© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - CBSE COMPLEMENTARY MATERIAL MATHS (HINGLISH)

LINEAR PROGRAMMING

Long Answer Type Questions

1. Solve the following L.P.P graphically

Minimise and maximise $z=3 x+9 y$

Subject to the constraints $x+3 y \leq 60$
$x+y \geq 10$
$x \leq y$
$x \geq 0, y \geq 0$

D Watch Video Solution

2. Determine graphically the minimum value of
the objective function $z=-50 x+20 y$, subject
to he constraints.
$2 x-y \geq-5$
$3 x+y \geq 3$
$2 x-3 y \leq 12$
$x \geq 0, y \geq 0$

D Watch Video Solution

3. Two tailors A and B earn ₹ 150 and ₹ 200 per day respectively. A can stich 6 shirts and 4 pants per day, while B can stitch 10 shirts and

4 pants per day. Form a L.P .P to minimize the labour cost to produce (stitch) at least 60 shirts and 32 pants and solve it graphically.
4. There are two types of fertilisers F_{1} and F_{2}.
F_{1} consists of 10% nitrogen and 6% phosphoric acid and F_{2} consists of 5% nitrogen and 10% phosphoric acid. After testing he soil conditions a farmer finds that she needs at least 14 kg of nitrogen and 14 kg of phosphoric acid for her crop. If F_{1} costs Rs.
$6 / \mathrm{kg}$ and F_{2} costs Rs. $5 / \mathrm{kg}$, determine how much of each type of fertiliser should be used to that nutrient requirements are met at a minimum cost. What is the minimum cost?

- Watch Video Solution

5. A man has Rs. 1500 to purchase two types of shares of two different companies s_{1} and s_{2}.

Market price of one share of s_{1} is Rs. 180 and s_{2} is Rs. 120. He wishes to purchase a maximum of ten shares only. If one share of type s_{1} gives a yield of Rs. 11 and of type s_{2} yields Rs. 8 then how much shares of each type must be purchased to get maximum profit?

And what will be the maximum profit?

- Watch Video Solution

6. A company manufactures two types of
lamps say A and B. Both lamps go through a cutter and then a finisher. Lamp A requires 2 hours of the cutter's time and 1 hours of the finisher's time. Lamp B requires 1 hour of cutter's and 2 hours of finisher time. The cutter has 100 hours and finisher has 80 hours of time available each month. Profit on one lamp A is Rs. 7.00 and on one lamp B is Rs.
13.00. Assuming that he can sell all that he produces, how many of each type of lamps
should be manufactured to obtain maximum

profit?

D Watch Video Solution

7. A dealer wishes to purchase a number of fans and sewing machines. He has only Rs.

5,760 to invest and has a space for at most 20
items. A fan costs him Rs. 360 and a sewing machine Rs. 240. His expectation is that he can sell a fan at a profit of Rs. 22 and a sewing machine at a profit of Rs. 18. Assuming that he
can sell all the items that he can buy, how should he invest his money in order to maximize the profit? Formulate this as a linear programming problem and solve it graphically.

- Watch Video Solution

8. If a young man rides his motorcycle at 25
$\mathrm{km} / \mathrm{hr}$, he has to spend 2 per kilometer on
petrol if per he rides it at a faster speed of 40
$\mathrm{km} / \mathrm{hr}$ the petrol cost increases to 5 per kilometer.He has 100 to spend on petrol and
wishes to find the maximum distance he can travel within one hours. Express this as a linear programming problem and then solve it.

- Watch Video Solution

9. A producer has 20 and 10 unit of labour and
capital respectively which he can use to produce two kinds of goods X and Y . To produce one unit of $x, 2$ units of capital and 1 unit of labour is required. To produce one unit of $Y, 3$ of labour and 1 unit of capital is
required. If X and Y are priced at Rs. 80 and Rs.

100 per unit respectively, how should the producer use his resources to maximise the total revenue?

D Watch Video Solution

10. A factory owner purchases two types of machines, A and B for his factory. The requirements and the limitations for the machines are as follows: Machine Area occupied Labour force Daily output (in units)
$A 1000 m^{2} 12$ men $60 B 1200 m^{2} 8$ men 40 He has maximum area of $9000 m^{2}$ available, and

72 skilled labourers who can operate both the machines. How many machines of each type should he buy to maximise the daily output?

