch Video Solution

172. If z = x + iy, then the equation $\left|\frac{2z - i}{z + 1}\right| = m$ does not represents a circle, when *m* is (a) $\frac{1}{2}$ (b). 1 (c). 2 (d). '3

Watch Video Solution

173. Prove that for real values of x, $(ax^2 + 3x - 4)/(3x - 4x^2 + a)$ may have

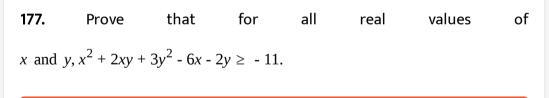
any value provided a lies between 1 and 7.

174. Given that the two curves $arg(z) = \frac{\pi}{6}$ and $|z - 2\sqrt{3}i| = r$ intersect in two distinct points, then a. $[r] \neq 2$ b. 0 < r < 3 c. r = 6 d. $3 < r < 2\sqrt{3}$ (Note : [r] represents integral part of r)

Watch Video Solution

175. Let $x^2 - (m - 3)x + m = 0(m\epsilon R)$ be a quadratic equation . Find the values of m for which the roots are (ix)one root is smaller than 2 & other root is greater than 2 (x) both the roots are greater than 2 (xi) both the roots are smaller than 2 (xii)exactly one root lies in the interval (1;2) (xiii) both the roots lies in the interval (1;2) (xiv) atleast one root lies in the interval (1;2) (xv) one root is greater than 2 and the other root is smaller than 1

176. A particle *P* starts from the point $z_0 = 1 + 2i$, where $i = \sqrt{-1}$. It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_1 . From z_1 the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i} + \hat{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_2 . The point z_2 is given by (a)6 + 7*i* (b) -7 + 6*i* (c) 7 + 6*i* (d) -6 + 7*i*



Watch Video Solution

178. Let z = x + iy be a complex number where *xandy* are integers. Then,

the area of the rectangle whose vertices are the roots of the equation zz

^3 + zbar z^3 = 350 is (a)48 (b) 32 (c) 40 (d) 80

179. The values of 'a' for which the equation $(x^2 + x + 2)^2 - (a - 3)(x^2 + x + 2)(x^2 + x + 1) + (a - 4)(x^2 + x + 1)^2 = 0$

has atlesast one real root is:

Watch Video Solution

180. A man walks a distance of 3 units from the origin towards the North-East $(N45^0E)$ direction.From there, he walks a distance of 4 units towards the North-West $(N45^0W)$ direction to reach a point P. Then, the position of P in the Argand plane is (a) $3e^{\frac{i\pi}{4}} + 4i$ (b) $(3 - 4i)e^{\frac{i\pi}{4}}$ $(4 + 3i)e^{\frac{i\pi}{4}}$ (d) $(3 + 4i)e^{\frac{i\pi}{4}}$

181. Find the values of *a* for whilch the equation $\sin^4 x + a \sin^2 x + 1 = 0$ will

have a solution.

Watch Video Solution

182. If |z| = 1 and $z \neq \pm 1$, then all the values of $\frac{z}{1 - z^2}$ lie on (a) a line not passing through the origin (b) $|z| = \sqrt{2}$ (c) the x-axis (d) the y-axis

Watch Video Solution

183. Find all the value of *m* for which the equation $\sin^2 x - (m - 3)\sin x + m = 0$ has real roots.

Watch Video Solution

184. Let $A(z_1)$ and (z_2) represent two complex numbers on the complex plane. Suppose the complex slope of the line joining A and B is defined as

 $\frac{z_1 - z_2}{\overline{z}_1 - \overline{z}_2}$. If the line l_1 , with complex slope ω_1 , and l_2 , with complex slope $omeg_2$, on the complex plane are perpendicular then prove that $\omega_1 + \omega_2 = 0$.

Watch Video Solution

185. If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then the set of possible values of a is (1) (-3, 3) (2) (-3, ∞) (3) (3, ∞) (4) (- ∞ , -3)

Watch Video Solution

186. Let $z_1 and z_2$ be complex numbers such that $z_1 \neq z_2$ and $|z_1| = |z_2|$. If z_1 has positive real part and z_2 has negative imaginary part, then $\frac{z_1 + z_2}{z_1 - z_2}$ may be (a) zero (b) real and positive (c) real and negative (d) purely imaginary

187. Find the condition if the roots of $ax^2 + 2bx + c = 0$ and $bx^2 - 2\sqrt{acx} + b = 0$ are simultaneously real. **Watch Video Solution**

188. Locus of complex number satisfying a r g $\left[\frac{z-5+4i}{z+3-2i}\right] = \frac{\pi}{4}$ is the arc of a circle whose radius is $5\sqrt{2}$ whose radius is 5 whose length (of arc) is $\frac{15\pi}{\sqrt{2}}$ whose centre is -2 - 5iWatch Video Solution

189. Solve
$$(x^2 - 5x + 7)^2 - (x - 2)(x - 3) = 1$$
.

190. If α is a complex constant such that $\alpha z^2 + z + \overline{\alpha} = 0$ has a real root, then (a) $\alpha + \overline{\alpha} = 1$ (b) $\alpha + \overline{\alpha} = 0$ (c) $\alpha + \overline{\alpha} = -1$ (d)the absolute value of the real root is 1

191. Solve the equation $x^4 - 5x^2 + 4 = 0$.

Watch Video Solution

192. The complex number z satisfies z + |z| = 2 + 8i. find the value of |z| - 8

193. Solve
$$\frac{x^2 - 2x - 3}{x + 1} = 0.$$

194. If ω is a cube root of unity and $(1 + \omega)^7 = A + B\omega$ then find the values

of A and B`

Watch Video Solution

195. Solve
$$(x^3 - 4x)\sqrt{x^2 - 1} = 0$$
.

Watch Video Solution

196. The complex number $\sin x + i\cos 2x$ and $\cos x - i\sin 2x$ are conjugate to

each other when

Watch Video Solution

197. Solve
$$\frac{2x-3}{x-1} + 1 = \frac{9x-x^2-6}{x-1}$$

198. The points, z_1 , z_2 , z_3 , z_4 , in the complex plane are the vertices of a parallelogram taken in order, if and only if (a) $z_1 + z_4 = z_2 + z_3$ (b) $z_1 + z_3 = z_2 + z_4$ (c) $z_1 + z_2 = z_3 + z_4$ (d) None of these

199. Using differentiation method check how many roots of the equation

$$x^3 - x^2 + x - 2 = 0$$
 are real?

Watch Video Solution

200. If z = x + iy and $w = \frac{1 - iz}{z - i}$, then |w| = 1 implies that in the complex plane (A)z lies on imaginary axis (B) z lies on real axis (C)z lies on unit

circle (D) None of these

201. If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then the set of possible values of a is (1) (-3, 3) (2) (-3, ∞) (3) $(3, \infty)$ (4) $(-\infty, -3)$

202. |z - 4| < |z - 2| represents the region given by: (a) Re(z) > 0 (b)

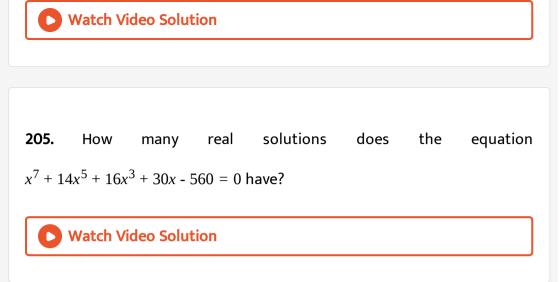
Re(z) < 0 (c) Re(z) > 3 (d) None of these

Watch Video Solution

203. Find how many roots of the equations $x^4 + 2x^2 - 8x + 3 = 0$.

204. If
$$z = \left[\left(\frac{\sqrt{3}}{2} \right) + \frac{i}{2} \right]^5 + \left[\left(\frac{\sqrt{3}}{2} \right) - \frac{i}{2} \right]^5$$
, then a. $Re(z) = 0$ b. $Im(z) = 0$ c.

Re(z) > 0 d. Re(z) > 0, Im(z) < 0



206. The complex numbers z = x + iy which satisfy the equation $\left|\frac{z-5i}{z+5i}\right| = 1$ lie on (a) The x-axis (b) The straight line y = 5 (c) A circle

passing through the origin (d) Non of these

Watch Video Solution

207. Solve
$$\sqrt{5x^2 - 6x + 8} - \sqrt{5x^2 - 6x - 7} = 1$$
.

208. The smallest positive integer *n* for which $\left(\frac{1+i}{1-i}\right)^n = 1$ is (a)8(b) 16 (c)

12(d) None of these

Watch Video Solution

209. Solve
$$\sqrt{3x^2 - 7x - 30} + \sqrt{2x^2 - 7x - 5} = x + 5$$
.

Watch Video Solution

210. If the cube roots of unity are 1, ω , ω^2 , then the roots of the equation

$$(x - 1)^3 + 8 = 0$$
 are a. -1, $1 + 2\omega$, $1 + 2\omega^2$ b. -1, $1 - 2\omega$, $1 - 2\omega^2$ c. -1, -1, -1

d. none of these

211. If
$$x = (7 + 4\sqrt{3})$$
, prove that $x + 1/x = 14$

212. Prove that the locus of midpoint of line segment intercepted between real and imaginary axes by the line az + az + b = 0, where *b* is a real parameterand *a* is a fixed complex number with nondzero real and imaginary parts, is az + az = 0.

Watch Video Solution

213. Solve
$$\sqrt{5x^2 - 6x + 8} - \sqrt{5x^2 - 6x - 7} = 1$$
.

Watch Video Solution

214

$$\sum_{r=0}^{n-1} |z_1 + \alpha^r z_2|^2 = n(|z_1|^2 + |z_2|^2), \text{ where, } \alpha; r = 0, 1, 2, ..., (n-1) \text{ , are the}$$

Show

that

nth roots of unity and z_1, z_2 are any two complex numbers.

215. Solve
$$\sqrt{x^2 + 4x - 21} + \sqrt{x^2 - x - 6} = \sqrt{6x^2 - 5x - 39}$$
.

Watch Video Solution

216. If $\alpha = (z - i)(z + i)$, show that, when z lies above the real axis, α will lie

within the unit circle which has center at the origin. Find the locus of αasz

travels on the real axis from - $\infty \rightarrow + \infty$

Watch Video Solution

217. Solve $4^x + 6^x = 9^x$

218. Let x_1, x_2 are the roots of the quadratic equation $x^2 + ax + b = 0$, wherea, b are complex numbers and y_1, y_2 are the roots of the quadratic equation $y^2 + |a|y + |b| = 0$. If $|x_1| = |x_2| = 1$, then prove

that
$$\left| y_1 \right| = \left| y_2 \right| = 1$$

Watch Video Solution

219. Solve
$$3^{2x^2 - 7x + 7} = 9$$
.

Watch Video Solution

220. Plot the region represented by $\frac{\pi}{3} \le arg\left(\frac{z+1}{z-1}\right) \le \frac{2\pi}{3}$ in the Argand

plane.

Watch Video Solution

221. How many solutions does the equation $\frac{8^x + 27^x}{12^x + 18^x} = \frac{7}{6}$ have? (A) Exactly

one (B) Exactly two (C) Finitely many (D) Infinitely many

222. Is the following computation correct? If not give the correct computation : $\sqrt{(-2)}\sqrt{(-3)} = \sqrt{(-2)(-3)} = \sqrt{(-6)}$

223. Consider an equilateral triangle having verticals at point $A\left(\frac{2}{\sqrt{3}}e^{\frac{l\pi}{2}}\right), B\left(\frac{2}{\sqrt{3}}e^{\frac{-i\pi}{6}}\right)$ and $C\left(\frac{2}{\sqrt{3}}e^{\frac{-5\pi}{6}}\right)$. If P(z) is any point an its incircle,

then $AP^2 + BP^2 + CP^2$

A. 4

B.4

C. 3

D. - 3

Answer: A

224. Find the number of real roots of the equation $(x - 1)^2 + (x - 2)^2 + (x - 3)^2 = 0.$

Watch Video Solution

225. Find the value of (i)
$$\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}(i) - 1$$
 (ii) $(1+i)^6 + (1-i)^6$

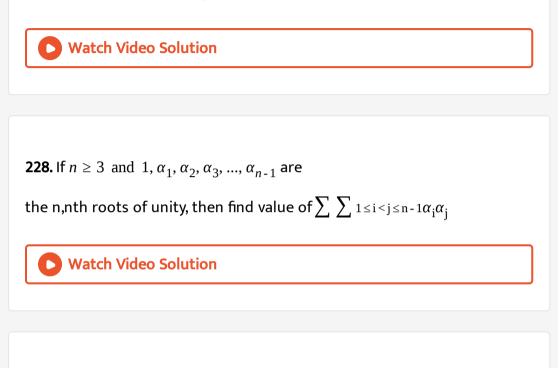
Watch Video Solution

226. Let z, z_0 be two complex numbers. It is given that |z| = 1 and the numbers $z, z_0, z_-(0), 1$ and 0 are represented in an Argand diagram by the points P,P₀,Q,A and the origin, respectively. Show that $\triangle POP_0$ and $\triangle AOQ$ are congruent. Hence, or otherwise, prove that

$$\left|z-z_{0}\right| = \left|zz_{0}-1\right| = \left|zz_{0}-1\right|.$$

227. Show that the equation $az^3 + bz^2 + \overline{b}z + \overline{a} = 0$ has a root α such that

 $|\alpha| = 1$, *a*, *b*, *z* and α belong to the set of complex numbers.



229. How many roots of the equation $3x^4 + 6x^3 + x^2 + 6x + 3 = 0$ are real ?

Watch Video Solution

230. If the roots of $(z - 1)^n = i(z + 1)^n$ are plotted in ten Arg and plane,

then prove that they are collinear.

231. Find the value of k if $x^3 - 3x + k = 0$ has three real distinct roots.

232. Let $z = t^2 - 1 + \sqrt{t^4 - t^2}$, where $t \in R$ is a parameter. Find the locus of z

depending upon t, and draw the locus of z in the Argand plane.

Watch Video Solution

233. If |z| = 1, then prove that points represented by $\sqrt{(1 + z)/(1 - z)}$ lie on

one or other of two fixed perpendicular straight lines.

234. If ω is an imaginary fifth root of unity, then find the value of $\log_2 \left| 1 + \omega + \omega^2 + \omega^3 - 1/\omega \right|$

235. *a*, *b*, *and* c are all different and non-zero real numbers on arithmetic progression. If the roots of quadratic equation $ax^2 + bx + c = 0$ are α and β such that $\frac{1}{\alpha} + \frac{1}{\beta}$, $\alpha + \beta$, $and\alpha^2 + \beta^2$ are in geometric progression the value of a/c will be .

Watch Video Solution

236. Let $x^2 + y^2 + xy + 1 \ge a(x + y) \forall x, y \in R$, then the number of possible integer (s) in the range of *a* is_____.

Watch Video Solution

237. If $\alpha = e^{i2\pi/7} and f(x) = a_0 + \sum_{k=0}^{20} a_k x^k$, then prove that the value of $f(x) + f(\alpha x) + \dots + f(\alpha^6 x)$ is independent of α . Watch Video Solution **238.** If $w = \alpha + i\beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that

 $\left(\frac{w-\bar{w}z}{1-z}\right)$ is a purely real, then the set of values of z is $|z| = 1, z \neq 2$ (b)

|z| = 1 and $z \neq 1$ (c) $z = \overline{z}$ (d) None of these

Watch Video Solution

239. If z is a non real root of $\sqrt[7]{-1}$, then find the value of $z^{86} + z^{175} + z^{289}$.

Watch Video Solution

240. The quadratic equation $x^2 + mx + n = 0$ has roots which are twice

those of $x^2 + px + m = 0$ adm, nand $p \neq 0$. The n the value of n/p is _____.

241.	Let	$\omega = -\frac{1}{2} + i$	$\frac{\sqrt{3}}{2}$, then	value	of	the	determinant		
$\begin{bmatrix} 1\\ 1 & -1\\ 1 \end{bmatrix}$	$\frac{1}{\omega^2}$	$\begin{bmatrix} 1 \\ -\omega^2 \\ \omega^4 \end{bmatrix}$ is							
(a) 3ω									
(b) 3ω(ω - 1)									
(c) 3ω ²									
(d) 3ω([1 - ω])							
Watch Video Solution									

242. All the value of k for which the quadratic polynomial $f(x) = 2x^2 + kx + 2 = 0$ has equal roots is _____. (a) 4 (B) +4,-4 (c) +3,-3 (d) 2

243. If $a = \cos(2\pi/7) + i\sin(2\pi/7)$, then find the quadratic equation whose roots are $\alpha = a + a^2 + a^4$ and $\beta = a^3 + a^5 + a^6$.

A.
$$x^{2} - x + 2 = 0$$

B. $x^{2} + x - 2 = 0$
C. $x^{2} - x - 2 = 0$
D. $x^{2} + x + 2 = 0$

Answer: D

Watch Video Solution

244. Let complex numbers α and $\frac{1}{\alpha}$ lies on circle $(x - x_0)^2 + (y - y_0)^2 = r^2$ and $(x - x_0)^2 + (y - y_0)^2 = 4r^2$ respectively. If $z_0 = x_0 + iy_0$ satisfies the equation $2|z_0|^2 = r^2 + 2$ then $|\alpha|$ is equal to

A. (a)
$$\frac{1}{\sqrt{2}}$$

B. (b) $\frac{1}{2}$

C. (c)
$$\frac{1}{\sqrt{7}}$$

D. (d) $\frac{1}{3}$

Watch Video Solution

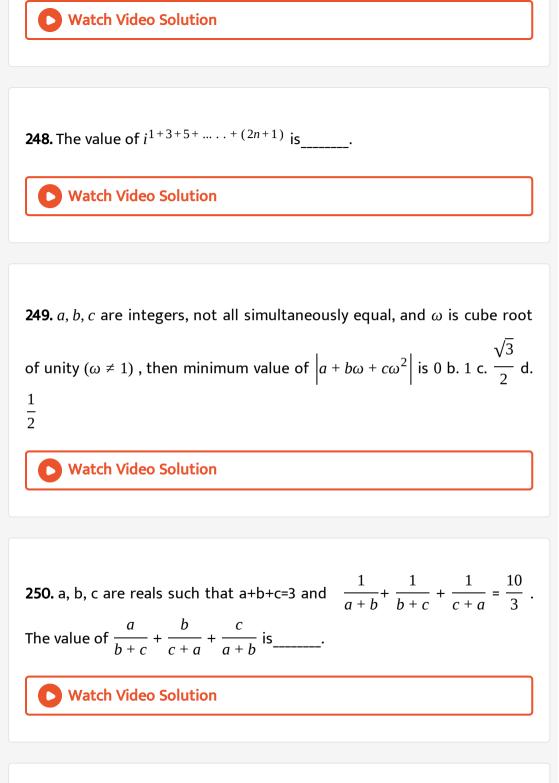
245. If
$$\left|\frac{z}{|\bar{z}|} - \bar{z}\right| = 1 + |z|$$
, then prove that z is a purely imaginary number.

Watch Video Solution

246. If
$$x = -5 + 2\sqrt{-4}$$
, find the value of $x^4 + 9x^3 + 35x^2 - x + 4$.

Watch Video Solution

247. Let a, b, andc be rel numbers which satisfy the equation $a + \frac{1}{bc} = \frac{1}{5}, b + \frac{1}{ac} = \frac{-1}{15}, andc + \frac{1}{ab} = \frac{1}{3}$ The value of $\frac{c-b}{c-a}$ is equal to



251. If
$$z + 1/z = 2\cos\theta$$
, prove that $\left| \left(z^{2n} - 1 \right) / \left(z^{2n} + 1 \right) \right| = |\tan n\theta|$

Watch Video Solution

252. If α , β are the roots of the quadratic equation $ax^2 + bx + c = 0$, then

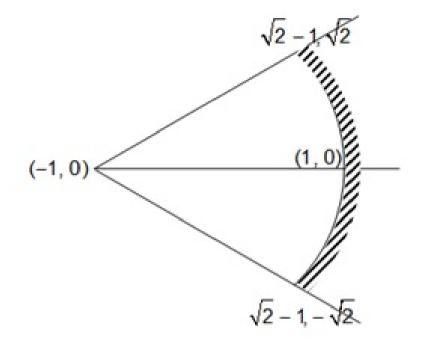
which of the following expression will be the symmetric function of roots

a.
$$\left|\log\left(\frac{\alpha}{\beta}\right)\right|$$
 b. $\alpha^2 \beta^5 + \beta^2 \alpha^5$ c. $tan(\alpha - \beta)$ d. $\left(\log\left(\frac{1}{\alpha}\right)\right)^2 + (\log\beta)^2$

Watch Video Solution

253. The locus of z which lies in shaded region (excluding the boundaries)

is	best	represented	bv	Fig
			~)	



A.
$$z: |z + 1| > 2$$
, $|arg(z + 1)| < \frac{\pi}{4}$
B. $z: |z - 1| > 2$, $|arg(z - 1)| < \frac{\pi}{4}$
C. $z: |z + 1| < 2$, $|arg(z + 1)| < \frac{\pi}{2}$
D. $z: |z - 1| < 2$, $|arg(z - 1)| < \frac{\pi}{2}$

Answer: A

254. Prove that the roots of the equation $x^4 - 2x^2 + 4 = 0$ forms a

rectangle.

255. If *a*, *b*, *c* are non-zero real numbers, then find the minimum value of

the expression
$$\left(\frac{\left(a^4+3a^2+1\right)\left(b^4+5b^2+1\right)\left(c^4+7c^2+1\right)}{a^2b^2c^2}\right)$$
 which is

not divisible by prime number.

