

# MATHS

# **BOOKS - CENGAGE MATHS (ENGLISH)**

# DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

# **Exercises**

**1.** If 
$$\begin{vmatrix} (a - x)^2 & (a - y)^2 & (a - z)^2 \\ (b - x)^2 & (b - y)^2 & (b - z)^2 \\ (c - x)^2 & (c - y)^2 & (c - a)^2 \end{vmatrix} = 0 \text{ and vectors } \vec{A}, \vec{B} \text{ and } \vec{C} \text{ , where }$$

 $\vec{A} = a^2 \hat{i} = a \hat{j} + \hat{k}$  etc. are non-coplanar, then prove that vectors  $\vec{X}$ ,  $\vec{Y}$  and  $\vec{Z}$  where  $\vec{X} = x^2 \hat{i} + x \hat{j} + \hat{k}$ . etc.may be coplanar.

**2.** OABC is a tetrahedron where O is the origin and A,B,C have position vectors  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  respectively prove that circumcentre of tetrahedron OABC

is 
$$\frac{a^2(\vec{b}\times\vec{c})+b^2(\vec{c}\times\vec{a})+c^2(\vec{a}\times\vec{b})}{2\left[\vec{a}\vec{b}\vec{c}\right]}$$

Watch Video Solution

**3.** Let *k* be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular tetrahedron). Show that the angel between any edge and a face not containing the edge is  $\cos^{-1}(1/\sqrt{3})$ .

# Watch Video Solution

**4.** In *ABC*, a point *P* is taken on *AB* such that AP/BP = 1/3 and point *Q* is taken on *BC* such that CQ/BQ = 3/1. If *R* is the point of intersection of the lines *AQandCP*, ising vedctor method, find the are of *ABC* if the area of *BRC* is 1 unit





7. Find the volume of a parallelopiped having three coterminus vectors of

equal magnitude |a| and equal inclination  $\theta$  with each other.

**8.** Let  $\vec{p}$  and  $\vec{q}$  any two othogonal vectors of equal magnitude 4 each. Let  $\vec{a}, \vec{b}$  and  $\vec{c}$  be any three vectors of lengths  $7\sqrt{15}$  and  $2\sqrt{33}$ , mutually perpendicular to each other. Then find the distance of the vector  $(\vec{a}, \vec{p})\vec{p} + (\vec{a}, \vec{q})\vec{q} + (\vec{a}, (\vec{p} \times \vec{q}))(\vec{p} \times \vec{q}) + (\vec{b}, \vec{p})\vec{p} + (\vec{b}, \vec{p})\vec{q} + (\vec{b}, (\vec{b}, \vec{q}))(\vec{p} \times \vec{q}) + (\vec{c}, \vec{p})\vec{p} + (\vec{c}, (\vec{p} \times \vec{q}))(\vec{p} \times \vec{q})$  from the origin.

Watch Video Solution

**9.** Given that  $\vec{A}$ ,  $\vec{B}$ ,  $\vec{C}$  form triangle such that  $\vec{A} = \vec{B} + \vec{C}$ . Find a,b,c,d such that area of the triangle is  $5\sqrt{6}$  where  $\vec{A} = a\vec{i} + b\vec{i} + c\vec{k}$ .  $\vec{B} = d\vec{i} + 3\vec{j} + 4\vec{k}$  and  $\vec{C} = 3\vec{i} + \vec{j} - 2\vec{k}$ .

# Watch Video Solution

**10.** A line I is passing through the point  $\vec{b}$  and is parallel to vector  $\vec{c}$ . Determine the distance of point A( $\vec{a}$ ) from the line I in from

$$\left| \vec{b} - \vec{a} + \frac{\left( \vec{a} - \vec{b} \right) \vec{c}}{\left| \vec{c} \right|^2} \vec{c} \right| \text{ or } \frac{\left| \left( \vec{b} - \vec{a} \right) \times \vec{c} \right|}{\left| \vec{c} \right|}$$

Watch Video Solution

**11.** If 
$$\vec{e}_1, \vec{e}_2, \vec{e}_3 and \vec{E}_1, \vec{E}_2, \vec{E}_3$$
 are two sets of vectors such that  
 $\vec{e}_i \vec{E}_j = 1$ , if  $i = jand \vec{e}_i \vec{E}_j = 0$  and if  $i \neq j$ , then prove that  
 $\left[\vec{e}_1 \vec{e}_2 \vec{e}_3\right] \left[\vec{E}_1 \vec{E}_2 \vec{E}_3\right] = 1$ .