D Watch Video Solution

11. A manufacture makes two types of cups A and B. Three machines are required to manufacture the cups and the time in minutes required by each in as given below:

	I	II	III	
A	12	18	6	
B	6	0	9	

Each machine is available for a maximum period of 6 hours per day. If the profit on each cup A is 75 paisa and on B is 50 paisa, find how many cups of each type should be manufactures to maximise the profit per day.

- Watch Video Solution

12. A company produces two types of belts A and B. Profits on these belts are Rs. 2 and Rs.
1.50 per belt respectively. A belt of type A requires twice as much time as belt of type B.

The company can produce at most 1000 belts of type B per day. Material for 800 belts per day is available. At most 400 buckles for belts of type A and 700 for type B are available per day. How much belts of each type should the company produce so as to maximise the profit?
13. An aeroplane can carry a maximum of 200 passengers. A profit of Rs. 400 is made on each first class ticket and a profit of Rs. 300 is made on each second class ticket. The airline reserves at least 20 seats for first class.

However, at least four times as many passengers prefer to travel by second class then by first class. Determine how many tickets of each type must be sold to maximise profit for the airline. Form an LPP and solve it graphically.
14. A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 units of calories. Two foods
A and B are available at a cost of Rs. 5 and Rs.

4 per unit respectively. One unit of food A
contains 200 units of vitamins, 1 unit of minerals and 40 units of calories whereas one unit of food B contains 100 units of vitamins, 2 units of minerals and 40 units of calories. Find what combination of the food A and B should
be used to have least cost but it must satisfy
the requirements of the sick person.

D Watch Video Solution

15. Anil wants to invest at the most Rs. 12000 in
bonds. A and B. According to rules, he has to
invest at least Rs. 2000 in Bond A is 8% per annum and on Bond B , it is 10% per annum, how should he invest his money for maximum interest ? Solve the problem graphically.

One Marks Questions

1. Objective function of an LPP is
A. A constraint
B. A function to be opptimised
C. A relation between the variables
D. None of these

Answer: A::B

2. The optimal value of the objective function

 is attained at the pointsA. Given by intersections of equations with axis only
B. Given by intersections of inequations
with x-axis only
C. Given by corner points of the feasible region

D. None of these

Answer: C

D Watch Video Solution

3. The solution set of the inequation
$2 x+y>5$ is
A. open half-plane that contains the origin
B. open half-plane not containing the origin
C. whole xy-plane except the points lying
on the line $2 x+y=5$
D. None of these

Answer: B

D Watch Video Solution
4. If the constraints in a linear programming problem are changed
A. The problem is to be re-evaluled
B. solution not defined
C. The objective function has to be modified
D. The change in constraints is ignored

Answer: A

D Watch Video Solution

5. Which of the following statements is

correct?

(a) Every L.P.P admits an optimal solution
(b)A L.P.P admits unique optimal solution
(c) If a L.P.P adimits two optimal solutions it
has an infinite number of optimal solutions
(d)None of these
A. Every L.P.P admits an optimal solution
B. A L.P.P admits unique optimal solution
C. If a L.P.P adimits two optimal soluctions
it has an idfinite number of optimal
solutions
D. None of these

- Watch Video Solution

6. Solution set of inequation $x \geq 0$ is
A. Half-plane on the left of y-axis
B. Half-plane on the right of y-axis
excluding the points on y-axis
C. Half-plane on the right of y-axis
including the points on y-axis

D. None of these

Answer: C

D Watch Video Solution

7. Solution set of the inequality $y \leq 0$ is
A. Half-plane below the x-axis exduding the point on x-axis
B. Half-plane below the x-axis including the
point on x-axis

C. Half-plane above the x-axis

D. None of these

Answer: B

- Watch Video Solution

8. Regions represented by equation
 $x \geq 0, y \geq 0$ is

A. first quatrant
B. Second quadrant

C. Third quadrant

D. Fourth quadrant

Answer: A
(Watch Video Solution