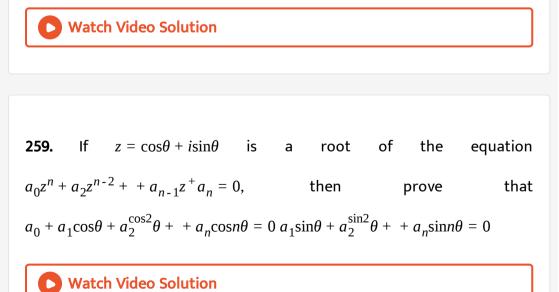
Watch Video Solution

256. If $z_1 and z_2$ are two nonzero complex numbers such that = $|z_1 + z_2| = |z_1| + |z_2|$, then $arg z_1 - arg z_2$ is equal to $-\pi$ b. $\frac{\pi}{2}$ c. 0 d. $\frac{\pi}{2}$ e. π

257. if diagonals of a parallelogram bisect each other, prove that its a

rhombus

258. If a, b, c and u, v, w are the complex numbers representing the vertices of two triangles such that (c = (1 - r)a + rb and w = (1 - r)u + rv, where r is a complex number, then the two triangles (a)have the same area (b) are similar (c)are congruent (d) None of these



260. If ω is an imaginary cube root of unity, then $(1 + \omega - \omega^2)^7$ is equal to

Α. 128ω

Β.-128ω

 $C. 128\omega^2$

D. - 128ω²

Answer: D

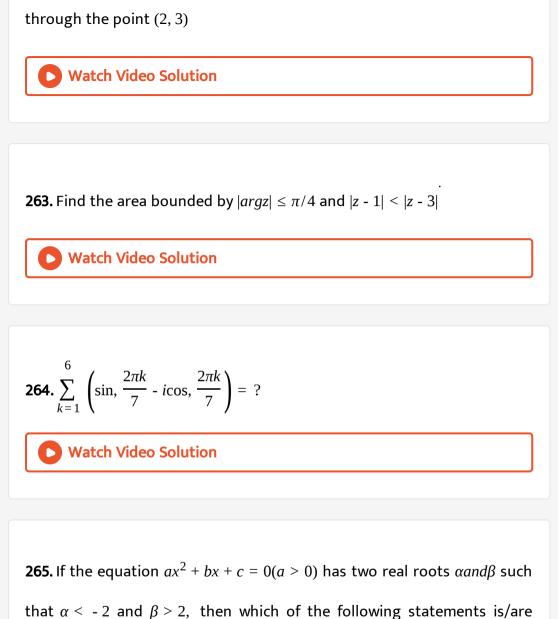
Watch Video Solution

261. If z = x + iy is a complex number with $x, y \in Q$ and |z| = 1, then show

that $|z^{2n} - 1|$ is a rational number for every $n \in N$.

Watch Video Solution

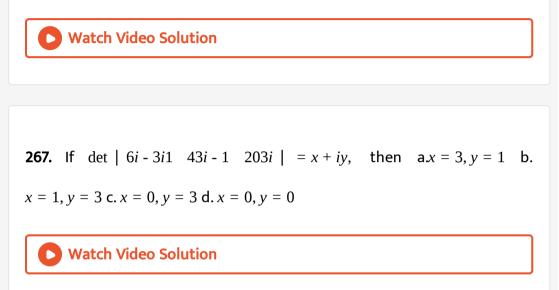
262. Referred to the principal axes as the axes of co ordinates find the equation of hyperbola whose focii are at $(0, \pm \sqrt{10})$ and which passes



true? (a)a - |b| + c < 0 (b) $c < 0, b^2 - 4ac > 0$ (c) 4a - 2|b| + c < 0 (d)

9a - 3|b| + c < 0

266. If fig shows the graph of $f(x) = ax^2 + bx + c$, then Fig a. c < 0 b. bc > 0c. ab > 0 d. abc < 0



268. Let z = x + iy be a complex number, where *xandy* are real numbers.

Let AandB be the sets defined by $A = \{z : |z| \le 2\} andB = \{z : (1 - i)z + (1 + i)\overline{z} \ge 4\}$. Find the area of region $A \cap B$

269. If
$$z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^5$$
, then prove that $Im(z) = 0$.

270. The value of
$$\sum_{n=1}^{13} (i^n + i^{n+1})$$
, where $i = \sqrt{-1}$ equals (A) i (B) $i - 1$ (C) $-i$ (D) 0

Watch Video Solution

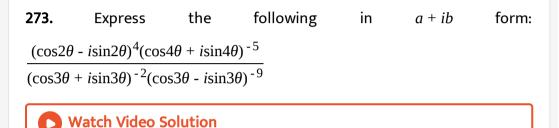
271. If $c \neq 0$ and the equation p/(2x) = a/(x+c) + b/(x-c) has two equal roots, then p can be $(\sqrt{a} - \sqrt{b})^2$ b. $(\sqrt{a} + \sqrt{b})^2$ c. a + b d. a - b

Watch Video Solution

272. If the equation $4x^2 - x - 1 = 0$ and $3x^2 + (\lambda + \mu)x + \lambda - \mu = 0$ have a root common, then the irrational values of λ and μ are (a) $\lambda = \frac{-3}{4}$ b. $\lambda = 0$

c.
$$\mu = \frac{3}{4}$$
 b. $\mu = 0$

Watch Video Solution



274. The roots of the equation $t^3 + 3at^2 + 3bt + c = 0arez_1, z_2, z_3$ which represent the vertices of an equilateral triangle. Then $a^2 = 3b$ b. $b^2 = a$ c. $a^2 = b$ d. $b^2 = 3a$

Watch Video Solution

275. Solve the equation $(x - 1)^3 + 8 = 0$ in the set C of all complex

numbers.

276. If 'z, lies on the circle $|z - 2i| = 2\sqrt{2}$, then the value of $arg\left(\frac{z-2}{z+2}\right)$ is the equal to

Watch Video Solution

277. If the equation whose roots are the squares of the roots of the cubic $x^3 - ax^2 + bx - 1 = 0$ is identical with the given cubic equation, then (A) a = 0, b = 3 (B) a = b = 0 (C) a = b = 3 (D) a, b, are roots of $x^2 + x + 2 = 0$

278. If
$$\sqrt{3} + i = (a + ib)(c + id)$$
, then find the value of $\tan^{-1}(b/a) + \tan^{-1}(d/c)$

Watch Video Solution

279. P(z) be a variable point in the Argand plane such that |z|=minimum $\{|z - 1, |z + 1|\}$, then $z + \overline{z}$ will be equal to a. -1 or 1 b. 1 but not equal to-1 c. -1 but not equal to 1 d. none of these

Watch Video Solution

280. If the equation $ax^2 + bx + c = 0$, $a, b, c, \in R$ have none-real roots, then c(a - b + c) > 0 b. c(a + b + c) > 0 c. c(4a - 2b + c) > 0 d. none of these

Watch Video Solution

281. Prove that the equation $Z^3 + iZ - 1 = 0$ has no real roots.

282. The locus of point z satisfying $Re\left(\frac{1}{z}\right) = k$, where k is a non zero real

number, is a. a straight line b. a circle c. an ellipse d. a hyperbola

283. If
$$p(q - r)x^2 + q(r - p)x + r(p - q) = 0$$
 has equal roots, then prove that
 $\frac{2}{q} = \frac{1}{p} + \frac{1}{r}$

Watch Video Solution

284. Find the square root 9 + 40i

285. Let $\alpha, \beta \in R$ If α, β^2 are the roots of quadratic equation $x^2 - px + 1 = 0$. $and\alpha^2, \beta$ are the roots of quadratic equation

$$x^2$$
 - qx + 8 = 0, then find p , q , α , β

Watch Video Solution

286. Let *a* be a complex number such that |a| < 1 and $z_1, z_2, z_3, ...$ be the vertices of a polygon such that $z_k = 1 + a + a^2 + ... + a^{k-1}$ for all

 $k = 1, 2, 3, Thenz_1, z_2$ lie within the circle (a) $\left| z - \frac{1}{1-a} \right| = \frac{1}{|a-1|}$ (b) $\left| z + \frac{1}{a+1} \right| = \frac{1}{|a+1|}$ (c) $\left| z - \frac{1}{1-a} \right| = |a-1|$ (d) $\left| z + \frac{1}{a+1} \right| = |a+1|$

Watch Video Solution

287. Let $\lambda \in R$. If the origin and the non-real roots of $2z^2 + 2z + \lambda = 0$ form the three vertices of an equilateral triangle in the Argand plane, then λ is (a.)1 (b) $\frac{2}{3}$ (c.) 2 (d.) -1

288. If the ratio of the roots of the equation $x^2 + px + q = 0$ are equal to ratio of the roots of the equation $x^2 + bx + c = 0$, then prove that $p^2c = b^2q$

Watch Video Solution

289. Let $z = 1 - t + i\sqrt{t^2 + t + 2}$, where t is a real parameter. the locus of the

z in argand plane is

Watch Video Solution

290. If $\sin\theta$, $\cos\theta$ be the roots of $ax^2 + bx + c = 0$, then prove that $b^2 = a^2 + 2a$.

291. Express the following complex numbers in a + ib form: $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$

(ii)
$$\frac{2 - \sqrt{-25}}{1 - \sqrt{-16}}$$

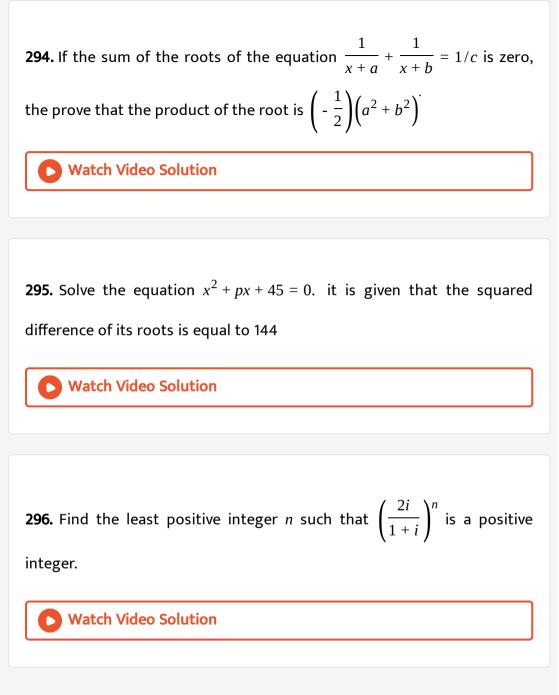
292. If *a*, *b*, *c* are nonzero real numbers and $az^2 + bz + c + i = 0$ has purely

imaginary roots, then prove that $a = b^2 c$

Watch Video Solution

293. If $z^2 + z|z| + |z^2| = 0$, then the locus z is a. a circle b. a straight line c.

a pair of straight line d. none of these



297. $z_1 and z_2$ lie on a circle with center at the origin. The point of intersection z_3 of he tangents at $z_1 and z_2$ is given by $\frac{1}{2}(z_1 + (z)_2)$ b.

$$\frac{2z_1z_2}{z_1+z_2} \text{ c. } \frac{1}{2} \left(\frac{1}{z_1} + \frac{1}{z_2} \right) \text{ d. } \frac{z_1+z_2}{(z)_1(z)_2}$$

Watch Video Solution

298. If α , β are the roots of the equation $2x^2 - 35x + 2 = 0$, the find the

```
value of (2\alpha - 35)^3 (2\beta - 35)^3
```

Watch Video Solution

299. If one root of the equation $z^2 - az + a - 1 = 0$ is (1+i), where a is a

complex number then find the root.

300. If $|z_1| = |z_2| = |z_3| = 1$ and $z_1 + z_2 + z_3 = 0$ then the area of the triangle whose vertices are z_1, z_2, z_3 is $3\sqrt{3}/4$ b. $\sqrt{3}/4$ c. 1 d. 2

Watch Video Solution

301. Simplify:
$$\frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} - \sqrt{5-12i}}$$

Watch Video Solution

302. Find a quadratic equation whose product of roots x_1 and x_2 is equal

to 4 and satisfying the relation
$$\frac{x_1}{x_1 - 1} + \frac{x_2}{x_2 - 1} = 2.$$

Watch Video Solution

303. If $\sqrt{5 - 12i} + \sqrt{-5 - 12i} = z$, then principal value of *argz* can be

A. a.
$$\frac{\pi}{4}$$

B. b.
$$-\frac{\pi}{4}$$

C. c. $\frac{3\pi}{4}$
D. d. $-\frac{3\pi}{4}$

Watch Video Solution

304. If
$$(x + iy)(p + iq) = (x^2 + y^2)i$$
, prove that $x = q, y = p$

Watch Video Solution

305. If a and $b \neq 0$ are the roots of the equation $x^2 + ax + b = 0$, then

find the least value of $x^2 + ax + b(x \in R)$

306. Let A, B, C, D be four concyclic points in order in which AD:AB = CD:CB If A, B, C are represented by complex numbers a, b, c representively, find the complex number associated with point DWatch Video Solution **307.** Convert $\frac{1+3i}{1-2i}$ into the polar form. Watch Video Solution If the sum of the roots of the equation 308. $(a + 1)x^{2} + (2a + 3)x + (3a + 4) = 0$ is -1, then find the product of the roots. Watch Video Solution

309. Let the altitudes from the vertices A, B and Cof the triangle e ABCmeet its circumcircle at D, E and F respectively and z_1, z_2 and z_3 represent the points D, E and F respectively. If $\frac{z_3 - z_1}{z_2 - z_1}$ is purely real then

the triangle ABC is

Watch Video Solution

310. For
$$|z - 1| = 1$$
, show that $\tan\left\{\frac{\arg(z - 1)}{2}\right\} - \left(\frac{2i}{z}\right) = -i$

Watch Video Solution

311. The quadratic polynomial p(x) has the following properties: $p(x) \ge 0$ for all real numbers, p(1) = 0 and p(2) = 2. Find the value of p(3) is_____.

312. If
$$z_1 = 9y^2 - 4 - 10ix$$
, $z_2 = 8y^2 - 20i$, where $z_1 = \overline{z}_2$, then find $z = x + iy$

313. If $arg(z_1) = 170^0$ and $arg(z_2) = 70^0$, then find the principal argument of $z_1 z_2$

314. z_1 , z_2 and z_3 are the vertices of an isosceles triangle in anticlockwise direction with origin as in center , then prove that z_2 , z_1 and kz_3 are in G.P. where $k \in R^+$

Watch Video Solution

315. function f, R \rightarrow R, $f(x) = \frac{3x^2 + mx + n}{x^2 + 1}$, if the range of function is

[-4,3), find the value of |m+n| is

316. If z_1 and z_2 are conjugate to each other, find the principal argument of $(-z_1z_2)$.

317. If a is a complex number such that |a| = 1, then find the value of a, so

that equation $az^2 + z + 1 = 0$ has one purely imaginary root.

Watch Video Solution

318. If $x^2 + px + 1$ is a factor of the expression $ax^3 + bx + c$, then $a^2 - c^2 = ab b$. $a^2 + c^2 = -ab c$. $a^2 - c^2 = -ab d$. none of these

319. Find the value of expression
$$\left(\frac{\cos\pi}{2} + i\sin\left(\frac{\pi}{2}\right)\right) \left(\cos\left(\frac{\pi}{2^2}\right) + i\sin\left(\frac{\pi}{2^2}\right)\right) \dots \infty$$
Watch Video Solution

320. Solve for z, i.e. find all complex numbers z which satisfy $|z|^2 - 2iz + 2c(1 + i) = 0$ where c is real.

Watch Video Solution

321. If α , β are the roots of $x^2 - px + q = 0$ and α' , β' are the roots of

 $x^2 - p'x + q' = 0$, then the value of $(\alpha - \alpha')^2 + (\beta + \alpha')^2 + (\alpha - \beta')^2 + (\beta - \beta')^2$ is

322. If *a*, *b* are complex numbers and one of the roots of the equation $x^2 + ax + b = 0$ is purely real, whereas the other is purely imaginary, prove that $a^2 - (\bar{a})^2 = 4b$.

Watch Video Solution

323. If
$$|z_1| = |z_2| = 1$$
, then prove that $|z_1 + z_2| = |\frac{1}{z_1} + \frac{1}{z_2}$

Watch Video Solution

324. If $(ax^2 + c)y + (a'x^2 + c') = 0$ and x is a rational function of y and ac

is negative, then

a. ac' + c'c = 0

b. a/a' = c/c'

c. $a^2 + c^2 = a'^2 + c'^2$

d. *aa*['] + *cc*['] = 1

325. Find the principal argument of the complex number

$$\frac{\sin(6\pi)}{5} + i\left(1 + \frac{\cos(6\pi)}{5}\right)^{\cdot}$$

Watch Video Solution

326. For
$$x \in (0, 1)$$
, prove that $i^{2i+3} \ln\left(\frac{i^3 x^2 + 2x + i}{ix^2 + 2x + i^3}\right) = \frac{1}{e^{\pi}} \left(\pi - 4\tan^{-1}x\right)$

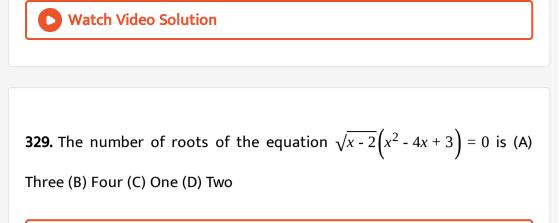
Watch Video Solution

327. The sum of the non-real root of $(x^2 + x - 2)(x^2 + x - 3) = 12$ is -1 b. 1

c. - 6 **d**. 6

Watch Video Solution

328. If *n* is a positive integer, prove that $|Im(z^n)| \le n|Im(z)||z|^{n-1}$.



Watch Video Solution

330. If z_1, z_2 and z_3, z_4 are two pairs of conjugate complex numbers, then

find the value of a r g
$$(z_1/z_4)$$
 + $arg(z_2/z_3)^{-1}$

331. Prove that following inequalities:
$$\left|\frac{z}{|z|} - 1\right| \le |argz|$$
 (ii)
 $|z - 1| \le |z| + ||z| - 1|$
Watch Video Solution

332. If x = 1 + i is a root of the equation $= x^3 - ix + 1 - i = 0$, then the

other real root is 0 b. 1 c. -1 d. none of these

333. Find the modulus, argument, and the principal argument of the

complex numbers. $\frac{i-1}{i\left(1-\cos\left(\frac{2\pi}{5}\right)\right)+\sin\left(\frac{2\pi}{5}\right)}$

Watch Video Solution

334. Find the principal argument of the complex number $\frac{(1+i)^5(1+\sqrt{3i})^2}{-2i(-\sqrt{3}+i)}$

335. Column I, Column II: possible argument of $z = a + ib \ ab > 0$, p.

$$\tan^{-1} \left| \frac{b}{a} \right| ab < 0, q. \pi \tan^{-1} \left| \frac{b}{a} \right| a^2 + b^2 = 0, r. \frac{\tan^{-1}b}{a} ab = 0, s. \pi + \frac{\tan^{-1}b}{a},$$

t. not defined , u. 0 or $\frac{\pi}{2}$

Watch Video Solution

336. If the expression $x^2 + 2(a + b + c) + 3(bc + c + ab)$ is a perfect square,

then a = b = c b. $a = \pm b = \pm c$ c. $a = b \neq c$ d. noneofthese

Watch Video Solution

337. Find the point of intersection of the curves $arg(z - 3i) = \frac{3\pi}{4}andarg(2z + 1 - 2i) = \pi/4.$

338. The curve $y = (\lambda + 1)x^2 + 2$ intersects the curve $y = \lambda x + 3$ in exactly

one point, if λ equals { - 2, 2} b. {1} c. { - 2} d. {2}

339. Column I, Column II (one of the values of z) $z^4 - 1 = 0$, p. $z = \frac{\cos \pi}{8} + i \frac{\sin \pi}{8} \quad z^4 + 1 = 0$, q. $z = \frac{\cos \pi}{8} - i \frac{\sin \pi}{8} \quad iz^4 + 1 = 0$, r. $z = \frac{\cos \pi}{4} i \frac{\sin \pi}{4} iz^4 - 1 = 0$, s. $z = \cos 0 + i \sin 0$

Watch Video Solution

340. Let *zandw* be two nonzero complex numbers such that

 $|z| = |w|andarg(z) + arg(w) = \pi$ Then prove that $z = -\bar{w}$

341. The number of irrational roots of the equation $\frac{4x}{x^2 + x + 3} + \frac{5x}{x^2 - 5x + 3} = -\frac{3}{2}$ is (a)4 b. 0 c. 1 d. 2 **Watch Video Solution**

342. If $|z + \overline{z}| + |z - \overline{z}| = 2$ then z lies on (a) a straight line (b) a set of four

lines (c) a circle (d) None of these

Watch Video Solution

343. If one vertex of the triangle having maximum area that can be inscribed in the circle |z - i| = 5is3 - 3i, then find the other vertices of the triangle.

