©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - CBSE COMPLEMENTARY MATERIAL MATHS (HINGLISH)

APPLICATION OF DERIVATIVES

1 Mark Questions

1. Find an angle theta, 0
2. Find te slope of the normal to the curve $x=a \cos ^{2} \theta$ and $y=a \sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$

- Watch Video Solution

3. A balloon which always remains spherical
has a variable radius. Find the rate at which its
volume is increasing with respect to its radius
when the radius is 7 cm .

D Watch Video Solution
4. Write the interval for which the function
$f(x)=\cos x, 0 \leq x \leq 2 \pi$ is decreasing

- Watch Video Solution

5. For what values of x is the rate of increase of $x^{3}-5 x^{2}+5 x+8$ is twice the rate of increase of x ?
6. Find the point on the curve
$y=x^{2}-2 x+3$, where the tangent is parallel to x-axis.

D Watch Video Solution

7. Write the maximum value of $f(x)=\frac{\log x}{x}$, if it exists.

- Watch Video Solution

8. Find the least value of $f(x)=a x+\frac{b}{x}$, where $a>0, \quad b>0$ and $x>0$.

D Watch Video Solution

9. The interval of increase of the function
$f(x)=x-e^{x}+\tan \left(\frac{2 \pi}{7}\right)$ is

D Watch Video Solution

10. Find the value of a for which the function
$f(x)=x^{2}-2 a x+6, x>0 \quad$ is strictly
increasing.

- Watch Video Solution

11. Find the minimum value of $\sin x+\cos x$.

- Watch Video Solution

12. Which of the following functions are decreasing on $(0, \pi / 2)$? (i) $\cos x$ (ii) $\cos 2 x$
(iii) $\tan x$ (iv) $\cos 3 x$
A. $\sin 2 x$
B. $\cos 3 x$
C. $\tan x$
D. $\cos 2 x$

Answer: D

D Watch Video Solution
13. Find the absolute maximum of $x^{40}-x^{20}$ on the interval $[0,1]$.

- Watch Video Solution

14. The angle between $y^{2}=x$ and $x^{2}=y$ at the origin is
A. $2 \tan ^{-1} \frac{3}{4}$
B. $\tan ^{-1} \frac{4}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: c

D Watch Video Solution

15. Find local minimum value of the function f

$$
\text { given by } f(x)=3+|x|, x \in R
$$

D Watch Video Solution
16. The distance covered by a particle in t sec is given by $x=3+8 t-4 t^{2}$. What will be its velocity after 1 second.

D Watch Video Solution

17. The rate of change of volume of a sphere is equal to the rate of change of its radius, then
its radius is equal to (a) 1 unit (b) units (c) unit
(d) unit

2 Mark Questions

1. Find the coordinates of the point on the curve $y^{2}=3-4 x$ where tangent is parallel to the line $2 x+y-2=0$.

- Watch Video Solution

2. The sum of the two numbers is 8 , what will
be the minimum value of the sum of their reciprocals.

- Watch Video Solution

3. Find the maximum value of $f(x)=2 x^{3}-24 x+107$ in the internal [1,3]

D Watch Video Solution

4. If the rate of change of area of a circle is equal to the rate of change of its diameter, then its radius is equal to (a) unit (b) unit (c) units (d) units

Watch Video Solution

5. The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the area increases, when the side is 10 cm .

- Watch Video Solution

6. If there is an error of $a \%$ in measuring the edge of a cube, then percentage error in its
surface is (a) $2 \mathrm{a} \%$ (b) $\frac{a}{2} \%$ (c) $3 \mathrm{a} \%$ (d) none of these

D Watch Video Solution

7. If an error of $k \%$ is made in measuring the radius of a sphere, then percentage error in its
volume is (a) $\mathrm{k} \%$ (b) $3 \mathrm{k} \%$ (c) $2 \mathrm{k} \%$ (d) $k / 3 \%$

D Watch Video Solution

8. The point on the curve $y^{2}=x$ where tangent makes 45° angle with x-axis, is

D Watch Video Solution

9. The slope of the tangent to the curves

$$
x=3 t^{2}+1, y=t^{2}-1 \text { at } \mathrm{t}=1 \text { is }
$$

D Watch Video Solution

10. If the curves $y=2 e^{x}$ and $y=a e^{-x}$ intersect orthogonally, then $a=1 / 2$
$-1 / 2$ (c) 2 (d) $2 e^{2}$

- Watch Video Solution

11. Find the point on the curve $y^{2} .8 x$. for which the abscissa and ordinate change at the same rate.
12. Prove that the function $f(x)=\tan x-4 x$
is strictly decreasing on $(-\pi / 3, \pi / 3)$.