Watch Video Solution

**12.** In a quadrilateral ABCD, it is given that  $AB \mid CD$  and the diagonals

AC and BD are perpendicular to each other. Show that AD.  $BC \ge AB$ . CD.



**13.** *OABC* is regular tetrahedron in which D is the circumcentre of *OAB* and E is the midpoint of edge AC Prove that DE is equal to half the edge of tetrahedron.

Watch Video Solution

14. If  $A(\vec{a}), B(\vec{b}) and C(\vec{c})$  are three non-collinear points and origin does not lie in the plane of the points A, BandC, then point  $P(\vec{p})$  in the plane of the ABC such that vector  $\vec{OP}$  is  $\perp$  to planeof ABC, show that  $\vec{OP} = \frac{\left[\vec{a}\vec{b}\vec{c}\right]\left(\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a}\right)}{4^2}$ , where is the area of the ABCWatch Video Solution

**15.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are three given non-coplanar vectors and any arbitrary vector

$$\vec{r} \text{ in space, where } \Delta_{1} = \begin{vmatrix} \vec{r} \cdot \vec{a} & b \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{r} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\ \vec{r} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c} \end{vmatrix}, \Delta_{2} = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{r} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} & \vec{r} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\ \vec{a} \cdot \vec{c} & \vec{r} \cdot \vec{c} & \vec{c} \cdot \vec{c} \end{vmatrix}$$

$$\Delta_{3} = \begin{vmatrix} \vec{a} & \vec{a} & \vec{b} & \vec{a} & \vec{r} & \vec{a} \\ \vec{a} & \vec{b} & \vec{b} & \vec{b} & \vec{r} & \vec{b} \\ \vec{a} & \vec{c} & \vec{b} & \vec{c} & \vec{r} & \vec{c} \end{vmatrix}, \Delta = \begin{vmatrix} \vec{a} & \vec{a} & \vec{b} & \vec{a} & \vec{c} & \vec{a} \\ \vec{a} & \vec{b} & \vec{b} & \vec{b} & \vec{c} & \vec{b} \\ \vec{a} & \vec{c} & \vec{b} & \vec{c} & \vec{c} & \vec{c} \end{vmatrix},$$
  
then prove that  $\vec{r} = \frac{\Delta_{1}}{\Delta}\vec{a} + \frac{\Delta_{2}}{\Delta}\vec{b} + \frac{\Delta_{3}}{\Delta}\vec{c}$ 



# **Exercises Mcq**

1. Two vectors in space are equal only if they have equal component in a. a

given direction b. two given directions c. three given

directions d. in any arbitrary direction

A. a given direction

B. two given directions

C. three given direction

D. in any arbitrary direaction

#### Answer: c

**2.** Let  $\vec{a}, \vec{b}$  and  $\vec{c}$  be the three vectors having magnitudes, 1,5 and 3, respectively, such that the angle between  $\vec{a}$  and  $\vec{b}$  is  $\theta$  and  $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{c}$ . Then  $\tan \theta$  is equal to

A. 0 B.  $\frac{2}{3}$ C.  $\frac{3}{5}$ D.  $\frac{3}{4}$ 

# Answer: d

# Watch Video Solution

**3.** Let  $\vec{a}, \vec{b}, \vec{c}$  be three vectors of equal magnitude such that the angle between each pair is  $\frac{\pi}{3}$ . If  $\left|\vec{a} + \vec{b} + \vec{c}\right| = \sqrt{6}$ , then  $\left|\vec{a}\right| =$ 

A. 2

**B.** - 1

C. 1

D.  $\sqrt{6}/3$ 

#### Answer: c

Watch Video Solution

4. If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is (A)  $\vec{a} + \vec{b} + \vec{c}$  (B)  $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} + \vec{i} |\vec{c}| (C) \frac{\vec{a}}{|\vec{a}|^2} + \frac{\vec{b}}{|\vec{b}|^2} + \frac{\vec{c}}{|\vec{c}|^2} (D) |\vec{a}|\vec{a} - |\vec{b}|\vec{b} + |\vec{c}|\vec{c}$ A.  $\vec{a} + \vec{b} + \vec{c}$ B.  $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} + \frac{\vec{c}}{|\vec{c}|}$ C.  $\frac{\vec{a}}{|\vec{a}|^2} + \frac{\vec{b}}{|\vec{b}|^2} + \frac{\vec{c}}{|\vec{c}|^2}$ 