344. The number of complex numbers z satisfying |z - 3 - i| = |z - 9 - i|and|z - 3 + 3i| = 3 are a. one b. two c. four d. none of these

Watch Video Solution

345. If the equation $x^2 - 3px + 2q = 0$ and $x^2 - 3ax + 2b = 0$ have a common roots and the other roots of the second equation is the reciprocal of the other roots of the first, then $(2 - 2b)^2$. a. $36pa(q - b)^2$ b. $18pa(q - b)^2$ c. $36bq(p - a)^2$ d. $18bq(p - a)^2$

Watch Video Solution

346. Solve the equation $3^{x^2-x} + 4^{x^2-x} = 25$.

347. If t and c are two complex numbers such that $|t| \neq |c|, |t| = 1$ and $z = \frac{at+b}{t-c}, z = x + iy$ Locus of z is (where a, b are complex numbers) a. line segment b. straight line c. circle d. none of these

348. Consider the circle |z| = r in the Argand plane, which is in fact the incircle of triangle *ABC* If contact points opposite to the vertices *A*, *B*, *C* are $A_1(z_1), B(z_2) and C_1(z_3)$, obtain the complex numbers associated with the vertices *A*, *B*, *C* in terms of $z_1, z_2 and z_3$

Watch Video Solution

349. Solve the equation $12x^4 - 56x^3 + 89x^2 - 56x + 12 = 0$.

350. P is a point on the argand diagram on the circle with OP as diameter two points taken such that $\angle POQ = \angle QOR = \theta$. If O is the origin and P, Q, R are are represented by complex z_1, z_2, z_3 respectively then show that $z_2^2 \cos 2\theta = z_1 z_3 \cos^2 \theta$

351. Locus of z if $arg[z - (1 + i)] = {(3\pi/4when|z| < = |z - 2|), (-\pi/4when|z| > |z - 4|)} is straight lines passing through (2, 0) straight lines passing through (2, 0) (1, 1) a line segment a set of two rays$

Watch Video Solution

Watch Video Solution

352. Solve the equation $(x + 2)(x + 3)(x + 8) \times (x + 12) = 4x^2$

353. Given
$$\alpha$$
, β , respectively, the fifth and the fourth non-real roots of units, then find the value of $(1 + \alpha)(1 + \beta)(1 + \alpha^2)(1 + \beta^2)(1 + \alpha^4)(1 + \beta^4)$
Vatch Video Solution
354. Solve the equation $(x - 1)^4 + (x - 5)^4 = 82$.
Vatch Video Solution

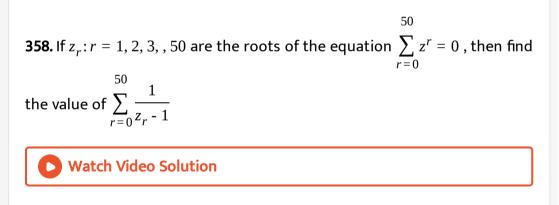
355. If the six roots of $x^6 = -64$ are written in the form a + ib, where a and b are real, then the product of those roots for which a > 0 is

356. The maximum area of the triangle formed by the complex coordinates z, z_1, z_2 which satisfy the relations $|z - z_1| = |z - z_2|$ and

$$\left|z - \frac{z_1 + z_2}{2}\right| \le r, \text{where } r > \left|z_1 - z_2\right| \text{ is }$$

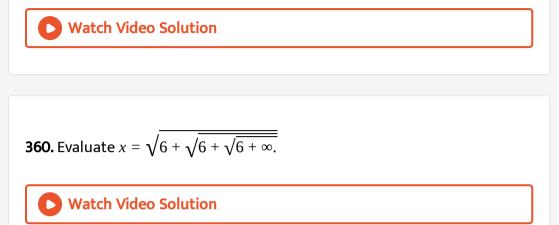
Watch Video Solution

357. Solve
$$\sqrt{x+5} + \sqrt{x+21} = \sqrt{6x+40}$$
.



359. The complex number associated with the vertices *A*, *B*, *C* of $\triangle ABC$ are $e^{i\theta}$, ω , $\bar{\omega}$, respectively [where ω , $\bar{\omega}$ are the com plex cube roots of unity

and $\cos\theta > Re(\omega)$], then the complex number of the point where angle bisector of A meets cumcircle of the triangle, is



361. If a complex number z satisfies $|2z + 10 + 10i| \le 5\sqrt{3} - 5$, then the least principal argument of z is

A.
$$-\frac{5\pi}{6}$$

B. $-\frac{11\pi}{12}$
C. $-\frac{3\pi}{4}$
D. $-\frac{2\pi}{3}$

Answer: A

Watch Video Solution

Watch Video Solution

362. If $1, \alpha_1, \alpha_2, \alpha_{n-1}$ are the *nth* roots of unity, prove that $(1 - \alpha_1)(1 - \alpha_2)(1 - \alpha_{n-1}) = n$. Deduce that $\frac{\sin \pi \sin(2\pi)}{n} \frac{\sin((n-1)\pi)}{n} = \frac{n}{2^{n-1}}$

363. If n > 1, show that the roots of the equation $z^n = (z + 1)^n$ are collinear.

364. If the expression $ax^4 + bx^3 - x^2 + 2x + 3$ has remainder 4x + 3 when

divided by $x^2 + x - 2$, find the value of *aandb*

365. If
$$|z_2 + iz_1| = |z_1| + |z_2|$$
 and $|z_1| = 3$ and $|z_2| = 4$, then the area of

 $\triangle ABC$, if affixes of *A*, *B*, and *C* are z_1, z_2 , and $\left[\frac{z_2 - iz_1}{1 - i}\right]$ respectively, is

A.
$$\frac{5}{2}$$

B. 0
C. $\frac{25}{2}$
D. $\frac{25}{4}$

Answer: D

Watch Video Solution

366. What is the locus of *w* if
$$w = \frac{3}{z} and |z - 1| = 1$$
?

367. If z is complex number, then the locus of z satisfying the condition |2z - 1| = |z - 1| is (a)perpendicular bisector of line segment joining 1/2 and 1 (b)circle (c)parabola (d)none of the above curves



$$(a + 2b)$$
, where $a, b \neq 0$ is a factor of $a^4 + 32b^4 + a^3b(k + 3)$

371. If z is a complex number lying in the fourth quadrant of Argand plane

and
$$\left| \left[\frac{kz}{k+1} \right] + 2i \right| > \sqrt{2}$$
 for all real value of $k(k \neq -1)$, then range of $\arg(z)$ is $\left(\frac{\pi}{8}, 0 \right)$ b. $\left(\frac{\pi}{6}, 0 \right)$ c. $\left(\frac{\pi}{4}, 0 \right)$ d. none of these

Watch Video Solution

372. If
$$z = (\lambda + 3) + i\sqrt{5 - \lambda^2}$$
 then the locus of Z is

Watch Video Solution

373. Let *z* be a complex number having the argument θ , $0 < \theta < \frac{\pi}{2}$, and satisfying the equation |z - 3i| = 3. Then find the value of $\cot \theta - \frac{6}{z}$

374. Given that $x^2 + x - 6$ is a factor of $2x^4 + x^3 - ax^2 + bx + a + b - 1$, find

the value of a and b

375. If z is any complex number such that |3z - 2| + |3z + 2| = 4, then

identify the locus of z

Watch Video Solution

376. If p, q, r are positive and are in A.P., the roots of quadratic equation

$$px^2 + qx + r = 0$$
 are all real for a. $\left|\frac{r}{p} - 7\right| \ge 4\sqrt{3}$ b. $\left|\frac{p}{r} - 7\right| \ge 4\sqrt{3}$ c. all p and

r d. no p and r

377. $A(z_1), B(z_2), C(z_3)$ are the vertices of the triangle *ABC* (in anticlockwise). If $\angle ABC = \pi/4$ and $AB = \sqrt{2}(BC)$, then prove that $z_2 = z_3 + i(z_1 - z_3)$.

Watch Video Solution

378. If $|z^2 - 1| = |z|^2 + 1$, then z lies on (a) The Real axis (b)The imaginary axis (c)A circle (d)An ellipse

Watch Video Solution

379. $A(z_1), B(z_2), C(z_3)$ are the vertices of he triangle *ABC* (in anticlockwise). If $\angle ABC = \pi/4$ and $AB = \sqrt{2}(BC)$, then prove that $z_2 = z_3 + i(z_1 - z_3)^{-1}$

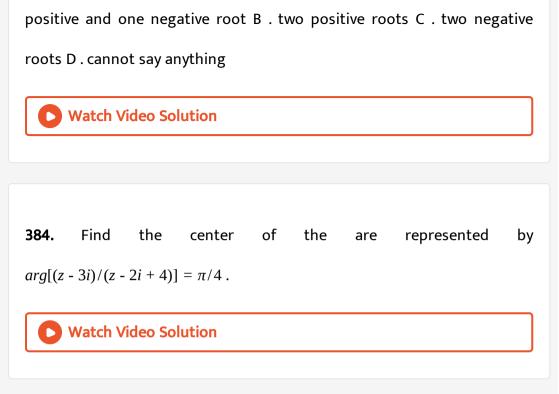
380. The number of points of intersection of two curves $y = 2\sin x$ and $y = 5x^2 + 2x + 3is \ 0 \ b. \ 1 \ c. \ 2 \ d. \ \infty$

381. If |z| = 1, then the point representing the complex number -1 + 3z will lie on a. a circle b. a parabola c. a straight line d. a hyperbola

Watch Video Solution

382. If one vertex of a square whose diagonals intersect at the origin is $3(\cos\theta + i\sin\theta)$, then find the two adjacent vertices.

383. If $\alpha and\beta$ are the roots of $x^2 + px + q = 0 and\alpha^4$, β^4 are the roots of $x^2 - rx + s = 0$, then the equation $x^2 - 4qx + 2q^2 - r = 0$ has always. A. one



385. Let
$$|z_r - r| \le r$$
, $\forall r = 1, 2, 3, ..., n$ Then $\left|\sum_{r=1}^n Z_r\right|$ is less than n b. $2n$ c.
 $n(n+1)$ d. $\frac{n(n+1)}{2}$

386. If $a^2 + b^2 + c^2 = 1$, then ab + bc + ca lie in the interval $\begin{bmatrix} \frac{1}{3}, 2 \end{bmatrix}$ b. [-1, 2]

c.
$$\left[-\frac{1}{2}, 1 \right]$$
 d. $\left[-1, \frac{1}{2}, \right]$

Watch Video Solution

387. $z_1 and z_2$ are the roots of $3z^2 + 3z + b = 0$. if $O(0), (z_1), (z_2)$ form an

equilateral triangle, then find the value of b

Watch Video Solution

388. Consider the given equation $11z^{10} + 10iz^9 + 10iz - 11 = 0$, then |z| is

Watch Video Solution

389. Let α , β be the roots of the equation $(x - a)(x - b) = c, c \neq 0$. Then the roots of the equation $(x - \alpha)(x - \beta) + c = 0$ are a, c b. b, c c. a, b d.

a + c, b + c

390. If
$$8iz^3 + 12z^2 - 18z + 27i = 0$$
, then (a). $|z| = \frac{3}{2}$ (b). $|z| = \frac{2}{3}$ (c). $|z| = 1$ (d). $|z| = \frac{3}{4}$

Watch Video Solution

391. Let z_1 , z_2 and z_3 represent the vertices A, B, and C of the triangle ABC, respectively, in the Argand plane, such that $|z_1| = |z_2| = |z_3| = 5$. Prove that $z_1 \sin 2A + z_2 \sin 2B + z_3 \sin 2C = 0$.

Watch Video Solution

392. Let *a*, *b*, *c* be real numbers, $a \neq 0$. If α is a zero of $a^2x^2 + bx + c = 0$, β is the zero of $a^2x^2 - bx - c = 0$ and $0 < \alpha < \beta$ then prove that the equation $a^2x^2 + 2bx + 2c = 0$ has a root *y* that always satisfies $\alpha < y < \beta$.

393. If
$$(x^2 + px + 1)$$
 is a factor of $(ax^3 + bx + c)$, then $a^2 + c^2 = -ab$ b.

 $a^2 - c^2 = -ab$ c. $a^2 - c^2 = ab$ d. none of these

Watch Video Solution

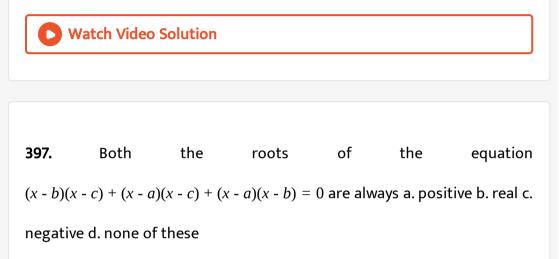
394. If
$$|z| < \sqrt{2} - 1$$
, then $|z^2 + 2z\cos\alpha|$ is a. less than 1 b. $\sqrt{2} + 1$ c. $\sqrt{2} - 1$ d.

none of these

Watch Video Solution

395. On the Argand plane z_1 , z_2 and z_3 are respectively, the vertices of an isosceles triangle *ABC* with *AC* = *BC* and equal angles are θ If z_4 is the incenter of the triangle, then prove that $(z_2 - z_1)(z_3 - z_1) = (1 + \sec\theta)(z_4 - z_1)^2$

396. If complex number $z(z \neq 2)$ satisfies the equation $z^2 = 4z + |z|^2 + \frac{16}{|z|^3}$, then the value of $|z|^4$ is_____.



Watch Video Solution

398. Find the locus of the points representing the complex number z for which $|z + 5|^2 - |z - 5|^2 = 10$.

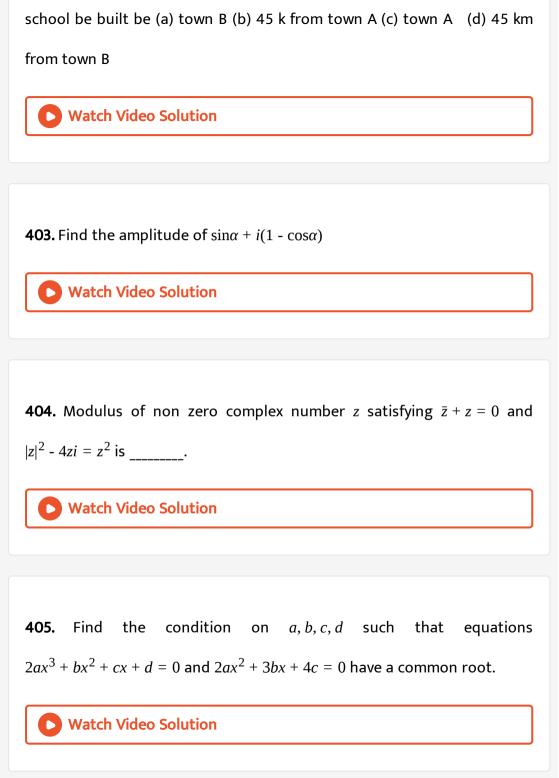
399. The equation $x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$ has a. no root b. one root c. two equals roots d. Infinitely many roots

400. Identify the locus of z if $\bar{z} = \bar{a} + \frac{r^2}{z - a}$.

Watch Video Solution

401. If the expression $(1 + ir)^3$ is of the form of s(1 + i) for some real 's' where 'r' is also real and $i = \sqrt{-1}$

402. Two towns A and B are 60 km a part. A school is to be built to serve 150 students in town A and 50 students in town B. If the total distance to be travelled by all 200 students is to be as small as possible, then the



406. Let z = 9 + bi, where b is nonzero real and $i^2 = -1$. If the imaginary

part of $z^2 and z^3$ are equal, then $\frac{b}{3}$ is _____.

407. If $z_1 and z_2$ are two complex numbers and c > 0, then prove that

$$|z_1 + z_2|^2 \le (1 + c)|z_1|^2 + (1 + c^{-1})|z_2|^2$$

Watch Video Solution

408. Let f(x), g(x), and h(x) be the quadratic polynomials having positive leading coefficients and real and distinct roots. If each pair of them has a common root, then find the roots of f(x) + g(x) + h(x) = 0.

Watch Video Solution

409. Find the minimum value of |z - 1 if ||z - 3| - |z + 1| = 2.

410. If $x = \omega - \omega^2 - 2$ then , the value of $x^4 + 3x^3 + 2x^2 - 11x - 6$ is (where ω

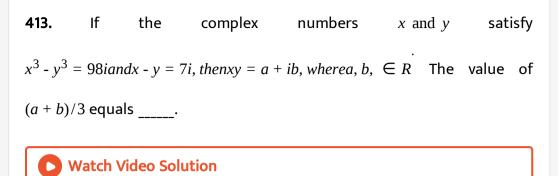
is a imaginary cube root of unity)

Watch Video Solution

411. If a, b, c be the sides of *ABC* and equations $ax^2 + bx + c = 0$ and .

 $5x^2 + 12x + 13 = 0$ have a common root, then find $\angle C$

412. Find the greatest and the least value of $|z_1 + z_2|$ if $z_1 = 24 + 7i$ $and |z_2| = 6$.



414. If $b^2 < 2ac$, then prove that $ax^3 + bx^2 + cx + d = 0$ has exactly one real root.

Watch Video Solution

415. If z is any complex number such that $|z + 4| \le 3$, then find the

greatest value of |z + 1|

416. If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that $|z_1 - i| = |z_2 - i| = |z_3 - i|$.then $|z_1 + z_2 + z_3|$ equals:

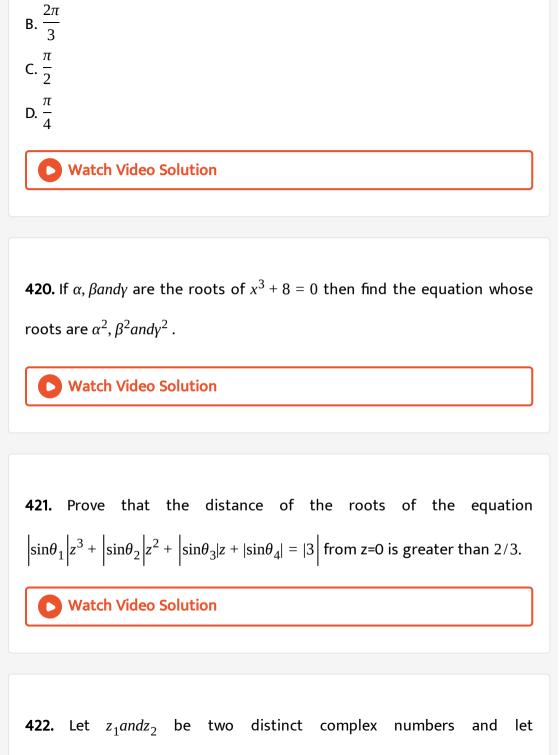
Watch Video Solution

417. If two roots of $x^3 - ax^2 + bx - c = 0$ are equal in magnitude but opposite in signs, then prove that ab = c

Watch Video Solution

418. For any complex number z find the minimum value of |z| + |z - 2i|

419. The greatest positive argument of complex number satisfying |z - 4| = Re(z) is A. $\frac{\pi}{3}$



 $z = (1 - t)z_1 + tz_2$ for some real number t with 0 < t < 1. If a r g(w) denotes

the principal argument of a nonzero complex number w, then

$$\begin{vmatrix} z - z_1 \\ + \\ z - z_2 \end{vmatrix} = \begin{vmatrix} z_1 - z_2 \\ (z - z_1) \end{vmatrix} = (z - z_2)$$
$$\begin{vmatrix} z - z_1 \\ z - z_1 \\ z - z_1 \end{vmatrix} = 0$$
$$arg(z - z_1) = arg(z_2 - z_1)$$

Watch Video Solution

423. If α , β , γ are the roots of the equation $x^3 - px + q = 0$, then find the

cubic equation whose roots are
$$\frac{\alpha}{1+\alpha}$$
, $\frac{\beta}{1+\beta}$, $\frac{\gamma}{1+\gamma}$

Watch Video Solution

424. If
$$|z_1 - 1| \le 1$$
, $|z_2 - 2| \le 2$, $|z_3 - 3| \le 3$, then find the greatest value of $|z_1 + z_2 + z_3|$.

425. Let $w = (\sqrt{3} + \frac{l}{2})$ and $P = \{w^n : n = 1, 2, 3,\}$, Further $H_1 = \{z \in C : Re(z) > \frac{1}{2}\}$ and $H_2 = \{z \in C : Re(z) < -\frac{1}{2}\}$ Where C is

set of all complex numbers. If $z_1 \in P \cap H_1$, $z_2 \in P \cap H_2$ and O represent the origin, then $\angle Z_1 O Z_2$ =

Watch Video Solution

426. If the roots of equation $x^3 + ax^2 + b = 0are\alpha_1, \alpha_2$ and $\alpha_3(a, b \neq 0)$,

then find the equation whose roots are $\frac{\alpha_1\alpha_2 + \alpha_2\alpha_3}{\alpha_1\alpha_2\alpha_3}, \frac{\alpha_2\alpha_3 + \alpha_3\alpha_1}{\alpha_1\alpha_2\alpha_3}, \frac{\alpha_1\alpha_3 + \alpha_1\alpha_2}{\alpha_1\alpha_2\alpha_3}$

Watch Video Solution

427. If z is a complex number, then find the minimum value of |z| + |z - 1| + |2z - 3|

428. Let |z| = 2 and $w = \frac{z+1}{z-1}$, where z, w, $\in C$ (where C is the set of complex numbers). Then product of least and greatest value of modulus of w is_____.

Watch Video Solution

429. If α , β and γ are roots of $2x^3 + x^2 - 7 = 0$, then find the value of

$$\sum \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right).$$

Watch Video Solution

430. if z is complex no satisfies the condition | Z |>3. Then find the least

value of | Z+ 1/ Z |

431. If α is the nth root of unity, then $1 + 2\alpha + 3\alpha^2 + \rightarrow n$ terms equal to

a.
$$\frac{-n}{(1-\alpha)^2}$$
 b. $\frac{-n}{1-\alpha}$ c. $\frac{-2n}{1-\alpha}$ d. $\frac{-2n}{(1-\alpha)^2}$

Watch Video Solution

432. Let *r*, *s*, and*t* be the roots of equation $8x^3 + 1001x + 2008 = 0$. Then find the value of $(r + s)^3 + (s + t)^3 + (t + r)^3$.