D Watch Video Solution

13. Find the point on the curve $y=x^{2}$, where
the slope of the tangent is equal to the x coordinate of the point.

D Watch Video Solution

14. Use differentials to approximate the cube root of 66 .

D Watch Video Solution
15. Find the maimum and minimum values of
the function $f(x)=\sin (\sin x)$

- Watch Video Solution

16. Find the local maxima and minima of the
function $f(x)=2 x^{3}-21 x^{2}+36 x-20$.

D Watch Video Solution
17. If $y=a \log x+b x^{2}+x$ has its exteme values at $x=-1$ and $x=2$, then find a and b.

- Watch Video Solution

18. Find the equation of the tangent to the
hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{0}, y_{0}\right)$.

D Watch Video Solution
19. If the radius of a circle increases from 5 cm to 5.1 cm , find the increase in area.

D Watch Video Solution

20. Find the equation of the normal to the curve $y=2 x^{3}+3 \sin x$ at $x=0$.

D Watch Video Solution

4 Mark Questions

1. A balloon which always remains spherical, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at
which the radius of the balloon is increasing when the radius is 15 cm .

D Watch Video Solution

2. An inverted cone has a depth of 10 cm and a base of radius 5 cm . Water is poured into it at the rate of $3 / 2$ c.c. per minute. Find the rate at which the level of water in the cone is rising when the depth is 4 cm .

D Watch Video Solution

3. The volume of a cube is increasing at a constant rate. Prove that the increase in
surface area varies inversely as the length of the edge of the cube.

- Watch Video Solution

4. A kite is moving horizontally at a height of
151.5 m . If the speed of the kite is $10 \frac{\mathrm{~m}}{\mathrm{~s}}$, how
fast is the string being let out, when the kite is

250 m away from the boy who is flying the
kite? The height of the boy is 1.5 m . (A) $8 \mathrm{~m} / \mathrm{s}$ (B) $12 \mathrm{~m} / \mathrm{s}$ (C) $16 \mathrm{~m} / \mathrm{s}$ (D) $19 \mathrm{~m} / \mathrm{s}$

D Watch Video Solution

5. A swimming pool is to be drained by cleaning. If L represents the number of litres of water in the pool t seconds after the pool has been plugged off to drain and $L=2000(10-t)^{2}$. How fast is the water ruining out at the end of 5 seconds? What is
the average rate at which the water flows out during the first 5 seconds?

D Watch Video Solution

6. A man of 2 metres height walks at a uniform speed of $6 \mathrm{~km} / \mathrm{hr}$ away from a lamp post of 6 metres high. Find the rate at which the length of his shadow increases.

D Watch Video Solution

7. A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is $\tan ^{-1}(0.5)$. Water is poured into it at a constant rate of 5 cubic metre per hour. Find the rate at which

- Watch Video Solution

8. A spherical ball of salt is dissolving in water
in such a manner that the rate of decrease of
volume at any instant is proportional to the surface. Prove that the radius is decreasing at a constant rate.

D Watch Video Solution

9. A conical vessel whose height is 10 meters
and the radius of whose base is half that of
the height is being filled with a liquid at a uniform rate of $1.5 \mathrm{~m}^{3} / \mathrm{min}$. Find the rate which the level of the water in the vessel is
rising when it is 3 m below the top of the vessel.

D View Text Solution

10. $x a n d y$ are the sides of two squares such
that $y=x-x^{2}$. Find the rate of the change of the area of the second square with respect to the first square.
11. The length of a rectangle is increasing at the rate $3.5 \mathrm{~cm} / \mathrm{sec}$. and its breadth is decreasing at the rate of $3 \mathrm{~cm} / \mathrm{sec}$. Find the rate of change of the area of the rectangle when length is 12 cm and breadth is 8 cm .

