©゙" doubtnut

MATHS

BOOKS - CBSE COMPLEMENTARY MATERIAL

MATHS (HINGLISH)

PRACTICE PAPER II

Section A

1. If $R=\{(x, y): x+2 y=8\}$ is a relation on N, then write the range of R.
(D) Watch Video Solution
2. If $\sin \left(\sin ^{-1}\left(\frac{3}{5}\right)+\cos ^{-1} x\right)=1$ then find value of x .

D Watch Video Solution

3. How many matrices of order 2×2 are possible with entry 2×2.

- Watch Video Solution

4. If $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 5\end{array}\right]$, find $\left|A^{-1}\right|$

5. If $\mathrm{y}=|\mathrm{x}|$, then find $\mathrm{dy} / \mathrm{dx}$.

- Watch Video Solution

6. If $y=\sin x+\tan ^{-1}(1)$, find $\mathrm{dy} / \mathrm{dx}$

- Watch Video Solution

7. Find the mimimum value of $\sin x \cos x$.
8. which of the following functinon are strictly decreasing on $(0, \pi / 2)$ a) $\cos x b) \cos 2 x c) \cos 3 x d) \tan x$
A. $\sin 2 x$
B. $\cos 3 x$
C. $\tan x$
D. $\cos 2 x$

Answer: D

9. The curves $y=a e^{x}$ and $y=b e^{-x}$ cut orthogonally,
if $a=b$ (b) $a=-b$ (c) $a b=1$ (d) $a b=2$
A. $a=b$
B. $a b=-b$
C. $a b=1$
D. $a b=2$

Answer: C

- Watch Video Solution

10. Evaluate : $\int \frac{d x}{1-\sin ^{2} x}$
11. Evaluate: $\int_{-\pi / 2}^{\pi / 2} \sin ^{7} x d x$

D Watch Video Solution

12. Evaluate : $\int \frac{\sin x}{\sin 2 x} d x$

- Watch Video Solution

13. The degree of $\frac{d y}{d x}+\cos y=0$ is not defined true or false?
14. Write the order and degree of the following differential equations.
$\sqrt{1+\frac{d y}{d x}}=\left(\frac{d^{2} y}{d x^{2}}\right)^{\frac{1}{3}}$

- Watch Video Solution

15. write integrating factor of the following differential
equation:-
$\frac{d x}{d y}+x \cos y=\sin y$

- Watch Video Solution

16. If \hat{i}, \hat{j} and \hat{k} are three mutually perpendicular vectors, then find the value of \hat{j}. $(\hat{k} \times \hat{i})$.

D Watch Video Solution

17. What is the perpendicular distance of plane $2 x-y+3 z$
$=10$ from origin

D Watch Video Solution
18. Define an objective function.
19. Find $P(A / B)$ if $P(A)=0.4, P(B)=0.8$ and $P(B / A)=0.6$

D Watch Video Solution

20. Three coins are tossed once. Find the probability of getting at least one head.

D Watch Video Solution

21. Given $A=\left[\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Write the value of $A B$.

D Watch Video Solution
22. Write the degree of the differential equation $\frac{d^{2} y}{d x^{2}}+x\left(\frac{d y}{d x}\right)^{2}=2 x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$.

- Watch Video Solution

23. Find the angle between the line
$\vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(3 \hat{i}-\hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=3$.

- Watch Video Solution

24. Find the co-ordinates of the point, where the line $\left(\frac{x+2}{1}\right)=\left(\frac{y-5}{3}\right)=\left(\frac{x+1}{5}\right)$ cuts the $y z-$
plane.

- Watch Video Solution

25. If $y=\sin ^{-1} x+\cos ^{-1} x$, then $\frac{d y}{d x}=$

- Watch Video Solution

26. If $f(x)=x+1$, then write the value of $\frac{d}{d x}(f o f)(x)$.

- Watch Video Solution

27. If A is a square martin of order 3 with $|A|=4$. Then write all value of $|-2 \mathrm{~A}|$.

D Watch Video Solution

28. If event A and B are mutually exclusive and exhaustive events and $P(A)=\frac{1}{3} P(B)$ then Find $\mathrm{P}(\mathrm{A})$

D Watch Video Solution

29. In which quadrant the bounded region for in equations $x+y \leq 1$ and $x-y \leq 1$ is situated?
B. I,III
C. II,III
D. All four quadrants.