Watch Video Solution

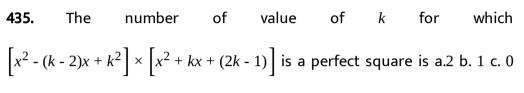
433. Locate the region in the Argand plane determined by $z^2 + z^2 + 2|z^2| < (8i(z - z))$.

Watch Video Solution

434. Given z is a complex number with modulus 1. Then the equation

 $\left[\frac{1+ia}{1-ia}\right]^4 = z \text{ has all roots real and distinct two real and two imaginary}$

three roots two imaginary one root real and three imaginary



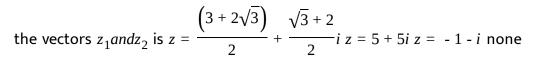
d. none of these

Watch Video Solution

436. For any complex number z prove that $|Re(z)| + |Im(z)| \le \sqrt{2}|z|$

Watch Video Solution

437. The point $z_1 = 3 + \sqrt{3}i$ and $z_2 = 2\sqrt{3} + 6i$ are given on a complex plane. The complex number lying on the bisector of the angel formed by



of these

438. The total number of integral values of a so that $x^2 - (a + 1)x + a - 1 = 0$ has integral roots is equal to a. 1 b. 2 c. 4 d. none

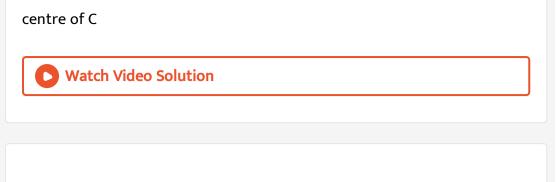
of these

Watch Video Solution

439. If
$$w = \frac{z}{z - \left(\frac{1}{3}\right)i}$$
 and $|w| = 1$, then find the locus of z

Watch Video Solution

440. Let C_1 and C_2 be two circles with C_2 lying inside C_1 A circle C lying inside C_1 touches C_1 internally and C_2 externally. Identify the locus of the



441. The number of positive integral solutions of $x^4 - y^4 = 3789108$ is a.0

b. 1 c. 2 d. 4

Watch Video Solution

442. The region of argand diagram defined by $|z - 1| + |z + 1| \le 4$ (1) interior of an ellipse (2) exterior of a circle (3) interior and boundary of an ellipse (4) none of these

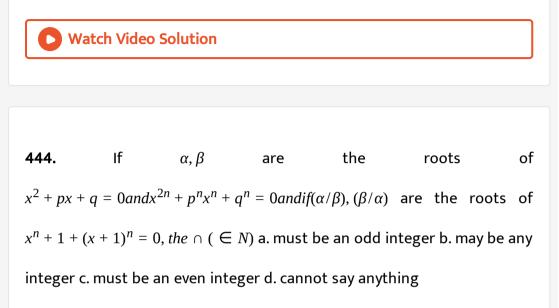
Watch Video Solution

443. z_1, z_2, z_3, z_4 are distinct complex numbers representing the vertices

of a quadrilateral ABCD taken in order. If

$$z_1 - z_4 = z_2 - z_3$$
 and arg $\left[\left(z_4 - z_1 \right) / \left(z_2 - z_1 \right) \right] = \pi/2$, the quadrilateral is a.

rectangle b. rhombus c. square d. trapezium



Watch Video Solution

445. If
$$(\log)_{\sqrt{3}}\left(\frac{|z|^2 - |z| + 1}{2 + |z|}\right) > 2$$
, then locate the region in the Argand

plane which represents z

446. If $z = \frac{\left(1 + i\sqrt{3}\right)^2}{4i\left(1 - i\sqrt{3}\right)}$ is a complex number then a. $arg(z) = \frac{\pi}{4}$ b. $arg(z) = \frac{\pi}{2} \text{ c. } |z| = \frac{1}{2} \text{ d. } |z| = 2$

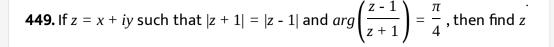
Watch Video Solution

447. If α, β, γ are such that $\alpha + \beta + \gamma = 2, \alpha^2 + \beta^2 + \gamma^2 = 6, \alpha^3 + \beta^3 + \gamma^3 = 8, then\alpha^4 + \beta^4 + \gamma^4$ is a. 18 b. 10 c. 15 d. 36

Watch Video Solution

448. If $z = \frac{3}{2 + \cos\theta + i\sin\theta}$ then locus of z is straight line a circle having

center on the y-axis a parabola a circle having center on the x-axis



450. If xy = 2(x + y), $x \le y$ and $x, y \in N$, then the number of solutions of

the equation are a. two b. three c. no solution d. infinitely many solutions

451. If
$$Im\left(\frac{z-1}{e^{\theta i}}+\frac{e^{\theta i}}{z-1}\right)=0$$
, then find the locus of z

Watch Video Solution

452. If *pandq* are distinct prime numbers, then the number of distinct imaginary numbers which are pth as well as qth roots of unity are. a. min (p, q) b. min (p, q) c. 1 d. zero

453. The number of real solutions of the equation $(9/10)^x = -3 + x - x^2$ is

a. 2 b. 0 c. 1 d. none of these

Watch Video Solution

454. What is locus of z if
$$\left| z - 1 - \sin^{-1} \left(\frac{1}{\sqrt{3}} \right) \right| + \left| z + \cos^{-1} \left(\frac{1}{\sqrt{3}} \right) - \frac{\pi}{2} \right| = 1?$$

Watch Video Solution

455. If
$$|z - 2 - i| = |z| \sin\left(\frac{\pi}{4} - argz\right)|$$
, where $i = \sqrt{-1}$, then locus of z, is

456. The number of integral values of a for which the quadratic equation

(x + a)(x + 1991) + 1 = 0 has integral roots are a. 3 b.0 c.1 d. 2

457. ω is an imaginary root of unity.

Prove that

(i)
$$(a + b\omega + c\omega^2)^3 + (a + b\omega^2 + c\omega)^3 = (2a - b - c)(2b - a - c)(2c - a - b)$$

(ii) If a+b+c=0 then prove that

$$(a + b\omega + c\omega^2)^3 + (a + b\omega^2 + c\omega)^3 = 27abc.$$

Watch Video Solution

458. If z is a complex number having least absolute value and |z - 2 + 2i| = 1, then $z = (2 - 1/\sqrt{2})(1 - i)$ b. $(2 - 1/\sqrt{2})(1 + i)$ c. $(2 + 1/\sqrt{2})(1 - i)$ d. $(2 + 1/\sqrt{2})(1 + i)$

459. If the equation $\cot^4 x - 2\csc^2 x + a^2 = 0$ has at least one solution, then the sum of all possible integral values of a is equal to a. 4 b. 3 c. 2 d. 0

Watch Video Solution
460. Which of the following is equal to
$$\sqrt[3]{-1} a$$
. $\frac{\sqrt{3} + \sqrt{-1}}{2} b$. $\frac{-\sqrt{3} + \sqrt{-1}}{\sqrt{-4}} c$.
 $\frac{\sqrt{3} - \sqrt{-1}}{\sqrt{-4}} d$. $-\sqrt{-1}$
Watch Video Solution
461. ω is an imaginary root of unity. Prove that
 $(a + b\omega + c\omega^2)^3 + (a + b\omega^2 + c\omega^{-1})^3 = (2a - b - c)(2b - a - c)(2c - a - b)^{-1}$
Watch Video Solution

462. The number of real solutions of $|x| + 2\sqrt{5 - 4x - x^2} = 16$ is/are a. 6 b. 1

c. 0 d. 4

463. If $|z - 1| + |z + 3| \le 8$, then prove that z lies on the circle.

464. If $z_1 and z_2$ are the complex roots of the equation $(x - 3)^3 + 1 = 0$, *then* $z_1 + z_2$ equal to 1 b. 3 c. 5 d. 7

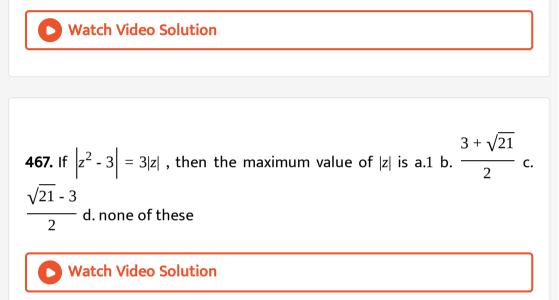
Watch Video Solution

465. If the quadratic equation $ax^2 + bx + 6 = 0$ does not have real roots

and $b \in R^+$, then prove that $a > max \left\{ \frac{b^2}{24}, b - 6 \right\}$

466. If the equation |z - a| + |z - b| = 3 represents an ellipse and

 $a, b \in C$, where a is fixed, then find the locus of b



468. What is the minimum height of any point on the curve $y = x^2 - 4x + 6$

above the x-axis?

469. Find the locus of point *z* if *z* , *i* ,and *iz* , are collinear.

470. If
$$|z - 1| \le 2and |\omega z - 1 - \omega^2| = a$$
 where ω is cube root of unity, then

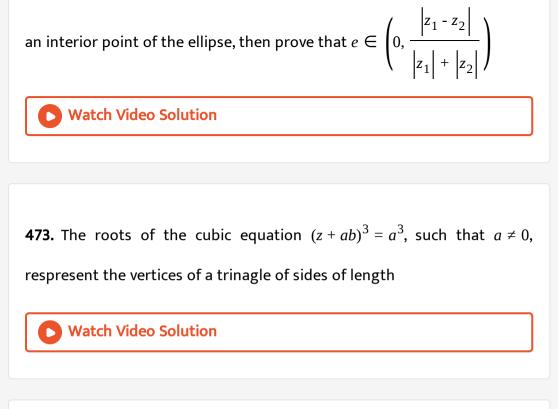
complete set of values of *a* is $a.0 \le a \le 2$ b. $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ c. $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ d. $0 \le a \le 4$

Watch Video Solution

471. What is the maximum height of any point on the curve $y = -x^2 + 6x - 5$ above the x-axis?

Watch Video Solution

472. Consider an ellipse having its foci at $A(z_1)andB(z_2)$ in the Argand plane. If the eccentricity of the ellipse be e and it is known that origin is



474. Find the largest natural number a for which the maximum value of $f(x) = a - 1 + 2x - x^2$ is smaller than the minimum value of $g(x) = x^2 - 2ax + 10 - 2a$

475. In the Argands plane what is the locus of $z \neq 1$ such that

$$\arg\left\{\frac{3}{2}\left(\frac{2z^2-5z+3}{3z^2-z-2}\right)\right\} = \frac{2\pi}{3}$$

Watch Video Solution

476. If ω is a complex nth root of unity, then $\sum_{r=1}^{n} (ar+b)\omega^{r-1}$ is equal to A.. $\frac{n(n+1)a}{2}$ B. $\frac{nb}{1+n}$ C. $\frac{na}{\omega-1}$ D. none of these Watch Video Solution

477. Let $f(x) = ax^2 + bx + c$ be a quadratic expression having its vertex at

(3, -2) and value of f(0) = 10. Find f(x).

478. If
$$|z| = 2and \frac{z_1 - z_3}{z_2 - z_3} = \frac{z - 2}{z + 2}$$
, then prove that z_1, z_2, z_3 are vertices of a

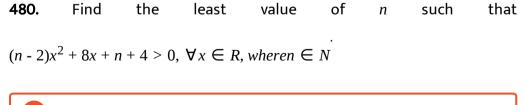
right angled triangle.

Watch Video Solution

479. If
$$\left|\frac{z_1}{z_2}\right| = 1$$
 and $arg(z_1z_2) = 0$, then a. $z_1 = z_2$ b. $|z_2|^2 = z_1 \cdot z_2$

 $c. z_1 \cdot z_2 = 1$ d. none of these

Watch Video Solution



481. The common roots of the equation $Z^3 + 2Z^2 + 2Z + 1 = 0$ and $Z^{1985} + Z^{100} + 1 = 0$ are

482. If $z_1 + z_2 + z_3 + z_4 = 0$ where $b_i \in R$ such that the sum of no two values being zero and $b_1z_1 + b_2z_2 + b_3z_3 + b_4z_4 = 0$ where z_1, z_2, z_3, z_4 are arbitrary complex numbers such that no three of them are collinear, prove that the four complex numbers would be concyclic if $|b_1b_2||z_1 - z_2|^2 = |b_3b_4||z_3 - z_4|^2$.

Watch Video Solution

483. If the inequality $(mx^2 + 3x + 4)/(x^2 + 2x + 2) < 5$ is satisfied for all

 $x \in R$, then find the value of m

484. If |(z - 2)/(z - 3)| = 2 represents a circle, then find its radius.

485. If
$$z_1$$
 is a root of the equation
 $a_0 z^n + a_1 z^{n-1} + \dots + (a_{n-1}) z + a_n = 3$, where $|a_i| < 2$ for
 $i = 0, 1, \dots, n$, then (a). $|z| = \frac{3}{2}$ (b). $|z| < \frac{1}{4}$ (c). $|z| > \frac{1}{4}$ (d). $|z| > \frac{1}{3}$

Watch Video Solution

486. If
$$f(x) = (a_1x + b_1)^2 + (a_2x + b_2)^2 + \dots + (a_nx + b_n)^2$$
, then prove
that $(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 \le (a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2)^{\cdot}$

Watch Video Solution

487. If the imaginary part of (2z + 1)/(iz + 1) is -2, then find the locus of

the point representing in the complex plane.

488. If $|2z - 1| = |z - 2| and z_1, z_2, z_3$ are complex numbers such that

$$|z_1 - \alpha| < \alpha, |z_2 - \beta| < \beta, \text{ then=} \left| \frac{z_1 + z_2}{\alpha + \beta} \right|$$
a) < $|z|b. < 2|z|c. > |z| d. > 2|z|$

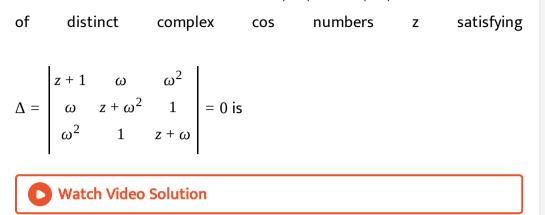
Watch Video Solution

489. If c is positive and $2ax^2 + 3bx + 5c = 0$ does not have any real roots, then prove that 2a - 3b + 5b > 0.

Watch Video Solution

490. Find the number of complex numbers which satisfies both the equations $|z - 1 - i| = \sqrt{2}and|z + 1 + i| = 2$.

491. Let ω be the complex number $\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$. Then the number



492. If $ax^2 + bx + 6 = 0$ does not have distinct real roots, then find the

least value of 3a + b

Watch Video Solution

493. $|z - 2 - 3i|^2 + |z - 4 - 3i|^2 = \lambda$ represents the equation of the circle with

least radius. find the value of λ

494. Match the statements/expressions given in column I with the values given in Column II. Column I, Column II In \mathbb{R}^2 , if the magnitude of the projection vector of the vector $\alpha \hat{i} + \beta \hat{j}$ on $\sqrt{3}\hat{i} + \hat{j}is\sqrt{3}$ and if $|\alpha|$ is /are, (p) 1 real numbers such Let aandb be that the function $f(x) = \begin{cases} -3ax^2 - 2, x < 1bx + a^2, x \ge 1 & \text{Differentiable for all } x \in R & \text{Then} \end{cases}$ possible value (s) of a is/are, (q) 2 Let $\omega \neq 1$ be a complex cube root of unity. If

$$(3 - 3\omega + 2\omega^2)^{4n+3} + (2 + 3\omega - 3\omega^2)^{4n+3} + (-3 - 2\omega + 3\omega^2)^{4n+3} = 0 ,$$

then possible values (s) of *n* is /are, (r) 3 Let the harmonic mean of two positive real numbers *aandb* be 4. If *q* is a positive real number such that *a*, 5, *q*, *b* is an arithmetic progressin, then the values (s)of|q - a| is /are, (s) 4, (t) 5

Watch Video Solution

495. A quadratic trinomial $P(x) = ax^2 + bx + c$ is such that the equation P(x) = x has no real roots. Prove that in this case equation P(P(x)) = x has no real roots either.

496. If
$$(\sqrt{8} + i)^{50} = 3^{49}(a + ib)$$
, then find the value of $a^2 + b^2$.

Watch Video Solution

497. Let $a, b, c \in Q^+$ satisfying a > b > c. Which of the following statement(s) hold true of the quadratic polynomial $f(x) = (a + b - 2c)x^2 + (b + c - 2a)x + (c + a - 2b)?$ a. The mouth of the parabola y = f(x) opens upwards b. Both roots of the equation f(x) = 0 are rational c. The x-coordinate of vertex of the graph is positive d. The product of the roots is always negative

Watch Video Solution

498. Find number of values of complex numbers $\boldsymbol{\omega}$ satisfying the system

of equation
$$z^3 = -(\bar{\omega})^7$$
 and z^5 . $\omega^{11} = 1$

499. Match the statements in column-I with those I column-II [Note: Here z takes the values in the complex plane and Im(z)andRe(z) denote, respectively, the imaginary part and the real part of z] Column I, Column II: The set of points z satisfying |z - i|z|| - |z + i|z| = 0 is contained in or equal to, p. an ellipse with eccentricity 4/5 The set of points z satisfying |z + 4| + |z - 4| = 10 is contained in or equal to, q. the set of point z satisfying Imz = 0 If $|\omega| = 1$, then the set of points $z = \omega + 1/\omega$ is contained in or equal to, r. the set of points z satisfying $|Imz| \le 1$, s. the set of points z satisfying $|Rez| \le 1$, t. the set of points z satisfying $|z| \le 3$

Watch Video Solution

500. If $x, y \in R$ satify the equation $x^2 + y^2 - 4x - 2y + 5 = 0$, then the value of the expression $\left[\left(\sqrt{x} - \sqrt{y}\right)^2 + 4\sqrt{xy}\right]/\left(x + \sqrt{xy}\right)$ is $\sqrt{2} + 1$ b. $\frac{\sqrt{2} + 1}{2}$ c. $\frac{\sqrt{2} - 1}{2}$ d. $\frac{\sqrt{2} + 1}{\sqrt{2}}$ **501.** If |z - iRe(z)| = |z - Im(z)|, then prove that z, lies on the bisectors of

the quadrants.

Watch Video Solution

502. For any integer k, let
$$\alpha_k = \cos\left(\frac{k\pi}{7}\right) + i\sin\left(\frac{k\pi}{7}\right)$$
, where $i = \sqrt{-1}$. Value of the expression $\frac{\sum_{k=1}^{12} |\alpha_{k+1} - \alpha_k|}{\sum_{k=1}^{3} |\alpha_{4k-1} - \alpha_{4k-2}|}$ is Watch Video Solution

503. If
$$x = 1 + \frac{1}{3 + \frac{1}{2 + \frac{1}{3 + \frac{1}{2}}}}$$
 a $\frac{52}{2}$ b. $\frac{55}{71}$ c. $\frac{60}{52}$ d. $\frac{71}{55}$

504. Show that
$$(x^2 + y^2)^4 = (x^4 - 6x^2y^2 + y^4)^2 + (4x^3y - 4xy^3)^2$$

Watch Video Solution

505. Let $\omega = e^{\frac{i\pi}{3}}$ and a, b, c, x, y, z be non-zero complex numbers such that $a + b + c = x, a + b\omega + c\omega^2 = y, a + b\omega^2 + c\omega = z$. Then, the value of $\frac{|x|^2 + |y|^2| + |y|^2}{|a|^2 + |b|^2 + |c|^2}$

Watch Video Solution

506. Find the values of *a* for which all the roots of the euation $x^4 - 4x^3 - 8x^2 + a = 0$ are real.

Watch Video Solution

507. If z is any complex number satisfying $|z - 3 - 2i| \le 2$ then the maximum value of |2z - 6 + 5i| is

508. Let
$$\left| \left(\left(\bar{z}_1 \right) - 2 \left(\bar{z}_2 \right) \right) / \left(2 - z_1 \left(\bar{z}_2 \right) \right) \right| = 1$$
 and $\left| z_2 \right| \neq 1$, where z_1 and z_2

are complex numbers. Show that $|z_1| = 2$.

Watch Video Solution

509. If $x = 2 + 2^{2/3} + 2^{1/3}$, then the value of $x^3 - 6x^2 + 6x$ is (a)3 b. 2 c. 1 d.

-2

Watch Video Solution

510. Let 1, w, w^2 be the cube root of unity. The least possible degree of a polynomial with real coefficients having roots 2w, (2 + 3w), $(2 + 3w^2)$, $(2 - w - w^2)$ is _____. Watch Video Solution **511.** If $z_1 and z_2$ are complex numbers and $u = \sqrt{z_1 z_2}$, then prove that $|z_1| + |z_2| = \left|\frac{z_1 + z_2}{2} + u\right| + \left|\frac{z_1 + z_2}{2} - u\right|$ Watch Video Solution **512.** The least value of the expression $x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 14$ is a.1 b. no least value c. 0 d. none of these Watch Video Solution

513. If ω is an imaginary cube root of unity, then $(1 + \omega - \omega^2)^7$ is equal to

128ω (b) -128ω 128ω² (d) -128ω²

514. If |z| = 1 and let $\omega = \frac{(1-z)^2}{1-z^2}$, then prove that the locus of ω is equivalent to |z - 2| = |z + 2|

Watch Video Solution

515. If $x = 2 + 2^{2/3} + 2^{1/3}$, then the value of $x^3 - 6x^2 + 6x$ is

A. a. 3

B.b.2

C. c. 1

D. d. - 2

Watch Video Solution

516. Let z = x + iy Then find the locus of P(z) such that $\frac{1 + \overline{z}}{z} \in R$

517.
$$\frac{(\cos\theta + i\sin\theta)^4}{(\sin\theta + i\cos\theta)^5}$$
 is equal to.