D Watch Video Solution

12. If the area of circle increases at a uniform
rate, then prove that the perimeter varies inversely as the radius.
13. Show that $f(x)=x^{3}-6 x^{2}+18 x+5$ is an increasing function for all $x \in R$, Findits value when the rate increases of $f(x)$ is least.

- Watch Video Solution

14. Determine whether the following function
is increasing or decreasing in the given
interval
$f(x)=\cos \left(2 x+\frac{\pi}{4}\right), \frac{3 \pi}{8} \leq x \leq \frac{5 \pi}{8}$.

- Watch Video Solution

15. Determine for which values of x, the
function $y=x^{4}-\frac{4 x^{3}}{3}$ is increasing and for which it is decreasing.

- Watch Video Solution

16. Find the interval of increasing and decreasing of the function $f(x)=\frac{\log x}{x}$
17. Find the intervals in which function $f(x)=$ $\sin x-\cos x, 0<x<2 \pi$ is (i) increasing, (ii) decreasing.

- Watch Video Solution

18. Show that $f(x)=x^{2} e^{-x}, 0 \leq x \leq 2$ is increasing in the indicated interval.

- Watch Video Solution

$4 \sin \theta$

19. Prove that $y=\frac{4 \sin \theta}{(2+\cos \theta)-\theta}$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.

D Watch Video Solution

20. Find the intevals in which the following functionis decreasing.
$f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x+21$

D Watch Video Solution

21. Find the interval in which the function
$f(x)=5 x^{\frac{3}{2}}-3 x^{\frac{5}{2}}, x>0 \quad$ is \quad strictly decreasing.

- Watch Video Solution

22. Show that $f(x)=\tan ^{-1}(\sin x+\cos x)$ is
an increasing function on the interval
($0, \pi / 4$).
23. Find the interval in which the function $f(x)=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$ is increasing or decreasing.

D Watch Video Solution

24. Find intervals in which the function given
by $f(x)=\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5}+11$ is
(a) strictly increasing (b) strictly decreasing.

D Watch Video Solution
25. Find the equation of the tangent to the
curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $(\sqrt{2} a, b)$.

- Watch Video Solution

26. Find the equation of the tangent line to
the curve $y=x^{2}-2 x+7$ which is(a) parallel to the line $2 x y+9=0(b)$ perpendicular to the line $5 y 15 x=13$.
27. Find the required point be $P\left(x_{1}, y_{1}\right)$. The tangent to the curve $\sqrt{x}+\sqrt{y}=4$ at which tangent is equally inclined to the axes.

- Watch Video Solution

28. Find a point on the parabola $y=(x-3)^{2}$
, where the tangent is parallel to the chord joining (3,0) and (4, 1).
29. Find the equation of the normal to the
curve $y=e^{2 x}+x^{2}$ at $x=0$. Also find the distance from origin to the line.

- Watch Video Solution

30. The line $\frac{x}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-x / a}$ at the point
31. At what point on the circle
$x^{2}+y^{2}-2 x-4 y+1=0$ the tangent is
parallel to
(1) X-axis
(2) Y-axis

D Watch Video Solution

32. Show that the equation of the normal at any point ' θ ' on the curvex =
$3 \cos \theta-\cos ^{3} \theta, y=3 \sin \theta-\sin ^{3} \theta$
$4\left(y \cos ^{3} \theta-x \sin ^{3} \theta\right)=3 \sin 4 \theta$.

D Watch Video Solution

33. Show that the curves
$x y=a^{2} a n d x^{2}+y^{2}=2 a^{2}$ touch each other

- Watch Video Solution

34. For the curve $y=5 x-2 x^{3}$, if x increases at the rate of 2 units/sec, then how fast is the
slope of the curve changing when $x=3$?

- Watch Video Solution

35. Find the condition for the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $x y=c^{2} \quad$ to interest orthogonally.

