©゙’ doubtnut

 India's Number 1 Education App
MATHS

BOOKS - CBSE COMPLEMENTARY MATERIAL

MATHS (HINGLISH)

PRACTICE PAPER I

Section A

1. Find the sum of order and degree of the differential
equation $\frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}$
2. Write the smallest reflexive relation on set $A=\{1,2,3,4$, 5\}.

- Watch Video Solution

3. Write the value of $\tan ^{-1} 2+\tan ^{-1} 3$.

- Watch Video Solution

4. Write the integrating factor of the differential equation
$\frac{d x}{d y}+x \tan y-\sec y=0$

D Watch Video Solution
5. Find ' λ '. If the vectors $\lambda \hat{i}+\hat{j}+2 \hat{k}, 2 \hat{i}-\hat{j}+\lambda \hat{k}$, and $\hat{i}+\lambda \hat{j}-\hat{k}$ are coplanar.

(Watch Video Solution

6. Find the projection of $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector

$$
2 \hat{i}-3 \hat{j}+6 \hat{k}
$$

- Watch Video Solution

7. The probability distribution of discrete random variable X is given below

$$
\begin{array}{lcccc}
x & 2 & 3 & 4 & 5 \\
P(x) & \frac{5}{K} & \frac{7}{k} & \frac{9}{k} & \frac{11}{k}
\end{array}
$$

find the value of K.

- Watch Video Solution

8. If A and B are two events such that $P(A)=\frac{1}{4}$, $P(B)=\frac{1}{2}$ and $P(A \cap B)=\frac{1}{8}$, find $\mathrm{P}(\operatorname{not} \mathrm{A}$ and not B$)$.

- Watch Video Solution

9. For what value of x , is the following matrix singular ?
$\left[\begin{array}{cc}3-2 x & x+1 \\ 2 & 4\end{array}\right]$

- Watch Video Solution

10. If $\left[\begin{array}{ll}2 x & 3\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ -3 & 0\end{array}\right]\left[\begin{array}{l}x \\ 8\end{array}\right]=0$, find ' x '
11. Find maximum value of $z=2 x+3 y$ subject to the constraints $x+y \leq 4, x \geq 0, y \geq 0$.

D Watch Video Solution

12. For what value of ' k ' the function
$\left\{\begin{array}{ll}k x^{2}, & x \leq 2 \\ 3, & x>2\end{array}\right.$ is continuous at $\mathrm{x}=2$

D Watch Video Solution

13. Differentiate $\sin \sqrt{x}+\cos \left(x^{2}\right)$ w.r.t. x
14. Evaluate $\int \sqrt{\frac{x}{1-x^{3}}} d x$

- Watch Video Solution

15. Evaluate $\int_{-1}^{1}\left(x^{7}+\tan ^{5} x+x+1\right) d x$

- Watch Video Solution

16. Evaluate $\int(4 \cot x-5 \tan x)^{2} d x$
17. The slope of the normal to the curve
$x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$

- Watch Video Solution

18. Show that the function given by $f(x)=7 x 3$ is strictly increasing on R .

- Watch Video Solution

19. If the radius of a sphere is measured as 9 cm with an error of 0.03 cm , then find the approximate error in calculating its volume.
20. The radius of a balloon is increasing at the rate of 10 $\mathrm{cm} / \mathrm{sec}$. At what rate is the surface area of the balloon increasing when the radius is 15 cm ?

- Watch Video Solution

Section B

1. Prove that $\cos \tan ^{-1} \sin \cot ^{-1} x=\sqrt{\frac{x^{2}+1}{x^{2}+2}}$
2. Solve the equation $\sin ^{-1} y x+\sin ^{-1} 6 \sqrt{3} x=\frac{-\pi}{2}$.

- Watch Video Solution

3. Using properties of determinants, prove the following:
$|11+p 1+p+q 23+2 p 1+3 p+2 q 36+3 p 1+6 p+3 q|=1$

- Watch Video Solution

4. If $2 x=y^{\frac{1}{m}}+y^{-\frac{1}{m}}$, show that
$\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=m^{2} y$.