Watch Video Solution

518. Find the values of k for which
$$\left| \frac{x^2 + kx + 1}{x^2 + x + 1} \right| < 2, \forall x \in \mathbb{R}$$

Watch Video Solution

519. Identify locus *z* if Re(z + 1) = |z - 1|

520. If z is a complex number satisfying $z^4 + z^3 + 2z^2 + z + 1 = 0$ then the

set of possible values of z is

521. Solve the equation $\sqrt{a(2^x - 2)} + 1 = 1 - 2^x, x \in \mathbb{R}^n$

Watch Video Solution

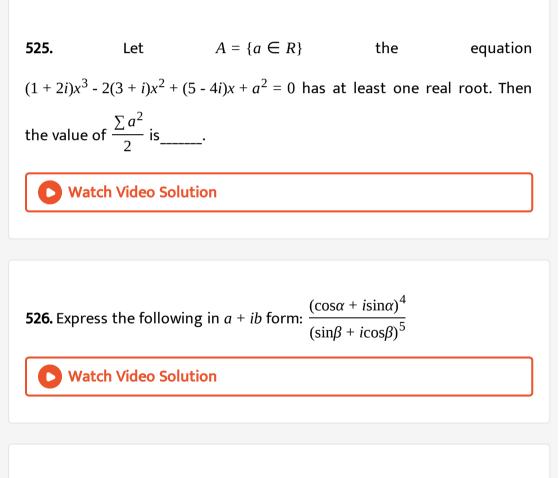
522. If
$$|z_1| = 1$$
, $|z_2| = 2$, $|z_3| = 3$, and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 12$, then find the value of $|z_1 + z_2 + z_3|$.

Watch Video Solution

523. Let $Z_1 = (8 + i)\sin\theta + (7 + 4i)\cos\theta$ and $Z_2 = (1 + 8i)\sin\theta + (4 + 7i)\cos\theta$ are two complex numbers. If $Z_1 \cdot Z_2 = a + ib$ where $a, b \in R$ then the largest value of $(a + b) \forall \theta \in R$, is

524. For a < 0, determine all real roots of the equation $x^2 - 2a|x - a| - 3a^2 = 0.$

Watch Video Solution



527. Find the root of equation $2x^2 + 10x + 20 = 0$.

528. Suppose that z is a complex number the satisfies $|z - 2 - 2i| \le 1$. The

maximum value of |2z - 4i| is equal to _____.

529. If $1/x + x = 2\cos\theta$, then prove that $x^n + 1/x^n = 2\cos\theta$

Watch Video Solution

530. If $ax^2 + bx + c = 0$ and $bx^2 + cx + a = 0$ have a common root and a, b,

and c are nonzero real numbers, then find the value of $(a^3 + b^3 + c^3)/abc$

531. Find the roots of the equation $2x^2 - x + \frac{1}{8} = 0$

532. If |z + 2 - i| = 5 then the maximum value of |3z + 9 - 7i| is K, then find k

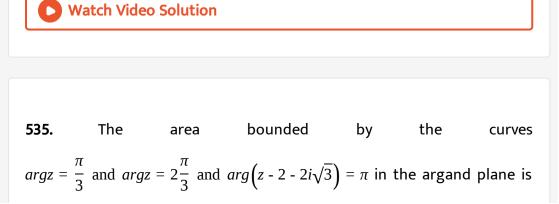
533. If $x^2 + 3x + 5 = 0$ and $ax^2 + bx + c = 0$ have common root/roots and

a, *b*, $c \in N$, then find the minimum value of a + b + c

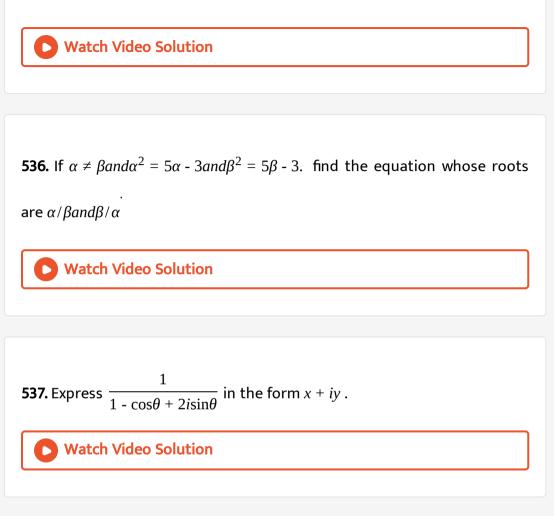
Watch Video Solution

534. Find the minimum value of the expression $E = |z|^2 + |z - 3|^2 + |z - 6i|^2$

(where $z = x + iy, x, y \in R$)



```
(in sq. units)
```



538. *a*, *b*, *c* are three complex numbers on the unit circle |z| = 1, such that

abc = a + b + c Then find the value of |ab + bc + ca|

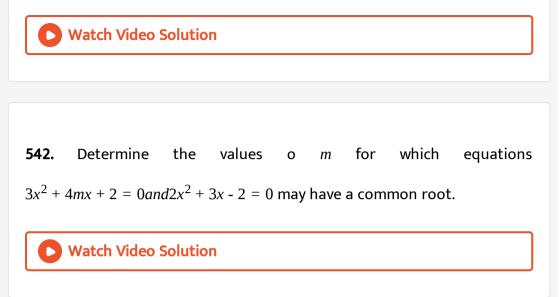
539. If α , β are the roots of Ithe equation $2x^2 - 3x - 6 = 0$, find the equation whose roots are $\alpha^2 + 2$ and $\beta^2 + 2$.

Watch Video Solution

540. If z_1, z_2, z_3 are distinct nonzero complex numbers and $a, b, c \in \mathbb{R}^+$

such that $\frac{a}{|z_1 - z_2|} = \frac{b}{|z_2 - z_3|} = \frac{c}{|z_3 - z_1|}$ Then find the value of $\frac{a^2}{|z_1 - z_2|} + \frac{b^2}{|z_2 - z_3|} + \frac{c^2}{|z_3 - z_1|}$

541. If
$$|z_1| = 15$$
 and $|z_2 - 3 - 4i| = 5$, then
A. a. $(|z_1 - z_2|)_{min} = 5$
B. b. $(|z_1 - z_2|)_{min} = 10$
C. c. $(|z_1 - z_2|)_{max} = 20$
D. d. $(|z_1 - z_2|)_{max} = 25$



543. If
$$z = \frac{\left(\sqrt{3} + i\right)^{17}}{(1 - i)^{50}}$$
, then find $amp(z)$.

Watch Video Solution

544. A rectangle of maximum area is inscribed in the circle |z - 3 - 4i| = 1. If one vertex of the rectangle is 4 + 4i, then another adjacent vertex of this rectangle can be a. 2 + 4i b. 3 + 5i c. 3 + 3i d. 3 - 3i

545. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then find the

roots of the equation $ax^2 - bx(x - 1) + c(x - 1)^2 = 0$ in term of α and β

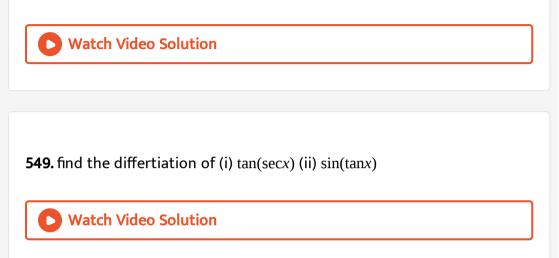
546. If $\frac{3\pi}{2} < \alpha < 2\pi$ then the modulus argument of $(1 + \cos 2\alpha) + i\sin 2\alpha$

547. The value of z satisfying the equation $\log z + \log z^2 + \log z^n = 0$ is

$$(a)\frac{\cos(4m\pi)}{n(n+1)} + i\frac{\sin(4m\pi)}{n(n+1)}, m = 0, 1, 2...$$
$$(b)\frac{\cos(4m\pi)}{n(n+1)} - i\frac{\sin(4m\pi)}{n(n+1)}, m = 0, 1, 2...$$
$$(c)\frac{\sin(4m\pi)}{n(n+1)} + i\frac{\sin(4m\pi)}{n(n+1)}, m = 0, 1, 2, ... (d) 0$$

548. If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is

less then $\sqrt{5}$, then find the set of possible value of a



550. Roots of the equation are $(z + 1)^5 = (z - 1)^5$ are

(a)
$$\pm i \tan\left(\frac{\pi}{5}\right)$$
, $\pm i \tan\left(\frac{2\pi}{5}\right)$
(b) $\pm i \cot\left(\frac{\pi}{5}\right)$, $\pm i \cot\left(\frac{2\pi}{5}\right)$
(c) $\pm i \cot\left(\frac{\pi}{5}\right)$, $\pm i \tan\left(\frac{2\pi}{5}\right)$

(d)none of these

551. Find the value of *a* for which one root of the quadratic equation $(a^2 - 5a + 3)x^2 + (3a - 1)x + 2 = 0$ is twice as large as the other.

$$a^2 - 5a + 3 x^2 + (3a - 1)x + 2 = 0$$
 is twice as large as the o

Watch Video Solution

552. If
$$|z_1 - z_0| = |z_2 - z_0| = a$$
 and $amp\left(\frac{z_2 - z_0}{z_0 - z_1}\right) = \frac{\pi}{2}$, then find z_0

Watch Video Solution

553. Which of the following represents a points in an Argand pane, equidistant from the roots of the equation $(z + 1)^4 = 16z^4$? a. (0, 0) b.

$$\left(-\frac{1}{3},0\right)$$
c. $\left(\frac{1}{3},0\right)$ d. $\left(0,\frac{2}{\sqrt{5}}\right)$

554. If the harmonic mean between roots of
$$(5 + \sqrt{2})x^2 - bx + 8 + 2\sqrt{5} = 0is4$$
, then find the value of b .
Watch Video Solution

555. If $n \in N > 1$, then the sum of real part of roots of $z^n = (z + 1)^n$ is equal to

A. a.
$$\frac{n}{2}$$

B. b. $\frac{(n-1)}{2}$
C. c. $\frac{n}{2}$
D. d. $\frac{(1-n)}{2}$

556. If z_1, z_2, z_3, z_4 are the affixes of four point in the Argand plane, z is the affix of a point such that $|z - z_1| = |z - z_2| = |z - z_3| = |z - z_4|$, then z_1, z_2, z_3, z_4 are

Watch Video Solution

557. Find the values of the parameter *a* such that the rots α , β of the equation $2x^2 + 6x + a = 0$ satisfy the inequality $\alpha/\beta + \beta/\alpha < 2$.

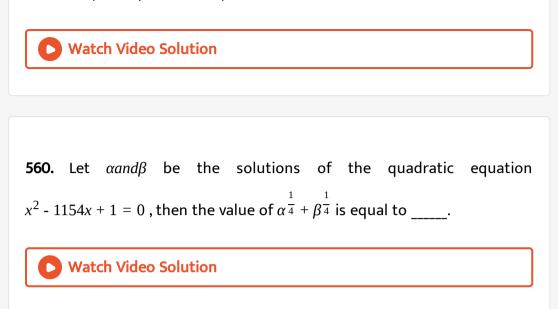
Watch Video Solution

558. Solve the equation $z^3 = z(z \neq 0)$

Watch Video Solution

559. If $z = \omega$, ω^2 where ω is a non-real complex cube root of unity, are two vertices of an equilateral triangle in the Argand plane, then the third

vertex may be represented by $a_z = 1 b_z = 0 c_z = -2 d_z = -1$



561. If
$$\left(\frac{1+i}{1-i}\right)^m = 1$$
, then find the least positive integral value of m

Watch Video Solution

562. If
$$Z_1, Z_2, Z_3, \dots, Z_{n-1}$$
 are n^{th} roots of unity then the value of
 $\frac{1}{3 - Z_1} + \frac{1}{3 - Z_2} + \dots + \frac{1}{3 - Z_{n-1}}$ is equal to

563. If $a, b, c \in R^+ and 2b = a + c$, then check the nature of roots of equation $ax^2 + 2bx + c = 0$.

564. If z is a complex number such that $z^2 = (\bar{z})^2$, then find the location of z on the Argand plane.

Watch Video Solution

565. If $z^3 + (3 + 2i)z + (-1 + ia) = 0$ has one real roots, then the value of *a*

lies in the interval $(a \in R)$ (-2, 1) b. (-1, 0) c. (0, 1) d. (-2, 3)

Watch Video Solution

566. Determine the value of k for which x + 2 is a factor of $(x + 1)^7 + (2x + k)^3$

567. Find the complex number *z* satisfying $Re(z^2 = 0)$, $|z| = \sqrt{3}$.

568. Given that the expression $2x^3 + 3px^2 - 4x + p$ hs a remainder of 5

when divided by x + 2, find the value of p

Watch Video Solution

569. $z_1 and z_2$ are two distinct points in an Argand plane. If $a |z_1| = b |z_2|$ (wherea, $b \in R$), then the point $(az_1/bz_2) + (bz_2/az_1)$ is a point on the line segment [-2, 2] of the real axis line segment [-2, 2] of the imaginary axis unit circle |z| = 1 the line with $argz = \tan^{-1}2$

570. Consider two complex numbers $\alpha and\beta$ as $\alpha = [(a + bi)/(a - bi)]^2 + [(a - bi)/(a + bi)]^2$, where a ,b , in R and $\beta = (z - 1)/(z + 1)$, where |z| = 1, then find the correct statement: both $\alpha and\beta$ are purely real both $\alpha and\beta$ are purely imaginary α is purely real and β is purely imaginary β is purely real and α is purely imaginary

Watch Video Solution

571. In how many points the graph of $f(x) = x^3 + 2x^2 + 3x + 4$ meets the x-

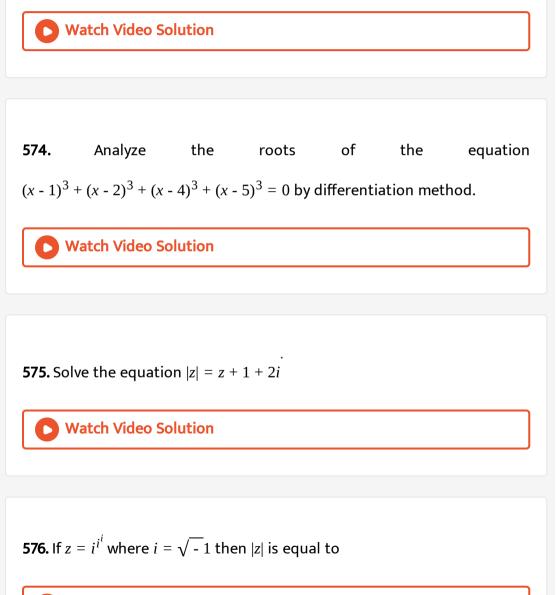
axis ?

Watch Video Solution

572. If
$$x^2 + x + 1 = 0$$
 then the value of $\left(x + \frac{1}{x}\right)^2 + \left(x^2 + \frac{1}{x^2}\right)^2 + \dots + \left(x^{27} + \frac{1}{x^{27}}\right)^2$ is

573.

$$(a + ib) (c + id) (e + if) (g + ih) = A + iB$$
,
then show that $(a^2 + b^2)(c^2 + d^2)(e^2 + f^2)(g^2 + h^2) = A^2 + B^2$



Watch Video Solution

If

577. Find the values of *a* for which the roots of the equation $x^2 + a^2 = 8x + 6a$ are real.

578. If α and β are different complex numbers with $|\beta| = 1$, then find

 $\left|\frac{\beta-\alpha}{1-\bar{\alpha}\beta}\right|.$

Watch Video Solution

579. If
$$z = i \log(2 - \sqrt{3})$$
, then $\cos z = a - 1 b \cdot \frac{-1}{2} c \cdot 1 d \cdot 2$

Watch Video Solution

580. If $f(x) = x^3 - x^2 + ax + b$ is divisible by $x^2 - x$, then find the value of .

f(2)

581. If z = x + iy and w = (1 - iz)/(z - i) and |w| = 1, then show that z is

purely real.

Watch Video Solution

582. If the equation $z^4 + a_1 z^3 + a_2 z^2 + a_3 z + a_4 = 0$ where a_1, a_2, a_3, a_4 are

real coefficients different from zero has a pure imaginary root then the

expression $\frac{a_3}{a_1a_2} + \frac{a_1a_4}{a_2a_3}$ has the value equal to

Watch Video Solution

583. If $f(x) = x^3 - 3x^2 + 2x + a$ is divisible by x - 1, then find the remainder

when f(x) is divided by x - 2.

584. If $z_1 and z_2$ are two complex numbers and c > 0, then prove that

$$|z_1 + z_2|^2 \le (1+c)|z_1|^2 + (1+c^{-1})|z_2|^2$$

Natch Video Solution

585. Suppose A is a complex number and $n \in N$, such that $A^n = (A + 1)^n = 1$, then the least value of n is 3 b. 6 c. 9 d. 12

Watch Video Solution

586. Find the value of p for which x + 1 is a factor of $x^4 + (p-3)x^3 - (3p-5)x^2 + (2p-9)x + 6$. Find the remaining factor for this value of p

587. If z_1, z_2, z_3 be the affixes of the vertices *A*, *B* and *C* of a triangle having centroid at G such ;that z = 0 is the mid point of AG then $4z_1 + z_2 + z_3 =$

588. The number of complex numbers z such that |z| = 1 and $\begin{vmatrix} z & \overline{z} \\ \overline{z} & z \end{vmatrix} = 1$

is $arg(z) \in [0, 2\pi)$) then a. 4 b. 6 c. 8 d. more than 8

Watch Video Solution

589. Given that $x^2 - 3x + 1 = 0$, then the value of the expression $y = x^9 + x^7 + x^{-9} + x^{-7}$ is divisible by prime number?

Watch Video Solution

590. If $iz^4 + 1 = 0$, then prove that z can take the value $\cos \pi/8 + i\sin \pi/8$.

591. Find the value of x such that $\frac{(x + \alpha)^n - (x + \beta)^n}{\alpha - \beta} = \frac{\sin(n\theta)}{\sin^n \theta}$, where α and

 β are the roots of the equation $t^2 - 2t + 2 = 0$.

Watch Video Solution

592. Suppose $a, b, c \in I$ such that the greatest common divisor for $x^2 + ax + b$ and $x^2 + bx + c$ is (x + 1) and the least common multiple of $x^2 + ax + b$ and $x^2 + bx + c$ is $(x^3 - 4x^2 + x + 6)$. Then the value of |a + b + c| is equal to _____.

Watch Video Solution

593. Find the value of following expression: $\left[\frac{1 - \frac{\cos\pi}{10} + i\frac{\sin\pi}{10}}{1 - \frac{\cos\pi}{10} - i\frac{\sin\pi}{10}}\right]^{10}$

594. Dividing f(z) by z - i, we obtain the remainder i and dividing it by z + i, we get the remainder 1 + i, then remainder upon the division of f(z) by $z^2 + 1$ is

Watch Video Solution

595. If the roots of the cubic equation, $x^3 + ax^2 + bx + c = 0$ are three consecutive positive integers, then the value of $(a^2/b + 1)$ is equal to?

Watch Video Solution

596. If
$$z_1, z_2 \in C$$
, $z_1^2 + z_2^2 \in R$, $z_1(z_1^2 - 3z_2^2) = 2$ and $z_2(3z1^2 - z2^2) = 11$,

then the value of *z*12 + *z*22 is 10 b. 12 c. 5 d. 8

597. If $\cos \alpha + \cos \beta + \cos \gamma = 0$ and $a lso \sin \alpha + \sin \beta + \sin \gamma = 0$, then prove that $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = \sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$ $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$

 $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$

Watch Video Solution

598. If
$$x + y + z = 12$$
 and $x^2 + y^2 + z^2 = 96$ and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 36$, then the value $x^3 + y^3 + z^3$ divisible by prime number is .

Watch Video Solution

599. Prove that
$$(1 + i)^n + (1 - i)^n = 2^{\frac{n+2}{2}} \cos\left(\frac{n\pi}{4}\right)$$
, where n is a positive

integer.

600. The set
$$\left\{ Re\left(\frac{2iz}{1-z^2}\right) : zisacomplexvmber, |z| = 1, z = \pm 1 \right\}$$
 is_____.

Watch Video Solution

601. If the equation $x^2 + ax + bc = 0$ and $x^2 - bx + ca = 0$ have a common

root, then a + b + c =

Watch Video Solution

602. If
$$arg[z_1(z_3 - z_2)] = arg[z_3(z_2 - z_1)]$$
, then find prove that

 O, z_1, z_2, z_3 are concyclic, where O is the origin.

Watch Video Solution

603. If
$$x - iy = \sqrt{\frac{a - ib}{c - id}}$$
 prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$

604. If $x^3 + 3x^2 - 9x + c$ is of the form $(x - \alpha)^2(x - \beta)$, then *c* is equal to a.27 b. -27 c. 5 d. -5

605. If x = a + b, $y = a\alpha + b\beta$ and $z = a\beta + b\alpha$, where α and β are the

imaginary cube roots of unity, then xyz =

Watch Video Solution

606. If $z = (a + ib)^5 + (b + ia)^5$ then prove that Re(z) = Im(z), where

 $a, b \in R$.