D Watch Video Solution

$$
\begin{aligned}
& \text { 36. Show that the curves } \\
& y=a^{x} \text { and } y=b^{x}, a>b>0 \text { intersect at }
\end{aligned}
$$

an angle of $\tan ^{-1}\left(\left|\frac{\log \left|\frac{a}{b}\right|}{1+\log a \log b}\right|\right)$

D Watch Video Solution

37. Find the equation of the normal to the curve $a y^{2}=x^{3}$ at the point $\left(a m^{2}, a m^{3}\right)$.

- Watch Video Solution

38. Find the equation of the normal at a point
on the curve $x^{2}=4 y$, which passes through
the point $(1,2)$. Also find the equation of the corresponding tangent.

D Watch Video Solution

39. Find the point on the curve $9 y^{2}=x^{3}$, where the normal to the curve makes equal intercepts on the axes.

D Watch Video Solution
40. Show that the tangents to the curve $y=2 x^{3}-3$ at the points where $x=2$ and $x=-2$ are parallel.

D Watch Video Solution

41. Using differentials, find the approximate
value of $(66)^{1 / 3}$

D Watch Video Solution
42. $\sqrt{401}$

D Watch Video Solution

43. Using differentials, find the approximate
value of $\sqrt{0.037}$.

D Watch Video Solution

44. $\sqrt{25.3}$
45. Using differentials, find the approximate
value of $(3.968)^{\frac{3}{2}}$

D Watch Video Solution

46. $(26.57)^{1 / 3}$
(D) Watch Video Solution
47. Find the value of $\log _{10}(10.1)$ given that $\log _{10} e=0.4343$.

- Watch Video Solution

48. If the radius of a circle increases from 5 cm to 5.1 cm , find the increase in area.

D Watch Video Solution
49. If the side of a cube be increased by 0.1%
find the corresponding increase in the volume of the cube.

D Watch Video Solution

50. Find the approximate value of $f(2.01)$ where $f(x)=x^{3}-4 x+7$.

D Watch Video Solution
51. Find approximate value of $\frac{1}{\sqrt{25.1}}$ using differentials.

- Watch Video Solution

52. The radius of a sphere shrinks from 10 to
9.8 cm . Find approximately the decrease in its
volume.

- Watch Video Solution

53. Find the maximum and minimum value of
$f(x)=\sin x+\frac{1}{2} \cos 2 \xi n\left[0, \frac{\pi}{2}\right]$.

D Watch Video Solution

54. Find the absolute maximum value and absolute minimum value of the following question
$f(x)=\left(\frac{1}{2}-x\right)^{2}+x^{3} \quad$ in $[-2,2.5]$

55. Find the maximum and minimum values of

 $f(x)=x^{50}-x^{20}$ in the interval $[0,1]$.
D Watch Video Solution

56. Find the absolute maximum and absolute minimum value of $f(x)=(x-2) \sqrt{x-1}$ in [1,9]

D Watch Video Solution

57. Find the difference between the greatest
and least values of the function
$f(x)=\sin 2 x-x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

- Watch Video Solution

6 Mark Questions

1. Prove that the least perimeter of an
isosceles triangle in which a circle of radius r can be inscribed is $6 \sqrt{3} r$.
2. If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is $\frac{\pi}{3}$.

- Watch Video Solution

3. Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is $\frac{\cos ^{-1} 1}{\sqrt{3}}$

- Watch Video Solution

4. The sum of the surface areas of the rectangular parallelopiped with sides $x, 2 x$ and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of the volumes is minimum, if x is equal to three times the radius of the sphere. Also, find the minimum value of the sum of their volumes.
5. Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.

- Watch Video Solution

6. If a cone of maximum volume is inscribed in
a given sphere, then the ratio of the height of the cone to the diameter of the sphere is $3 / 4$
(b) $1 / 3$ (c) $1 / 4$ (d) $2 / 3$
7. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

- Watch Video Solution

8. Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical
angle is one-third that of the cone and the greatest volume of cylinder is $\frac{4}{27} \pi h^{3} \tan ^{2} \alpha$.

D Watch Video Solution

9. Find the point on the curve $y^{2}=4 x$ which is nearest to the point $(2,1)$.

D Watch Video Solution

10. The shortest distance between line $y-x=1$
and curve $x=y^{2}$ is
11. A wire of length 36 m is to be cut into two
pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces, so that the combined area of the square and the circle is minimum?

-
 Watch Video Solution

12. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2 R}{\sqrt{3}}$.

- Watch Video Solution

13. Find the area of the greatest rectangle that
can be inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