Answer:

- Watch Video Solution

30. Write the derivative of e^{x} wrt. \sqrt{x}
(D) Watch Video Solution
31. Find the differential equation representing the family of curves $y=a . e^{2 x}+5$, where a is an arbitrary constant.

D Watch Video Solution

32. Write the maximum value of $f(x)=\frac{\log x}{x}$, if it exists.

- Watch Video Solution

33. Evaluate : $\int \frac{1+\cos x}{x+\sin x} d x$.
34. Evaluate $\int_{2}^{3} 3^{x} d x$

- Watch Video Solution

35. Find the integrating factor of $x \frac{d y}{d y}+2 y=x \cos x$

- Watch Video Solution

36. Write the value of $(\hat{k} X \hat{j}) \cdot(\hat{i}+\hat{j}+\hat{k})$

- Watch Video Solution

37. Evaluate : $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sin ^{3} x d x$

- Watch Video Solution

38. Evaluate: $\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$
(D) Watch Video Solution
39. Slope of tangent of the curve $y=x^{2}+x+1$ at
$x=1$ is

- Watch Video Solution

40. $\cos ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right), \frac{\pi}{4}<x<\frac{5 \pi}{4}$

D Watch Video Solution

Section B

1. Show that the function $f: R \rightarrow R$ is given by $f(x)=1+x^{2}$ is not invertible.

D Watch Video Solution

2. $a \operatorname{a}+\mathrm{b} a+2 b$ 10. Using properties of determinants,
show that $\left|\begin{array}{ccc}a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|=9 b^{2}(a+b)$
3. Show that the elements on the main diagonal of a skew-symmetric matrix are all zero.

D Watch Video Solution

4. Find the domain of continuity of $\mathrm{f}(\mathrm{x})=\sin ^{-1} x-[x]$
,[] represents greatest integer function .

- Watch Video Solution

5. If $y=x^{x}$, find $\frac{d^{2} y}{d x^{2}}$.

- Watch Video Solution

6. If $x=2 a t^{2}, y=a t^{4}$, find $\frac{d^{2} y}{d x^{2}}$

- Watch Video Solution

7. Find the equation of the plane passing through the point ($-2,1,-3$) and making equal intercept on the coordinate axes
(D) Watch Video Solution
8. Two balls are drawn at random from a bag containing 6 red and 4 green balls, find the probability that both ball are of same colour.

- Watch Video Solution

9. If $A=\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$, show that $(\mathrm{A}-2 \mathrm{I}) \mathrm{A}-3 \mathrm{I}$) $=0$

D Watch Video Solution

10. Check whether the relation R in R defined by
$R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

11. Show that the function $f: R \rightarrow R$ given by $f(x)=\cos x$ for all $x \in R$, is neither one-one nor onto.

D Watch Video Solution
12. Find $\int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x$.

D Watch Video Solution

13. Evaluate: $\int \frac{x-3}{(x-1)^{3}} e^{x} d x$

D Watch Video Solution

14. $\int \frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}} d x$

- Watch Video Solution

15. Find the volume of a cuboid whose edges are given by $\quad-3 \hat{i}+7 \hat{j}+5 \hat{k},-5 \hat{i}+7 \hat{j}-3 \hat{k} \quad$ and $-7 \hat{i}-5 \hat{j}-3 \hat{k}$
16. Find the probability distribution of X; the number of heads in two tosses of a coin (or a simultaneous toss of two coins).

- Watch Video Solution

Section C

1. Prove that the relation R on the set $N \times N$ defined
by $\quad(a, b) R(c, d) a+d=b+c \quad$ for \quad all
$(a, b),(c, d) \in N \times N$ is an equivalence relation.
Also, find the equivalence classes $[(2,3)]$ and $[(1,3)]$.
2. Let $f: N \vec{R}$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \vec{S}$, where S is the range of f, is invertible. Also find the inverse of
f

D Watch Video Solution
3. Evaluate :
$\int \frac{\cos (x+a)}{\cos (x-a)} d x$
4. $\int \frac{x}{x^{4}+x^{2}+1} d x$

- Watch Video Solution

5. Solve the following differential equations
$\left(x^{3}+y^{3}\right) d x=\left(x^{2} y+x y^{2}\right) d y$.

(D) Watch Video Solution

6. Decompose the vector $6 \hat{i}-3 \hat{j}-6 \hat{k}$ into vectors which are parallel and perpendicular to the vector $\hat{i}+\hat{j}+\hat{k}$.
7. A company produces two types of belts A and B.

