© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - CBSE COMPLEMENTARY

 MATERIAL MATHS (HINGLISH)
APPLICATIONS OF INTEGRALS

Four Six Mark Questions

1. Calculate the area bouded by the parabola
$y^{2}=4 a x$ and its latus rectum
2. Find the area of the region
$\left\{(x, y): x^{2} \leq y \leq x\right\}$

D Watch Video Solution
3. Find the area of the region in the first quadrant enclosed by the x-axis, the line $y=x$, and the circle $x^{2}+y^{2}=32$.
4. Find the area of the region
$\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

D Watch Video Solution

5. Prove that the curve $y=x^{2}$ and, $x=y^{2}$ divide the square bounded by $x=0, y=0, x=1$, $y=1$ into three equal parts.
6. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$

- Watch Video Solution

7. Find the area of the region bounded by the curves $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.
8. Using the method of integration find the area of the region bounded by lines: $2 x+y=4,3 x 2 y=6$ and $x 3 y+5=0$

D Watch Video Solution

9. Using integration, find the area of the triangle whose vertices are $(-1,0)(1,3)$ and $(3,2)$.
10. The area of the region
$\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$, is

D Watch Video Solution

11. Find the area of the region bounded by the parabola $\mathrm{x}^{2}=4 \mathrm{y} \backslash \quad$ and the line $\mathrm{x}=4 \mathrm{y}-2$

D Watch Video Solution

12. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.

D Watch Video Solution

13. Using integration, find the area enclosed by
the curve $y=\cos , y=\sin x$ and x - axis in the interval $[0, \pi / 2]$.
14. Using integration find area of the region
bounded by the curves $y=\sqrt{5-x^{2}}$ and
$y=|x-1|$

D Watch Video Solution

15. Show that the area of the triangle formed
by the pósitive x-axis and the normal and tangent to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$ is $2 \sqrt{3}$
16. Using integration, find the area of the region bounded by the line $x y+2=0$, the curve $x=\sqrt{y}$ and $y-a \xi s$.

- Watch Video Solution

17. The area of the region bounded by the
curve $a y^{2}=x^{3}$, the Y -axis and the lines $\mathrm{y}=\mathrm{a}$ and $y=2 a$, is
18. Find the area bounded by x - axis, the curve
$y=2 x^{2}$ and tangent to the curve at the point
whose abscissa is 2.

- Watch Video Solution

19. Using integration, find the area of the region bounded by the curve $y=1+|x+1|$ and lines $x=-3, x=3, y=0$.
20. Draw a rough sketch of the region $\left\{(x, y): y^{2} \leq 6\right.$ a x and $\left.x^{2}+y^{2} \leq 16 a^{2}\right\}$.

Also, find the area of the region sketched using method of integration.

D Watch Video Solution

21. Find the area of the region enclosed between curves $y=|x-1|$ and $y=3-|x|$.
22. If the area bounded by the parabola
$y^{2}=16 \mathrm{ax}$ and the line $\mathrm{y}=4 \mathrm{mx}$ is $\frac{a^{2}}{12}$ sq unit then using integration find the value of m.

D Watch Video Solution

23. Given $\frac{d y}{d x}$ is directly proportional to the square of x and $\frac{d y}{d x}=6$ at $\mathrm{x}=2$. Then find the equation of the curve, when $x=2$ and $y=4$.

Also find the area of the region bounded by curve between lines $\mathrm{y}=1$ and $\mathrm{y}=3$.
24. Find the area between x - axis, curve $x=y^{2}$ and its normal at the point $(1,1)$.

- Watch Video Solution

25. Find the area of the region bounded by the
curve $x=a t^{2}$ and $y=2 a t$ between the ordinates corresponding to $\mathrm{t}=1$ and $\mathrm{t}=2$.
26. Using integration find the area bounded by
the tangent to the curve $y=3 x^{2}$ at the point
(1, 3), and the Lines whose equations are
$y=\frac{x}{3}$ and $x+y=4$.

D Watch Video Solution