607. If *a* and *b* are positive numbers and eah of the equations $x^2 + ax + 2b = 0$ and $x^2 + 2bx + a = 0$ has real roots, then the smallest possible value of (a + b) is_____.

Watch Video Solution

608. The real values of *xandy* for which the following equation is satisfied:

 $\frac{(1+i)(x-2i)}{3+i} + \frac{(2-3i)(y+i)}{3-i} = i \quad x = 3, y = 1 \quad b. \quad x = 3, y = -1 \quad c.$ $x = -3, y = 1 \quad d. x = -3, y = -1$

Watch Video Solution

609. The three angular points of a triangle are given by $Z = \alpha$, $Z = \beta$, $Z = \gamma$, where α , β , γ are complex numbers, then prove that the perpendicular from the angular point $Z = \alpha$ to the opposite side is given

by the equation
$$Re\left(\frac{Z-\alpha}{\beta-\gamma}\right)=0$$

610. Suppose *a*, *b*, *c* are the roots of the cubic $x^3 - x^2 - 2 = 0$. Then the value of $a^3 + b^3 + c^3$ is _____.

Watch Video Solution

611. Prove that $x^3 + x^2 + x$ is factor of $(x + 1)^n - x^n - 1$ where n is odd integer greater than 3, but not a multiple of 3.

Watch Video Solution

612. If α , β , γ , δ are four complex numbers such that $\frac{\gamma}{\delta}$ is real and $\alpha\delta - \beta\gamma \neq 0$ then $z = \frac{\alpha + \beta t}{\gamma + \delta t}$ where t is a rational number, then it represents:

A. A. Circle

B. B. Parabola

C. C. Ellipse

D. D, Straight line

Watch Video Solution

613. If $ax^2 + (b - c)x + a - b - c = 0$ has unequal real roots for all $c \in R$, then

Watch Video Solution

614. If $z_1^2 + z_2^2 - 2z_1 \cdot z_2 \cdot \cos\theta = 0$ prove that the points represented by z_1, z_2

, and the origin form an isosceles triangle.

615. Prove that the circles
$$z\bar{z} + z(\bar{a}_1) + \bar{z}(a_1) + b_1 = 0, b_1 \in R \text{ and } z\bar{z} + z(\bar{a}_2) + \bar{z}a_2 + b_2 = 0,$$

 $b_2 \in R$ will intersect orthogonally if $2Re(a_1\bar{a}_2) = b_1 + b_2$

616. If a, b, c real in G.P., then the roots of the equation $ax^2 + bx + c = 0$

are in the ratio a.
$$\frac{1}{2} \left(-1 + i\sqrt{3} \right)$$
 b. $\frac{1}{2} \left(1 - i\sqrt{3} \right) c \frac{1}{2} \left(-1 - i\sqrt{3} \right)$ d. $\frac{1}{2} \left(1 + i\sqrt{3} \right)$

Watch Video Solution

617. If z_0 is the circumcenter of an equilateral triangle with vertices z_1, z_2, z_3 then $z_1^2 + z_2^2 + z_3^2$ is equal to

Watch Video Solution

618. Two different non-parallel lines cut the circle |z| = r at points a, b, c and d, respectively. Prove that these lines meet at the point z given by $\frac{a^{-1} + b^{-1} - c^{-1} - d^{-1}}{a^{-1}b^{-1} - c^{-1}d^{-1}}$

619. If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common

root, then it must be equal to a.
$$\frac{p' - p'q}{q - q'}$$
 b. $\frac{q - q'}{p' - p}$ c. $\frac{p' - p}{q - q'}$ d. $\frac{pq' - p'q}{p - p'}$

Watch Video Solution

620. Prove that $|z - z_1|^2 + |z - z_2|^2 = a$ will represent a real circle on the Agrand plane if $2a \ge |z_1 - z_2|^2$

Watch Video Solution

621. Complex numbers z_1 , z_2 , z_3 are the vertices A, B, C respectively of an isosceles right angled trianglewith right angle at C and $(z_1 - z_2)^2 = k(z_1 - z_3)(z_3 - z_2)$, then find k.

622. Given that α , γ are roots of the equation $Ax^2 - 4x + 1 = 0$, and

 β , $\delta 1$ the equation of Bx^2 - 6x + 1 = 0, such that

 α , β , γ and δ are in H.P., then

623. Show that the area of the triangle on the Argand diagram formed by

the complex number *z*, *izandz* + *iz* is $\frac{1}{2}|z|^2$

Watch Video Solution

624. Intercept made by the circle $z\bar{z} + \bar{a} + a\bar{z} + r = 0$ on the real axis on complex plane is $\sqrt{(a+\bar{a})-r}$ b. $\sqrt{(a+\bar{a})^2-r}$ c. $\sqrt{(a+\bar{a})^2-4r}$ d. $\sqrt{(a+\bar{a})^2-4r}$

625. The graph of the quadratic trinomial $u = ax^2 + bx + c$ has its vertex at (4, -5) and two x-intercepts, one positive and one negative. Which of the following holds good? a. a > 0 b. b < 0 c. c < 0 d. 8a = b

626. Show that if $iz^3 + z^2 - z + i = 0$, then |z| = 1

Watch Video Solution

627. Show that the equation of a circle passing through the origin and having intercepts a and b on real and imaginary axes, respectively, on the

argand plane is given by $z\overline{z} = a(Rez) + b(Imz)$

628. The function $f(x) = ax^2 + bx^2 + cx + d$ has three positive roots. If the sum of the roots of f(x) is 4, the larget possible inegal values of c/a is

Watch Video Solution

629. Let $z_1 = 10 + 6i$ and $z_2 = 4 + 6i$ If z is any complex number such that

the argument of
$$\frac{(z-z_1)}{(z-z_2)}$$
 is $\frac{\pi}{4}$, then prove that $|z-7-9i| = 3\sqrt{2}$.

Watch Video Solution

630. Let vertices of an acute-angled triangle are $A(z_1)$, $B(z_2)$, $andC(z_3)$ If the origin O is he orthocentre of the triangle, then prove that $z_1\bar{z}_2 + \bar{z}_1z_2 = z_2\bar{z}_3 + \bar{z}_2z_3 = z_3\bar{z}_1 + \bar{z}_3z_1$

631. If
$$(18x^2 + 12x + 4)^n = a_0 + a_{1x} + a_{2x}^2 + a_{2n}^2 x^{2n}$$
, prove that

$$a_r = 2^n 3^r \left(\wedge (2n) C_r + {}^n C_1^{2n-2} C_r + {}^n C_2^{2n-4} C_r + \right).$$

Watch Video Solution

632. If $z = z_0 + A(\bar{z} - (\bar{z}_0))$, where *A* is a constant, then prove that locus of

z is a straight line.

Watch Video Solution

633. If
$$(\sin\alpha)x^2 - 2x + b \ge 2$$
 for all real values of $x \le 1$ and $\alpha \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right)$, then the possible real values of *b* is/are 2 (b) 3 (c) 4 (d) 5

634. If z_1 , z_2 , z_3 are three complex numbers such that $5z_1 - 13z_2 + 8z_3 = 0$,

then prove that $\begin{bmatrix} z_1 & (\bar{z})_1 & 1 \\ z_2 & (\bar{z})_2 & 1 \\ z_3 & (\bar{z})_3 & 1 \end{bmatrix} = 0$

Watch Video Solution

635. If one root $x^2 - x - k = 0$ is square of the other, then $k = a \cdot 2 \pm \sqrt{5}$ b.

 $2 \pm \sqrt{3} \text{ c. } 3 \pm \sqrt{2} \text{ d. } 5 \pm \sqrt{2}$

Watch Video Solution

636. If $2z_1/3z_2$ is a purely imaginary number, then find the value of

$$|(z_1 - z_2)/(z_1 + z_2)|$$

637. If α , and β be t roots of the equation $x^2 + px - 1/2p^2 = 0$, where $p \in \mathbb{R}$ Then the minimum value of $\alpha^4 + \beta^4$ is $2\sqrt{2}$ b. $2 - \sqrt{2}$ c. 2 d. $2 + \sqrt{2}$

Watch Video Solution

638. If z_1, z_2, z_3 are complex numbers such that $(2/z_1) = (1/z_2) + (1/z_3)$, then show that the points represented by $z_1, z_2(), z_3$ lie one a circle passing through e origin.

Watch Video Solution

639. Find the range of

(a)
$$f(x) = \frac{x^2 + 34x - 71}{x^2 + 2x - 7}$$

(b) $f(x) = \frac{x^2 - x + 1}{x^2 + x + 1}$

640. If
$$\left(\frac{3-z_1}{2-z_1}\right)\left(\frac{2-z_2}{3-z_2}\right) = k(k > 0)$$
, then prove that points

 $A(z_1), B(z_2), C(3), and D(2)$ (taken in clockwise sense) are concyclic.

Watch Video Solution

641. $x^2 - xy + y^2 - 4x - 4y + 16 = 0$ represents a. a point b. a circle c. a pair

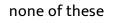
of straight line d. none of these

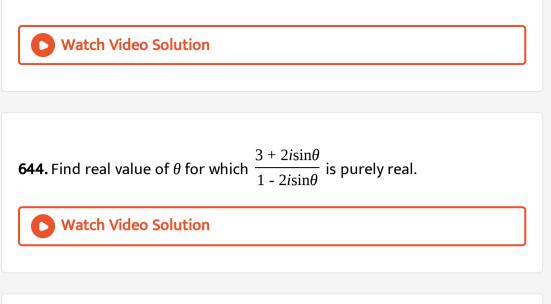
Watch Video Solution

642. If $(x + iy)^5 = p + iq$, then prove that $(y + ix)^5 = q + ip$

Watch Video Solution

643. If α , β are the nonzero roots of $ax^2 + bx + c = 0$ and α^2 , β^2 are the roots of $a^2x^2 + b^2x + c^2 = 0$, then a, b, c are in (A) G.P. (B) H.P. (C) A.P. (D)





645. If the roots of the equation $ax^2 + bx + c = 0$ are of the form (k + 1)/kand(k + 2)/(k + 1), then $(a + b + c)^2$ is equal to $2b^2 - ac$ b. a62 c. $b^2 - 4ac$ d. $b^2 - 2ac$

Watch Video Solution

646. Prove that
$$\tan\left(i\log_e\left(\frac{a-ib}{a+ib}\right)\right) = \frac{2ab}{a^2-b^2}$$
 (where $a, b \in \mathbb{R}^+$)

647. If α , β are the roots of $ax^2 + bx + c = 0$ and $\alpha + h$, $\beta + h$ are the roots of

$$px^{2} + qx + r = 0$$
 then $h = -\frac{1}{2}\left(\frac{a}{b} - \frac{p}{q}\right)$ b. $\left(\frac{b}{a} - \frac{q}{p}\right)$ c. $\frac{1}{2}\left(\frac{b}{q} - \frac{q}{p}\right)$ d. none of

these

648. Find the real part of $(1 - i)^{-i}$

Watch Video Solution

649. The equation
$$(x^2 + x + 1)^2 + 1 = (x^2 + x + 1)(x^2 - x - 5)$$
 for

 $x \in$ (-2, 3) will have number of solutions. 1 b. 2 c. 3 d. 0

650. Convert of the complex number in the polar form: 1 - i

651. If α , β re the roots of $ax^2 + c = bx$, then the equation $(a + cy)^2 = b^2y$ in y has the roots $a.\alpha\beta^{-1}$, $\alpha^{-1}\beta$ b. α^{-2} , β^{-2} c. α^{-1} , β^{-1} d. α^2 , β^2

652. If
$$z = re^{i\theta}$$
, then prove that $\left|e^{iz}\right| = e^{-r\sin\theta}$

Watch Video Solution

653. If the roots of the equation $x^2 + 2ax + b = 0$ are real and distinct and

they differ by at most 2m, then *b* lies in the interval $a.(a^2, a^2, +m^2)$ b. $(a^2 - m^2, a62)$ c. $[a^2 - m^2, a^2]$ d. none of these

$$\left[a^{2}-m,a^{2}\right]$$
C. $\left[a^{2}-m,a^{2}\right]$ G. None of the

654. $Z_1 \neq Z_2$ are two points in an Argand plane. If $a |Z_1| = b |Z_2|$, then prove that $\frac{aZ_1 - bZ_2}{aZ_1 + bZ_2}$ is purely imaginary.

Watch Video Solution

655. If the ratio of the roots of $ax^2 + 2bx + c = 0$ is same as the ratios of roots of $px^2 + 2qx + r = 0$, then a. $\frac{2b}{ac} = \frac{q^2}{pr}$ b. $\frac{b}{ac} = \frac{q^{\Box}}{pr}$ c. $\frac{b^2}{ac} = \frac{q^2}{pr}$ d. none of these

Watch Video Solution

656. Find real value of *xandy* for which the complex numbers $-3 + ix^2yandx^2 + y + 4i$ are conjugate of each other.

657. Show that
$$\frac{(x+b)(x+c)}{(b-a)(c-a)} + \frac{(x+c)(x+a)}{(c-b)(a-b)} + \frac{(x+a)(x+b)}{(a-c)(b-c)} = 1$$
 is an

identity.

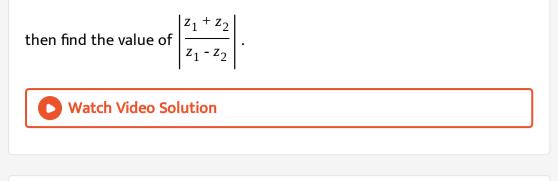
658. Show that
$$e^{2mi\theta} \left(\frac{i\cot\theta + 1}{i\cot\theta - 1} \right)^m = 1.$$

Watch Video Solution

659. A certain polynomial $P(x), x \in R$ when divided by x - a, x - b and x - c leaves remainders a, b, and c, resepectively. Then find remainder when P(x) is divided by (x - a)(x - b)(x - c) where a, b, c are distinct.

Watch Video Solution

660. It is given that complex numbers z_1 and z_2 satisfy $|z_1| = 2$ and $|z_2| = 3$. If the included angled of their corresponding vectors is 60^0 ,



661. If c, d are the roots of the equation (x - a)(x - b) - k = 0, prove that a,

b are roots of the equation (x - c)(x - d) + k = 0.

Watch Video Solution

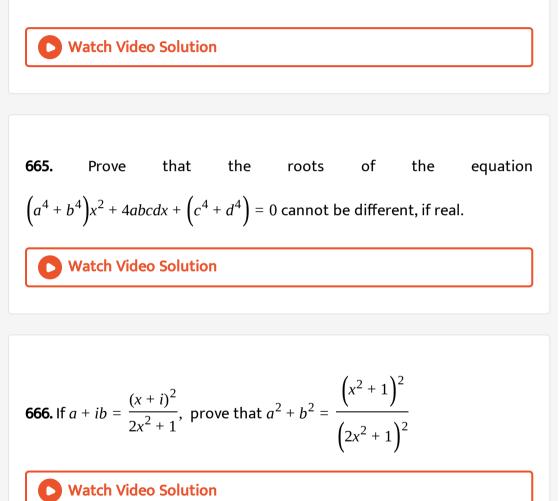
662. If θ is real and z_1, z_2 are connected by $z_12 + z_22 + 2z_1z_2\cos\theta = 0$, then

prove that the triangle formed by vertices O, $z_1 and z_2$ is isosceles.

Watch Video Solution

663. If $(a^2 - 1)x^2 + (a - 1)x + a^2 - 4a + 3 = 0$ is identity in x, then find the value of a.

664. Show that a real value of x will satisfy the equation (1 - ix)/(1 + ix) = a + ib if $a^2 + b^2 = 1$, wherea, b real.



667. If the roots of the equation $x^2 - 8x + a^2 - 6a = 0$ are real distinct, then

find all possible value of a

668. Solve $: z^2 + |z| = 0$.

Watch Video Solution

669. If roots of equation $x^2 - 2cx + ab = 0$ are real and unequal, then prove that the roots of $x^2 - 2(a + b)x + a^2 + b^2 + 2c^2 = 0$ will be imaginary.

Watch Video Solution

670. Find the range of real number α for which the equation $z + \alpha |z - 1| + 2i = 0$ has a solution.

671. If the roots of the equation $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ are

equal, show that 2/b = 1/a + 1/c

672. If
$$\frac{(1+i)^2}{3-i}$$
, then $Re(z) =$

Watch Video Solution

673. Find the quadratic equation with rational coefficients whose one

root is $1/(2 + \sqrt{5})^2$

674. Let z be a complex number satisfying the equation $(z^3 + 3)^2 = -16$,

then find the value of |z|

675. If $f(x) = ax^2 + bx + c$, $g(x) = -ax^2 + bx + c$, where $ac \neq 0$, then prove

that f(x)g(x) = 0 has at least two real roots.

Watch Video Solution

676. Find the real numbers x and y if (x - iy)(3 + 5i) is the conjugate of

-6 - 24*i* .

Watch Video Solution

677. If x is real, then $x/(x^2 - 5x + 9)$ lies between -1 and -1/11 b.

1and - 1/11 c. 1and1/11 d. none of these

678. Find the least positive integer *n* such that $\left(\frac{2i}{1+i}\right)^n$ is a positive

integer.

Watch Video Solution

679. Set of all real value of
$$a$$
 such that

$$f(x) = \frac{(2a-1)x^2 + 2(a+1)x + (2a-1)}{x^2 - 2x + 40}$$
 is always negative is a. $(-\infty, 0)$ b.
 $(0, \infty)$ c. $\left(-\infty, \frac{1}{2}\right)$ d. none

Watch Video Solution

680. Find the real part of $e^e \wedge (i\theta)$

681. If α , β and γ are the roots of $x^3 - x^2 - 1 = 0$, then value of $\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}$ is

Watch Video Solution

682. Prove that $z = i^i$, where $i = \sqrt{-1}$, is purely real.

Watch Video Solution

683. If α , β , γ , δ are the roots of the equation $x^4 - Kx^3 + Kx^2 + Lx + m = 0$, where K, L, and M are real numbers, then the minimum value of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ is 0 b. -1 c. 1 d. 2

Watch Video Solution

684. In ABC, $A(z_1)$, $B(z_2)$, and $C(z_3)$ are inscribed in the circle |z| = 5. If

 $H(z_n)$ be the orthocenter of triangle ABC , then find z_n

685. Suppose that f(x) is a quadratic expresson positive for all real x If g(x) = f(x) + f'(x) + f''(x), then for any real x(where f'(x) and f''(x) represent 1st and 2nd derivative, respectively). a. g(x) < 0 b. g(x) > 0 c. g(x) = 0 d. $g(x) \ge 0$

Watch Video Solution

686. about to only mathematics

Watch Video Solution

687. Let $f(x) = ax^2 - bx + c^2$, $b \neq 0$ and $f(x) \neq 0$ for all $x \in R$. Then (a)

 $a + c^2 < b$ (b) $4a + c^2 > 2b$ (c) $a - 3b + c^2 < 0$ (d) none of these

688. If *n* is n odd integer that is greater than or equal to 3 but not a multiple of 3, then prove that $(x + 1)^n - x^n - 1$ is divisible by $x^3 + x^2 + x$

689. If $a, b \in R, a \neq 0$ and the quadratic equation $ax^2 - bx + 1 = 0$ has imaginary roots, then (a + b + 1) is a positive b negative c zero d. Dependent on the sign of b

Watch Video Solution

690. Find the complex number ω satisfying the equation $z^3 = 8i$ and lying

in the second quadrant on the complex plane.

691. If the expression [mx - 1 + (1/x)] is non-negative for all positive real

x, then the minimum value of m must be -1/2 b. 0 c. 1/4 d. 1/2

692. When the polynomial $5x^3 + Mx + N$ is divided by $x^2 + x + 1$, the

remainder is 0. Then find the value of M + N

Watch Video Solution

693. x_1 and x_2 are the roots of $ax^2 + bx + c = 0$ and $x_1x_2 < 0$. Roots of

 $x_1(x - x_2)^2 + x_2(x - x_1)^2 = 0$ are: (a) real and of opposite sign b. negative

c. positive d. none real

694. if
$$\omega and \omega^2$$
 are the nonreal cube roots of unity and $[1/(a + \omega)] + [1/(b + \omega)] + [1/(c + \omega)] = 2\omega^2$ and $[1/(a + \omega)^2] + [1/(b + \omega)^2] + [1/(c + \omega)^2] = 2\omega$, then find the value of $[1/(a + 1)] + [1/(b + 1)] + [1/(c + 1)]$

Watch Video Solution

695. If *a*, *b*, *c*, *d* are four consecutive terms of an increasing A.P., then the roots of the equation (x - a)(x - c) + 2(x - b)(x - d) = 0 are a. non-real complex b. real and equal c. integers d. real and distinct

Watch Video Solution

696. Find the relation if z_1, z_2, z_3, z_4 are the affixes of the vertices of a parallelogram taken in order.

697. Let *a* and *b* are the roots of the equation $x^2 - 10xc - 11d = 0$ and those of $x^2 - 10ax - 11b = 0$, are c and d then find the value of `a+b+c+d

Watch Video Solution

698. If z_1, z_2, z_3 are three nonzero complex numbers such that $z_3 = (1 - \lambda)z_1 + \lambda z_2$ where $\lambda \in R - \{0\}$, then prove that points corresponding to z_1, z_2 and z_3 are collinear.

Watch Video Solution

699. Fill in the blanks The coefficient of x^{99} in the polynomial

700. Let z_1, z_2, z_3 be three complex numbers and a, b, c be real numbers not all zero, such that a + b + c = 0 and $az_1 + bz_2 + cz_3 = 0$. Show that z_1, z_2, z_3 are collinear.