- Watch Video Solution

5. If $y=x \log \left\{\frac{x}{(a+b x)}\right]$, then show that
$x^{3} \frac{d^{2} y}{d x^{2}}=\left(x \frac{d y}{d x}-y\right)^{2}$.

D Watch Video Solution

6. Evaluate: $\int \frac{x^{2}+1}{\left(x^{2}+4\right)\left(x^{2}+25\right)} d x$

D Watch Video Solution

7. If the magnitude of the vector product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vector $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to $\sqrt{2}$, then find the value of ' λ '
8. If $\vec{a}=3 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{\beta}=2 \hat{i}+\hat{j}-4 \hat{k}$, then express $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$ such that $\vec{\beta}_{1}| | \vec{\alpha}$ and $\vec{\beta}_{2} \perp \vec{\alpha}$.

- Watch Video Solution

9. A problem in mathematics is given to three students whose chances of solving it correctly are ${ }^{~} 1 / 2,1 / 3$ and $1 / 4$ ' respectively . what is the probability that only one of, them solves it correctly?

D Watch Video Solution

Section C

1. Show that the function $f: R \rightarrow R$ defined by $f(x)=\frac{x}{x^{2}+1} \forall x \in R$ is neither one-one nor onto. Also if $g: R \rightarrow R$ is defined by $g(x)=2 x-1$ find fog (x)

- Watch Video Solution

2. Let Z be the set of all integers and R be the relation on
Z defined as $R=\{(a, b) ; a, b \in Z$, and $(a-b)$ is divisible by 5$\}$. Prove that R is an equivalence relation.
3. The tailors A and B are per Rs. 225 and Rs. 300 per day respectively. A can stitch 9 shirts and 6 pants while B can stitch 15 shirts and 6 pants per day. Form a linear programming problem to minimize the labour cost to produce atleast 90 shirts and 45 pants. Solve the problem graphically.

D Watch Video Solution

4. There are three coins one is a two-headed coin having head on both faces, another is a biased, coin that coines up tails 25% of the times and third is an unbiased coin.

One of the three coins is chosen at random and tossed, it
shows head what is the probability that it was a twoheaded coin?

- Watch Video Solution

> 5. Show that $\frac{x 5}{4}, \frac{y-7}{4}=\frac{z+3}{-5}$ and $) x-8 \frac{)}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ intersect each other

- Watch Video Solution

6. Find the equations of the two lines through the origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$ at angle of $\frac{\pi}{3}$ each.
7. Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$, hence evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$

D Watch Video Solution

8. Evaluate $\int_{1}^{4}\left(x^{2}-x\right) d x$ as a limit of sums.

- Watch Video Solution

> 9. Show that the differential equation
> $x \frac{d y}{d x} \sin \left(\frac{y}{x}\right)+x-y \sin \left(\frac{y}{x}\right)=0$ is homogenous. Find
the particular solution of this differential equation, given that $x=1$ when $y=\frac{\pi}{2}$.

D Watch Video Solution

Section D

1. If $A=\left[\begin{array}{lll}2 & 5 & 3 \\ 3 & 4 & -2 \\ 4 & -6 & -2\end{array}\right]$, find A^{-1}.

Hence solve the system of equations
$\frac{2}{x}+\frac{3}{y}+\frac{4}{z}=-3, \frac{5}{x}+\frac{4}{y}-\frac{6}{z}=4, \frac{3}{x}-\frac{2}{y}-\frac{2}{z}=6$

D View Text Solution

2. If the sum of the lengths of the hypotenues and a side of a right angled triangle is given, show that the area of the triangle is maximum when the angle between them is $\pi / 3$.

- Watch Video Solution

3. Find the volume of the larges cylinder that can be inscribed in a sphere of radius r

D Watch Video Solution

4. Sketch the graph of $y=x+1 \in[0,4]$ and determine the area of the region enclosed by the curve, the x-axis and
the lines $x=0, x=4$.

D Watch Video Solution

5. Find image of point $(1,3,4)$ in the plane $2 x-y+z+3=0$.

D Watch Video Solution

6. Find the foot of perpendicular drawn from the point P $(1,2,3)$ on the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{7-z}{2}$. Also find the equation of the plane containing the line and the point (1,2,3).