Profits on these belts are Rs. 2 and Rs. 1.50 per belt
respectively. A belt of type A requires twice as much
time as belt of type B. The company can produce at most 1000 belts of type B per day. Material for 800 belts per day is available. At most 400 buckles for belts of type A and 700 for type B are available per day. How much belts of each type should the company produce so as to maximise the profit?

- Watch Video Solution

8. Two urns A and B contain 6 black and 4 white, 4 black and 6 white balls respectively. Two balls are drawn from one of the urns. If both the balls drawn are white, find the probability that the balls are drawn from urn B.

- Watch Video Solution

9. If $\tan ^{-1} x-\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right), \mathrm{x}>0$ find the value of x and hence find the value of $\sec ^{-1}\left(\frac{2}{x}\right)$
10. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vedctor along the sum of the vectors $2 \hat{i}+3 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of lamda.

- Watch Video Solution

11. If $(\sin x)^{2}=x+y$ find $\frac{d y}{d x}$

Find $\frac{d y}{d x}$ if $y=\sin ^{-1}\left[\frac{2^{x+1}}{1+4^{x}}\right]$
12. If $A=\left[\begin{array}{lll}1 & 3 & 4 \\ 2 & 1 & 2 \\ 5 & 1 & 1\end{array}\right]$, find A^{-1}

(D) Watch Video Solution

13. If $y=e^{x}(\sin x+\cos x)$, prove that
$\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=2 y=0$

- Watch Video Solution

14. Minimize $z=6 x+3 y$ subject to the constraints

$$
4 x+y \geq 80, x+5 y>115,3 x+2 y \leq 150, x \geq 0, y \geq 0
$$

15. Corner poins of the feasible region determned by the system of linear constrainsts are (0,3), (1,1), and $(3,0)$. Let $\mathrm{Z}=\mathrm{px}+\mathrm{qy}$. Where $p, q<0$ Condition on p and q, so that the minimum $f Z$ occurs at $(3,0)$ and $(1,1)$ is

D Watch Video Solution

16. If A and B are two events such that $P(A)=\frac{1}{4}$,
$P(B)=\frac{1}{2}$ and $P(A \cap B)=\frac{1}{8}$, find $\mathrm{P}($ not A and not
B).
17. If $A=[1-1121-3111]$, find A^{-1} and hence solve the system of linear equation.
$x+2 y+z=4,-x+y+z=0, x-3 y+z=2$

- Watch Video Solution

2. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is
$2 R$ $\frac{2 R}{\sqrt{3}}$. Also find the maximum volume.

D Watch Video Solution

3. Find the area of the greatest rectangle that can be inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

D Watch Video Solution

4. Find the area of the region.

$$
\{(x, y): y 28,6 x, x 2+y 27(6\}
$$

- View Text Solution

5. Using integration, find the area of the triangle whose vertices are $(-1,0)(1,3)$ and (3, 2).
6. Find the coordinates of the foot of perpendicular drawn from the point $2 \hat{i}-\hat{j}+\hat{5} k$ to the line $\bar{r}=(11 \hat{i}+2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k})$. Also , find the length of perpendicular .

- Watch Video Solution

7. Using matrices, solve the following system of linear equations: $\quad 3 x-2 y+3 z=8 \quad 2 x+y-z=1$
$4 x-3 y+2 z=4$

- Watch Video Solution

8. Find the vector and cartesian equations of the plane passing through the points $(2,2,-1),(3,4,2)$ and $(7,06)$ also find the vector equation of a plane passing through $(4,3,1)$ and parallel to the plane obtained above.

D Watch Video Solution

9. Find the equation of the line passing through (2,1,-2) and $(5,3,4)$ and of the plane passing through $(2,0,3)$,
$(1,1,5)$ and $(3,2,4)$. Also find their point of intersection.
10. Using integration find the area of the triangle whose vertices are $A(1,0), B(2,2)$ and $C(3,1)$

D Watch Video Solution

11. The area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is

- Watch Video Solution

12. Show that the right circular cylinder, open at the top, and of given surface area and maximum volume is such that its height is equal to the radius of the base.
\square