Watch Video Solution

701. Fill in the blanks If $2 + i\sqrt{3}$ is a root of the equation $x^2 + px + q = 0$, where pand q are real, then $(p, q) = \begin{pmatrix} - - - , - - \end{pmatrix}$.

Watch Video Solution

702. Prove that the triangle formed by the points 1, $\frac{1+i}{\sqrt{2}}$, and *i* as vertices

in the Argand diagram is isosceles.

703. Fill in the blanks. If the product of the roots of the equation $x^2 - 3kx + 2e^{2\log k} - 1 = 0$ is 7, then the roots are real for ______.

704. Solve for
$$z: z^2 - (3 - 2i)z = (5i - 5)$$

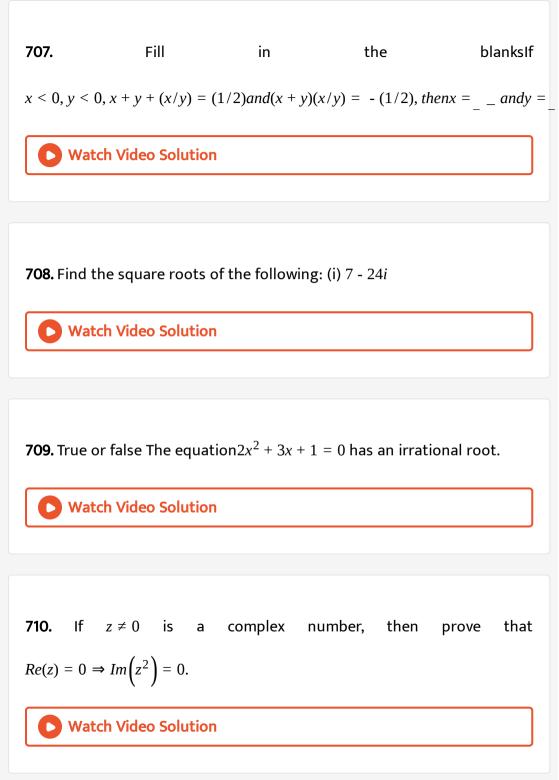
Watch Video Solution

705. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have one

common root. Then find the numerical value of a+b.

Watch Video Solution

706. Find all possible values of $\sqrt{i} + \sqrt{-i}$.



711. If l, m, n are real and $l \neq m$, then the roots of the equation $(l - m)x^2 - 5(l + m)x - 2(l - m) = 0$ are a) real and equal b) Complex c) real and unequal d) none of these

712. Let z be a complex number satisfying the equation $z^2 - (3 + i)z + m + 2i = 0$, where $m \in R$. Suppose the equation has a real root. Then the value of m is-

Watch Video Solution

713. If x, y and z are real and different and $u = x^2 + 4y^2 + 9z^2 - 6yz - 3zx - 2xy$, then u is always (a). non-negative b.

zero c. non-positive d. none of these

714. If
$$(x + iy)^3 = u + iv$$
, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$

Watch Video Solution

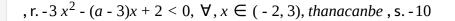
715. Let a > 0, b > 0 and c > 0. Then, both the roots of the equation $ax^2 + bx + c = 0$: a. are real and negative b. have negative real parts c. have positive real parts d. None of the above

Watch Video Solution

716. If the sum of square of roots of the equation $x^2 + (p + iq)x + 3i = 0$ is

8, then find the value of p and q, where p and q are real.

717. Column I, Column II $y = \frac{x^2 - 2x + 4}{x^2 + 2x + 4}, x \in R$, then y can be , p. 1 $y = \frac{x^2 - 3x - 2}{2x - 3}, x \in R$, then y can be , q. $4y = \frac{2x^2 - 2x + 4}{x^2 - 4x + 3}, x \in R$, then y can be



718. If
$$\sqrt{x + iy} = \pm (a + ib)$$
, then find $\sqrt{x - iy}$.

Watch Video Solution

719. Match the following for the equation $x^2 + a \mid x1 = 0$, where *a* is a parameter. Column I, Column II No real roots, p. a < -2 Two real roots, q. φ Three real roots, r. a = -2 Four distinct real roots, s. $a \ge 0$

Watch Video Solution

720. Find the ordered pair (x, y) for which $x^2 - y^2 - i(2x + y) = 2i$

721. If *a*, *b*, *c* are non zero complex numbers of equal moduls and satisfy $az^2 + bz + c = 0$, hen prove that $(\sqrt{5} - 1)/2 \le |z| \le (\sqrt{5} + 1)/2$.

Watch Video Solution

722. Column I, Column II If a, b, c, andd are four zero real numbers such that $(d + a - b)^2 + (d + b - c)^2 = 0$ and he root of the equation $a(b - c)x^2 + b(c - a)x = c(a - b) = 0$ are real and equal, then, p. a + b + c = 0If the roots the equation $(a^2 + b^2)x^2 - 2b(a + c)x + (b^2 + c^2) = 0$ are real and equal, then, q. $a, b, care \in AP$ If the equation $ax^2 + bx + c = 0andx^3 - 3x^2 + 3x - 0$ have a common real root, then, r. $a, b, care \in GP$ Let a, b, c be positive real number such that the expression $bx^2 + (\sqrt{(a + b)^2 + b^2})x + (a + c)$ is non-negative $\forall x \in R$, then, s. $a, b, care \in HP$

723. Let z be not a real number such that $(1 + z + z^2)/(1 - z + z^2) \in R$, then prove tha |z| = 1.

724. Let *a* is a real number satisfying $a^3 + \frac{1}{a^3} = 18$. Then the value of $a^4 + \frac{1}{a^4} - 39$ is ____.

Watch Video Solution

725. Find non zero integral solutions of $|1 - i|^x = 2^x$

726. If
$$(1+i)(1+2i)(1+3i)....(1+ni) = (x+iy)$$
, show that
2.5.10.... $(1+n^2) = x^2 + y^2$

Match Mideo Colution

727. If $ax^2 + bx + c = 0$, $a, b, c \in R$ has no real zeros, and if c < 0, then

which of the following is true? (a) a < 0 (b) a + b + c > 0 (c)a > 0

728. If ω is a cube root of unity, then find the value of the following:

 $\frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2} + \frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2}$

Watch Video Solution

729. If $f(x) = \sqrt{x^2 + ax + 4}$ is defined for all x, then find the values of a

730. If ω is a cube root of unity, then find the value of the following:

$$(1 - \omega) \left(1 - \omega^2\right) \left(1 - \omega^4\right) \left(1 - \omega^8\right)$$

Watch Video Solution

731. Find the domain and range of $f(x) = \sqrt{x^2 - 4x + 6}$

Watch Video Solution

732. Prove that
$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$$
, if z_1/z_2 is purely imaginary.

Watch Video Solution

733. Find the range of the function $f(x) = 6^x + 3^x + 6^{-x} + 3^{-x} + 2$.

734. If ω is a cube root of unity, then find the value of the following:

$$(1 + \omega - \omega^2)(1 - \omega + \omega^2)$$

Watch Video Solution

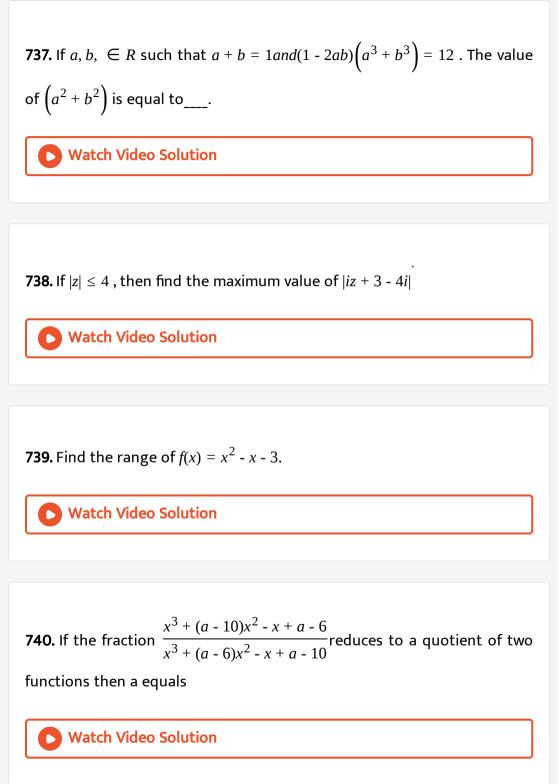
735. If α , β are the roots of the equation $2x^2 + 2(a + b)x + a^2 + b^2 = 0$ then find the equation whose roots $are(\alpha + \beta)^2$ and $(\alpha - \beta)^2$

Watch Video Solution

736. Let
$$z_1, z_2, z_3, z_n$$
 be the complex numbers such that

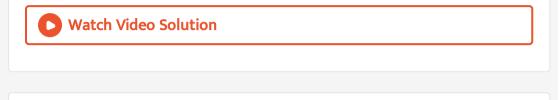
$$|z_1| = |z_2| = |z_n| = 1$$
. If $z = \left(\sum_{k=1}^n z_k\right) \left(\sum_{k=1}^n \frac{1}{z_k}\right)$ then proves that z is a real

number



741. The polynomial $f(x) = x^4 + ax^3 + bx^3 + cx + d$ has real coefficients and

f(2i) = f(2 + i) = 0. Find the value of (a + b + c + d)



742. Find the value of $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ for all $n \in N$

Watch Video Solution

743. If the quadratic equation $ax^2 + bx + c = 0$ (a > 0) has sec² θ and cosec² θ

as its roots, then which of the following must hold good? (a.) b + c = 0

(b.)
$$b^2 - 4ac \ge 0$$
 (c.) $c \ge 4a$ (d.) $4a + b \ge 0$

Watch Video Solution

744. Find the value of $1 + i^2 + i^4 + i^6 + i^{2n}$

745. Let $x, y, z \in R$ such that x + y + z = 6 and xy + yz + zx = 7. Then find

the range of values of x, y, andz

746. Show that the polynomial $x^{4p} + x^{4q+1} + x^{4r+2} + x^{4s+3}$ is divisible by

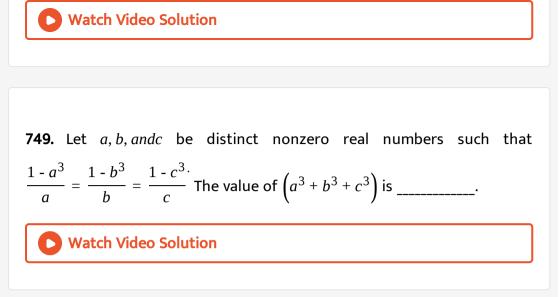
$$x^{3} + x^{2} + x + 1$$
, where $p, q, r, s \in n$

Watch Video Solution

747. if $ax^2 + bx + c = 0$ has imaginary roots and a + c < b then prove that

4a + c < 2b

748. Solve: $ix^2 - 3x - 2i = 0$,



750. Express each one of the following in the standard form $a + ib \frac{5+4i}{4+5i}$

751. If the cubic $2x^3 - 9x^2 + 12x + k = 0$ has two equal roots then minimum

value of |k| is_____.

Watch Video Solution

752. If $z = 4 + i\sqrt{7}$, then find the value of $z^2 - 4z^2 - 9z + 91$.

753. If the quadratic equation $4x^2 - 2(a + c - 1)x + ac - b = 0 (a > b > c)$ (a)Both roots se greater than a (b)Both roots are less than c (c)Both roots lie between $\frac{c}{2}$ and $\frac{a}{2}$ (d)Exactly one of the roots lies between $\frac{c}{2}$ and $\frac{a}{2}$

Watch Video Solution

754. If (a + b) - i(3a + 2b) = 5 + 2i, then find *aandb*

Watch Video Solution

755. If the equation $x^2 = ax + b = 0$ has distinct real roots and $x^2 + a|x| + b = 0$ has only one real root, then which of the following is true? b = 0, a > 0 b. b = 0, a < 0 c. b > 0, a < 0 d. b 0, a 0

756. Given that
$$x, y \in R$$
. Solve: $\frac{x}{1+2i} + \frac{y}{3+2i} = \frac{5+6i}{8i-1}$

Watch Video Solution

757. If the equation
$$|x^2 + bx + c| = k$$
 has four real roots, then
A. $b^2 - 4c > 0$ and $0 < k < \frac{4c - b^2}{4}$
B. $b^2 - 4c < 0$ and $0 < k < \frac{4c - b^2}{4}$
C. $b^2 - 4c > 0$ and $k > \frac{4c - b^2}{4}$

D. none of these

Watch Video Solution

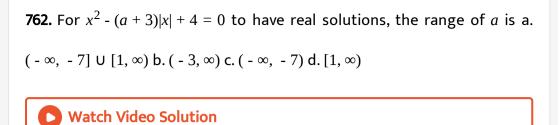
758. If P(x) is a polynomial with integer coefficients such that for 4 distinct integers a, b, c, d, P(a) = P(b) = P(c) = P(d) = 3, if P(e) = 5, (e is an integer) then 1. e=1, 2. e=3, 3. e=4, 4. No integer value of e

759. Let *x*, *y*, *z*, *t* be real numbers $x^2 + y^2 = 9$, $z^2 + t^2 = 4$, and xt - yz = 6Then the greatest value of *P* = *xz* is a. 2 b. 3 c. 4 d. 6

760. If *a*, *b*, *c* are distinct positive numbers, then the nature of roots of the equation 1/(x - a) + 1/(x - b) + 1/(x - c) = 1/x is a. all real and is distinct b. all real and at least two are distinct c. at least two real d. all non-real

Watch Video Solution

761. If
$$(b^2 - 4ac)^2(1 + 4a^2) < 64a^2$$
, $a < 0$, then maximum value of quadratic expression $ax^2 + bx + c$ is always less than a. 0 b. 2 c. -1 d. -2



763. The number of integral value of x satisfying $\sqrt{x^2 + 10x - 16} < x - 2$ is

764. If $x^2 + ax - 3x - (a + 2) = 0$ has real and distinct roots, then minimum value of $(a^2 + 1)/(a^2 + 2)$ is

Watch Video Solution

765. Let $\alpha + i\beta$; $\alpha, \beta \in R$, be a root of the equation $x^3 + qx + r = 0$; $q, r \in R$ A real cubic equation, independent of $\alpha \& \beta$, whose one root is 2α is (a) $x^3 + qx - r = 0$ (b) $x^3 - qx + 4 = 0$ (c)

 $x^{3} + 2qx + r = 0$ (d) None of these

Watch Video Solution

766. In equation $x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$ if two its roots are equal in

magnitude but opposite in sign, find all the roots.

Watch Video Solution

767. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, then find

he value of
$$\left(\alpha - \frac{1}{\beta \gamma}\right) \left(\beta - \frac{1}{\gamma \alpha}\right) \left(\gamma - \frac{1}{\alpha \beta}\right)$$
.

Watch Video Solution

768. Equations $x^3 + 5x^2 + px + q = 0$ and $x^3 + 7x^2 + px + r = 0$ have two roots in common. If the third root of each equation is x_1 and x_2 , respectively, then find the ordered pair $(x_1, x_2)^{\cdot}$

769. If α , β , γ are the roots of he euation $x^3 + 4x + 1 = 0$, then find the

value of $(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1}$.

Watch Video Solution

770. If the roots of the equation $x^3 + Px^2 + Qx - 19 = 0$ are each one more that the roots of the equation $x^3 - Ax^2 + Bx - C = 0$, where *A*, *B*, *C*, *P*, and *Q*

are constants, then find the value of A + B + C

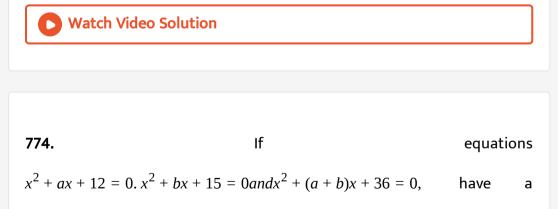
Watch Video Solution

771. If *a*, *b*, *p*, *q* are non zero real numbers, then how many comman roots would two equations: $2a^2x^2 - 2abx + b^2 = 0$ and $p^2x^2 + 2pqx + q^2 = 0$ have? **772.** If $x^2 + px + q = 0$ and $x^2 + qx + p = 0$, $(p \neq q)$ have a common roots, show that 1 + p + q = 0. Also, show that their other roots are the roots of the equation $x^2 + x + pq = 0$.

Watch Video Solution

773. a,b,c are positive real numbers forming a G.P. ILf $ax^2 + 2bx + c = 0$ and

 $x^{2} + 2ex + f = 0$ have a common root, then prove that $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P.



common positive root, then find the values of *aandb*

775. If x is real and the roots of the equation $ax^2 + bx + c = 0$ are imaginary, then prove tat $a^2x^2 + abx + ac$ is always positive.

Watch Video Solution

776. Solve
$$(x^2 + 2)^2 + 8x^2 = 6x(x^2 + 2)$$

Watch Video Solution

777. Find the value of
$$2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \infty}}}$$

Watch Video Solution

778. If both the roots of $ax^2 + ax + 1 = 0$ are less than 1, then find the

exhaustive range of values of a

779. If both the roots of $x^2 + ax + 2 = 0$ lies in the interval (0, 3), then find

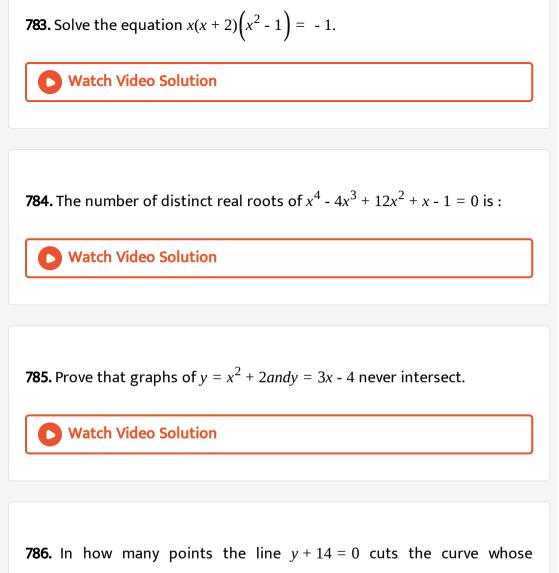
the exhaustive range of value of a

780. Solve
$$\frac{x^2 + 3x + 2}{x^2 - 6x - 7} = 0.$$

781. Solve
$$\sqrt{x-2} + \sqrt{4-x} = 2$$
.

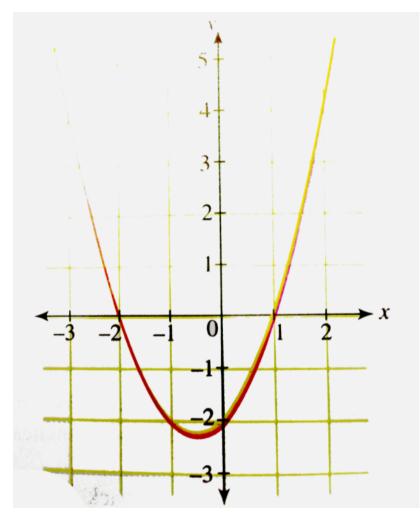
Watch Video Solution

782. Solve
$$\sqrt{x-2}(x^2 - 4x - 5) = 0.$$



equation is $x(x^2 + x + 1) + y = 0$?

787. Consider the graph of y = f(x) as shown in the following figure.



(i) Find the sum of the roots of the equation f(x) = 0.

(ii) Find the product of the roots of the equation f(x) = 4.

(iii) Find the absolute value of the difference of the roots of the equation

f(x) = x+2.

788. If $x^2 + px - 444p = 0$ has integral roots where p is prime number, then find the value of p.

Watch Video Solution

789. The equation $ax^2 + bx + c = 0$ has real and positive roots. Prove that the roots of the equation $a^2x^2 + a(3b - 2c)x + (2b - c)(b - c) + ac = 0$ re real and positive.

Watch Video Solution

790. If the roots of the equation $x^2 - ax + b = 0y$ are real and differ b a quantity which is less than c(c > 0), then show that b lies between $\frac{a^2 - c^2}{4}$ and $\frac{a^2}{4}$.

791. If $(ax^2 + bx + c)y + (a'x^2 + b'x^2 + c') = 0$ and x is a rational function of y, then prove that $(ac' - a'c)^2 = (ab' - a'b) \times (bc' - b'c)^2$

Watch Video Solution

792. Show that the minimum value of (x + a)(x + b)/(x + c) where a > c, b > c, is $(\sqrt{a - c} + \sqrt{b - c})^2$ for real values of x > -c.

Watch Video Solution

793. Let $a, b \in N$ and a > 1. Also p is a prime number. If $ax^2 + bx + c = p$ for any integral values of x, then prove that $ax^2 + bx + c \neq 2p$ for any integral value of x.

794. If $2x^2 - 3xy - 2y^2 = 7$, then prove that there will be only two integral pairs (x, y) satisfying the above relation.

795. If *a* and *c* are odd prime numbers and $ax^2 + bx + c = 0$ has rational roots , where $b \in I$, prove that one root of the equation will be . .

Watch Video Solution

796. If $f(x) = x^3 + bx^2 + cx + d$ and f(0), f(-1) are odd integers, prove that

f(x) = 0 cannot have all integral roots.

Watch Video Solution

797. If x is real, then the maximum value of $y = 2(a - x)\left(x + \sqrt{x^2 + b^2}\right)$

798. If equation $x^4 - (3m + 2)x^2 + m^2 = 0 (m > 0)$ has four real solutions

which are in A.P., then the value of *m* is_____.

Watch Video Solution

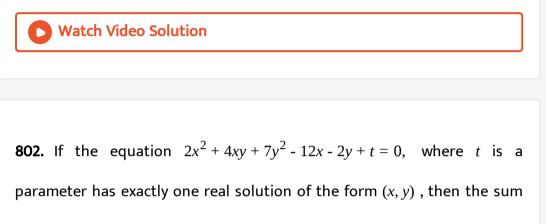
799. Number of positive integers x for which $f(x) = x^3 - 8x^2 + 20x - 13$ is a

prime number is_____.

Watch Video Solution

800. If set of values *a* for which $f(x) = ax^2 - (3 + 2a)x + 6$, $a \neq 0$ is positive for exactly three distinct negative integral values of *x* is (c, d], then the value of $(c^2 + 4|d|)$ is equal to _____.

801. Polynomial P(x) contains only terms of aodd degree. when P(x) is divided by (x - 3), the ramainder is 6. If P(x) is divided by $(x^2 - 9)$ then remainder is g(x). Then find the value of g(2).



of (x + y) is equal to _____.

Watch Video Solution

803. Let α_1, β_1 be the roots $x^2 - 6x + p = 0$ and α_2, β_2 be the roots $x^2 - 54x + q = 0$ If $\alpha_1, \beta_1, \alpha_2, \beta_2$ form an increasing G.P., then sum of the digits of the value of (q - p) is _____.

804. If
$$\sqrt{\sqrt{x}} = \left(3x^4 + 4\right)^{\frac{1}{64}}$$
, then the value of x^4 is_____

Watch Video Solution

805. Let
$$P(x) = x^4 + ax^3 + bx^2 + cx + d$$
 be a polynomial such that $P(1) = 1, P(2) = 8, P(3) = 27, P(4) = 64$ then the value of $152 - P(5)$ is______.

Watch Video Solution

806. If the equation $x^2 + 2(\lambda + 1)x + \lambda^2 + \lambda + 7 = 0$ has only negative roots,

then the least value of λ equals_____.

Watch Video Solution

807. Given $\alpha and\beta$ are the roots of the quadratic equation $x^2 - 4x + k = 0 (k \neq 0)$. If $\alpha\beta$, $\alpha\beta^2 + \alpha^2\beta$, $\alpha^3 + \beta^3$ are in geometric progression, then the value of 7k/2 equals_____. **808.** If $\frac{x^2 + ax + 3}{x^2 + x + a}$ takes all real values for possible real values of x, then a. $a^3 - 9a + 12 \le 0$ b. $4a^5 + 39 \ge 0$ c. $a \ge \frac{1}{4}$ d. $a < \frac{1}{4}$ Watch Video Solution

809. If $\cos^4\theta + \alpha$ and $\sin^4\theta + \alpha$ are the roots of the equation $x^2 + 2bx + b = 0$ and $\cos^2\theta + \beta$, $\sin^2\theta + \beta$ are the roots of the equation $x^2 + 4x + 2 = 0$, then values of *b* are a. 2 b. -1 c. -2 d. 1

Watch Video Solution

810. If the roots of the equation $x^2 + ax + b = 0$ are *c* and *d*, then roots of the equation $x^2 + (2c + a)x + c^2 + ac + b = 0$ are a *c* b. *d* - *c* c. 2*c* d. 0

811. If $a, b, c \in R$ and abc < 0, then equation $bcx^2 + (2b + c - a)x + a = 0$ has (a). both positive roots (b). both negative roots (c). real roots (d) one positive and one negative root

812. For the quadratic equation $x^2 + 2(a + 1)x + 9a - 5 = 0$, which of the following is/are true? (a) If 2 < a < 5, then roots are opposite sign (b)If a < 0, then roots are opposite in sign (c) if a > 7 then both roots are negative (d) if $2 \le a \le 5$ then roots are unreal

Watch Video Solution

813. Let $P(x) = x^2 + bx + cwherebandc$ are integer. If P(x) is a factor of both $x^4 + 6x^2 + 25and3x^4 + 4x^2 + 28x + 5$, then a.P(x) = 0 has imaginary roots b. P(x) = 0 has roots of opposite c.P(1) = 4 d P(1) = 6

814. If $|ax^2 + bx + c| \le 1$ for all x in [0, 1], then a. $|a| \le 8$ b. |b| > 8c. $|c| \le 1$ d. |a| + |b| + |c| = 19

Watch Video Solution

815. Let $f(x) = ax^2 + bx + \cdot$ Consider the following diagram. Then Fig c < 0

b > 0 a + b - c > 0 abc < 0

Watch Video Solution

816. If roots of $ax^2 + bx + c = 0$ are $\alpha and\beta and4a + 2b + c > 0, 4a, -2b + c > 0, andc < 0, then possible values /values of <math>[\alpha] + [\beta]$ is/are (where [.] represents greatest integer function) a.-2 b.-1c. 0d. 1

817. The equation
$$\left(\frac{x}{x+1}\right)^2 + \left(\frac{x}{x-1}\right)^2 = a(a-1)$$
 has

a. Four real roots if a > 2

b.Four real roots if a < -1

c. Two real roots if 1 < a < 2

d . No real roots if a < -1

Watch Video Solution

818. Find the complete set of values of a such that $(x^2 - x)/(1 - ax)$ attains

all real values.

Watch Video Solution

819. If α , β are roots of $x^2 + px + 1 = 0$ and γ , δ are the roots of $x^2 + qx + 1 = 0$, then prove that $q^2 - p^2 = (\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta)$.

820. If he roots of the equation $12x^2 - mx + 5 = 0$ are in the ratio 2:3 then

find the value of m

821. If $\alpha and\beta$ are the roots of $x^2 - a(x - 1) + b = 0$ then find the value of

$$1/\left(\alpha^2 - a\alpha\right) + 1/\left(\beta^2 - \beta\right) + 2/a + b$$

Watch Video Solution

822. The equation formed by decreasing each root of $ax^2 + bx + c = 0$ by 1

 $is2x^2 + 8x + 2 = 0$ then

823. If the sum of the roots of an equation is 2 and the sum of their cubes

is 98, then find the equation.

824. If x is real and $(x^2 + 2x + c)/(x^2 + 4x + 3c)$ can take all real values, of

then show that $0 \le c \le 1$.

Watch Video Solution

825. If α , β are the roots of the equation $2x^2 + 2(a+b)x + a^2 + b^2 = 0$,

then find the equation whose roots are $(\alpha + \beta)^2 and (\alpha - \beta)^2$

Watch Video Solution

826. If $x^2 + ax + bc = 0$ and $x^2 + bx + ca = 0$ ($a \neq b$) have a common root,

then prove that their other roots satisfy the equation $x^2 + cx + ab = 0$.

827. Let α , β are the roots of $x^2 + bx + 1 = 0$. Then find the equation

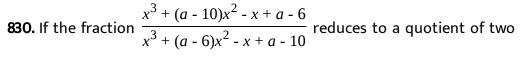
whose roots are $(\alpha + 1/\beta)$ and $(\beta + 1/\alpha)$.

Watch Video Solution

828. Find the greatest value of a non-negative real number λ for which both the equations $2x^2 + (\lambda - 1)x + 8 = 0$ and $x^2 - 8x + \lambda + 4 = 0$ have real roots.

Watch Video Solution

829. If $a, b, c \in R$ such that a + b + c = 0 and $a \neq c$, then prove that the roots of $(b + c - a)x^2 + (c + a - b)x + (a + b - c) = 0$ are real and distinct.



functions, then *a* equals_____.

Watch Video Solution

831. If the equation $(a - 5)x^2 + 2(a - 10)x + a + 10 = 0$ has roots of . opposite sign, then find the value of a

Watch Video Solution

832. If $\alpha and\beta$ are the roots of $ax^2 + bx + c = 0andS_n = \alpha^n + \beta^n$, then

 $aS_{n+1} + bS_n + cS_{n-1} = 0$ and hence find S_5

Watch Video Solution

833. If α is a root of the equation $4x^2 + 2x - 1 = 0$, then prove that $4\alpha^3 - 3\alpha$ is the other root.

834. If both the roots of $x^2 - ax + a = 0$ are greater than 2, then find the

value of *a*

Watch Video Solution

835. If
$$(y^2 - 5y + 3)(x^2 + x + 1) < 2x$$
 for all $x \in R$, then fin the interval in

which y lies.

Watch Video Solution

836. The values of 'a' for which $4^x - (a - 4)2^x + \frac{9a}{4} < 0 \forall x \in (1, 2)$ is

837. Find the number of positive integral values of k for which $kx^2 + (k-3)x + 1 < 0$ for atleast one positive x.

838. If $x^2 + 2ax + a < 0 \forall x \in [1, 2]$ then find set of all possible values of a

839. Given that a, b, c are distinct real numbers such that expressions $ax^2 + bx + c, bx^2 + cx + aandcx^2 + ax + b$ are always non-negative. Prove that the quantity $(a^2 + b^2 + c^2)/(ab + bc + ca)$ can never lie inn $(-\infty, 1)$ U $[4, \infty)$.

840. Find the number of quadratic equations, which are unchanged by

squaring their roots.

Watch Video Solution

841. Solve the following:
$$\left(\sqrt{x^2 - 5x + 6} + \sqrt{x^2 - 5x + 4}\right)^{\frac{x}{2}} + \left(\sqrt{x^2 - 5x + 6} - \sqrt{x^2 - 5x + 4}\right)^{\frac{x}{2}} = 2^{\frac{x+4}{4}}$$

Watch Video Solution

842. Show that the equation

$$A^2/(x-a) + B^2/(x-b) + C^2/(x-c) + \dots + H^2/(x-b) = k$$
 has no imaginary

root, where $A, B, C, \dots, Handa, b, c, \dots, handk \in R$

Watch Video Solution

843. Find the values of a if $x^2 - 2(a - 1)x + (2a + 1) = 0$ has positive roots.

844. If $\alpha and\beta$, $\alpha and\gamma$, $\alpha and\delta$ are the roots of the equations $ax^2 + 2bx + c = 0$, $2bx^2 + cx + a = 0$ $adncx^2 + ax + 2b = 0$, respectively, where a, b, and c are positive real numbers, then $\alpha + \alpha^2 = a.abc$ b. a + 2b + c c. -1 d. 0

Watch Video Solution

845. If $\alpha\beta$ the roots of the equation $x^2 - x - 1 = 0$, then the quadratic equation whose roots are $\frac{1+\alpha}{2-\alpha}, \frac{1+\beta}{2-\beta}$

Watch Video Solution

846. If $a(p+q)^2 + 2bpq + c = 0$ and $a(p+r)^2 + 2bpr + c = 0 (a \neq 0)$, then which one is correct? a) $qr = p^2$ b) $qr = p^2 + \frac{c}{a}$ c) none of these d) either a) or b)

847. If α_1, α_2 are the roots of equation $x^2 - px + 1 = 0$ and β_1, β_2 are those of equation $x^2 - qx + 1 = 0$ and vector $\alpha_1\hat{i} + \beta_1\hat{j}$ is parallel to $\alpha_2\hat{i} + \beta_2\hat{j}$, then $p = a. \pm q$ b. $p = \pm 2q$ c. p = 2q d. none of these

Watch Video Solution

848. Suppose A, B, C are defined as

$$A = a^{2}b + ab^{2} - a^{2}c - ac^{2}$$
, $B = b^{2}c + bc^{2} - a^{2}b - ab^{2}$, and $C = a^{2}c + 'ac^{2} - b^{2'}c - ac^{2}c + ac^{2}c + bc^{2}c + bc^{2}$

Watch Video Solution

849. The integral value of *m* for which the root of the equation $mx^2 + (2m - 1)x + (m - 2) = 0$ are rational are given by the expression [where *n* is integer]

(A)n²

(B) *n*(*n* + 2)

(C) *n*(*n* + 1)

(D) none of these

850. If
$$b_1 \cdot b_2 = 2(c_1 + c_2)$$
 then at least one of the equation $x^2 + b_1 x + c_1 = 0$ and $x^2 + b_2 x + c_2 = 0$ has a) imaginary roots b) real roots c) purely imaginary roots d) none of these

Watch Video Solution

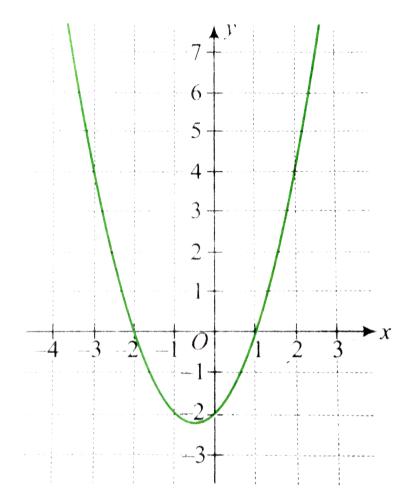
851. If the root of the equation $(a - 1)(x^2 - x + 1)^2 = (a + 1)(x^4 + x^2 + 1)$ are real and distinct, then the value of $a \in a.(-\infty, 3]$ b. $(-\infty, -2) \cup (2, \infty)$ c. [-2, 2] d. $[-3, \infty)$ **852.** If α and β are roots of the equation $ax^2 + bx + c = 0$, then the roots of the equation $a(2x+1)^2 + b(2x+1)(x-3) + c(x-3)^2 = 0$ are a. $\frac{2\alpha+1}{\alpha-3}, \frac{2\beta+1}{\beta-3}$ b. $\frac{3\alpha+1}{\alpha-2}, \frac{3\beta+1}{\beta-2}$ c. $\frac{2\alpha-1}{\alpha-2}, \frac{2\beta+1}{\beta-2}$ d. none of these

Watch Video Solution

853. If
$$a, b, c, d \in R$$
, then the equation $(x^2 + ax - 3b)(x^2 - cx + b)(x^2 - dx + 2b) = 0$ has a. 6 real roots b. at least

2 real roots c. 4 real roots d. none of these

854. Graph of y = f(x) is as shown in the following figure.



Find the roots of the following equations

f(x)=0

f(x) = 4

f(x) = x + 2

855. In how many points graph of $y = x^3 - 3x^2 + 5x - 3$ intersect the x-axis?

856. The quadratic polynomial p(x) has the following properties: $p(x) \ge 0$ for all real numbers, p(1) = 0 and p(2) = 2. Find the value of p(3)is_____.

Watch Video Solution

857. If (1 - p) is a root of quadratic equation $x^2 + px + (1 - p) = 0$, then find its roots.

858. A polynomial in x of degree 3 vanishes when x = 1 and x = -2, ad has the values 4 and 28 when x = -1 and x = 2, respectively. Then find the value of polynomial when x = 0.

Watch Video Solution

859. Let $f(x) = a^2 + bx + c$ where a ,b , c in R and $a \neq 0$. It is known that f(5) = -3f(2) and that 3 is a root of f(x) = 0. Then find the other of f(x) = 0.

Watch Video Solution

860. If x = 1 and x = 2 are solutions of equations $x^{3} + ax^{2} + bx + c = 0$ and a + b = 1, then find the value of b

861. If $x \in R$, and a, b, c are in ascending or descending order of magnitude, show that $(x - a)(x - c)/(x - b)(where x \neq b)$ can assume any real value.

862. Prove that graphs y = 2x - 3 and $y = x^2 - x$ never intersect.

Watch Video Solution

863. Which of the following pair of graphs intersect? $y = x^2 - xa$ and y = 1

$$y = x^2 - 2x$$
 and $y=sinxy=x^2-x+1$ and $y=x-4$ `

Watch Video Solution

864. If $\alpha and\beta$ are the roots of he equations $x^2 - ax + b = 0 andA_n = \alpha^n + \beta^n$, then which of the following is true? $aA_{n+1} = aA_n + bA_{n-1}$ b.

$$A_{n+1} = bA_{n-1} + aA_n c. A_{n+1} = aA_n - bA_{n-1} d. A_{n+1} = bA_{n-1} - aA_n$$

865. If α , β are the roots of $x^2 + px + q = 0$ and γ , δ are the roots of $(\alpha - \gamma)(\alpha - \delta)$

$$x^2 + px + r = 0$$
, then $\frac{(\alpha - \gamma)(\alpha - \delta)}{(\beta - \gamma)(\beta - \delta)} =$

(a) 1 (b) q (c) r (d) q + r

Watch Video Solution

866. If the equations $ax^2 + bx + c = 0$ and $x^3 + 3x^2 + 3x + 2 = 0$ have two common roots, then a. a = b = c b. $a = b \neq c$ c. a = -b = c d. none of these.

Watch Video Solution

867. The value *m* for which one of the roots of $x^2 - 3x + 2m = 0$ is double of one of the roots of $x^2 - x + m = 0$ is a. -2 b. 1 c. 2 d. none of these

868. Let p(x) = 0 be a polynomial equation of the least possible degree, with rational coefficients having $\sqrt[3]{7} + \sqrt[3]{49}$ as one of its roots. Then product of all the roots of p(x) = 0 is

a. 56 b. 63 c. 7 d. 49

Watch Video Solution

869. The number of values of *a* for which equations $x^3 + ax + 1 = 0$ and $x^4 + ax^2 + 1 = 0$ have a common root is a) 0 b) 1 c) 2 d) Infinite

Watch Video Solution

870. If $(m_r, \frac{1}{m_r})$ where r=1,2,3,4, are four pairs of values of x and y that satisfy the equation $x^2 + y^2 + 2gx + 2fy + c = 0$, then the value of

871. If α , β , γ , σ are the roots of the equation $x^4 + 4x^3 - 6x^2 + 7x - 9 = 0$,

then the value of
$$(1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2)(1 + \sigma^2)$$
 is a. 9 b. 11 c. 13 d. 5

Watch Video Solution

872. If
$$\tan\theta_1, \tan\theta_2, \tan\theta_3$$
 are the real roots of the $x^3 - (a+1)x^2 + (b-a)x - b = 0$, where $\theta_1 + \theta_2 + \theta_3 \in (0, \pi)$, then $\theta_1 + \theta_2 + \theta_3$, is equal to $\pi/2$ b. $\pi/4$ c. $3\pi/4$ d. π

Watch Video Solution

873. If roots of an equation $x^n - 1 = 0$ are 1, a_1, a_2, \dots, a_{n-1} , then the value

of
$$(1 - a_1)(1 - a_2)(1 - a_3)(1 - a_{n-1})$$
 will be *n* b. n^2 c. n^n d. 0

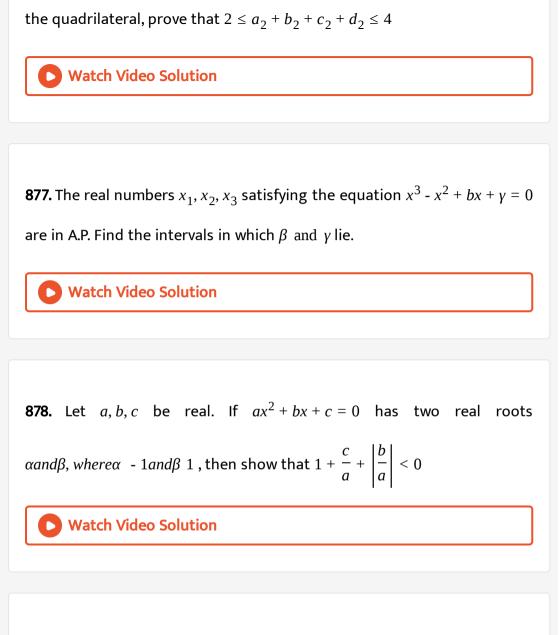
874. If α , β are the roots of $ax^2 + bx + c = 0$, $(a \neq 0)$ and $\alpha + \delta$, $\beta + \delta$ are the roots of $Ax^2 + Bx + C = 0$, $(A \neq 0)$ for some constant δ then prove that $\frac{b^2 - 4ac}{a^2} = \frac{B^2 - 4AC}{A^2}$

Watch Video Solution

875. Let $f(x) = Ax^2 + Bx + c$, where *A*, *B*, *C* are real numbers. Prove that if f(x) is an integer whenever *x* is an integer, then the numbers 2A, A + B, and *C* are all integer. Conversely, prove that if the number 2A, A + B, and *C* are all integers, then f(x) is an integer whenever *x* is integer.

Watch Video Solution

876. Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c and d denote the lengths of sides of



879. For a $a \le 0$, determine all real roots of the equation $x^2 - 2a|x - a| - 3a^2 = 0$.

880. Solve for
$$x: (5 + 2\sqrt{6})^{x^2 - 3} + (5 - 2\sqrt{6})^{x^2 - 3} = 10.$$

Watch Video Solution

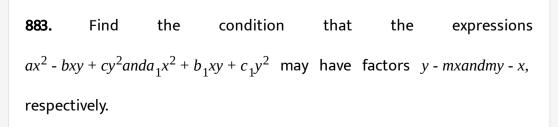
881. If one root of the equation $ax^2 + bx + c = 0$ is equal to the n^{th} power

of the other, then
$$\left(ac^n\right)^{\frac{1}{n+1}} + \left(a^nc\right)^{\frac{1}{n+1}} + b$$
 is equal to

Watch Video Solution

882. If *a*, *b*, *c* \in *R* and equations $ax^2 + bx + c = 0$ and $x^2 + 2x + 3 = 0$ have

a common root, then find a:b:c



884. If $x^2 + (a - b)x + (1 - a - b) = 0$. wherea, $b \in R$, then find the values of

a for which equation has unequal real roots for all values of b

Watch Video Solution

885. Let a, b, c be real numbers with $a \neq 0$ and α, β be the roots of the equation $ax^2 + bx + c = 0$. Express the roots of $a^3x^2 + abcx + c^3 = 0$ in terms of α, β

Watch Video Solution

886. If the product of the roots of the equation $(a + 1)x^2 + (2a + 3)x + (3a + 4) = 0is2$, then find the sum roots.