D. 
$$\left| \vec{a} \right| \vec{a} - \left| \vec{b} \right| \vec{b} + \left| \vec{c} \right| \vec{c}$$

## Answer: b



**5.** Let  $\vec{a} = \hat{i} + \hat{j}$  and  $\vec{b} = 2\hat{i} - \hat{k}$ . Then the point of intersection of the lines  $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$  and  $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$  is (A) (3, -1, 10 (B) (3, 1, -1) (C) (-3, 1, 1) (D) (-3, -1, -1) A.  $\hat{i} - \hat{j} + \hat{k}$ B.  $3\hat{i} - \hat{j} + \hat{k}$ C.  $3\hat{i} + \hat{j} - \hat{k}$ D.  $\hat{i} - \hat{j} - \hat{k}$ 

#### Answer: c

**6.** If  $\vec{a}$  and  $\vec{b}$  are two vectors, such that  $\vec{a} \cdot \vec{b} < 0$  and  $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$  then the angle between the vectors  $\vec{a}$  and  $\vec{b}$  is (a)  $\pi$  (b)  $\frac{7\pi}{4}$  (c)  $\frac{\pi}{4}$  (d)  $\frac{3\pi}{4}$ 

Α. π

**B.** 7*π*/4

**C**. *π*/4

**D.** 3π/4

#### Answer: d

Watch Video Solution

**7.** If  $\hat{a}$ ,  $\hat{b}$  and  $\hat{c}$  are three unit vectors such that  $\hat{a} + \hat{b} + \hat{c}$  is also a unit vector and  $\theta_1$ ,  $\theta_2$  and  $\theta_3$  are angles between the vectors  $\hat{a}$ ,  $\hat{b}$ ,  $\hat{c}$  and  $\hat{c}$ ,  $\hat{a}$ , respectively m then among  $\theta_1$ ,  $\theta_2$  and  $\theta_3$ 

A. all are acute angles

B. all are right angles

C. at least one is obtuse angle

D. none of these

Answer: c

Watch Video Solution

**8.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are unit vectors such that  $\vec{a}$ .  $\vec{b} = 0 = \vec{a}$ .  $\vec{c}$  and the angle between  $\vec{b}$  and  $\vec{c}is\frac{\pi}{3}$ , then find the value of  $\left|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}\right|$ 

**A.** 1/2

B. 1

C. 2

D. none of these

Answer: b

**9.** P  $(\vec{p})$  and  $Q(\vec{q})$  are the position vectors of two fixed points and  $R(\vec{r})$  is the postion vector of a variable point. If R moves such that  $(\vec{r} - \vec{p}) \times (\vec{r} - \vec{q}) = \vec{0}$  then the locus of R is

A. a plane containing the origian O and parallel to two non-collinear

vectors  $\overrightarrow{OP}$  and  $\overrightarrow{OQ}$ 

B. the surface of a sphere described on PQ as its diameter

C. a line passing through points P and Q

D. a set of lines parallel to line PQ

#### Answer: c

Watch Video Solution

**10.** Two adjacent sides of a parallelogram ABCD are  $2\hat{i} + 4\hat{j} - 5\hat{k}$  and  $\hat{i} + 2\hat{j} + 3\hat{k}$ . Then the value of  $\begin{vmatrix} \vec{A}C \\ \vec{A}C \\ \vec{B}D \end{vmatrix}$  is

A.  $20\sqrt{5}$ 

B.  $22\sqrt{5}$ 

C.  $24\sqrt{5}$ 

D.  $26\sqrt{5}$ 

### Answer: b

Watch Video Solution

**11.** If  $\hat{a}$ ,  $\hat{b}$ , and  $\hat{c}$  are three unit vectors inclined to each other at angle  $\theta$ , then the maximum value of  $\theta$  is  $\frac{\pi}{3}$  b.  $\frac{\pi}{4}$  c.  $\frac{2\pi}{3}$  d.  $\frac{5\pi}{6}$ 

A. 
$$\frac{\pi}{3}$$
  
B.  $\frac{\pi}{2}$   
C.  $\frac{2\pi}{3}$   
D.  $\frac{5\pi}{5}$ 

Answer: c

**12.** Let the pair of vector  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$ ,  $\vec{c}d$  each determine a plane. Then the planes are parallel if

A. 
$$(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}$$
  
B.  $(\vec{a} \times \vec{c})$ .  $(\vec{b} \times \vec{d}) = \vec{0}$   
C.  $(\vec{a} \times \vec{c}) \times (\vec{c} \times \vec{d}) = \vec{0}$   
D.  $(\vec{a} \times \vec{c})$ .  $(\vec{c} \times \vec{d}) = \vec{0}$ 

#### Answer: c

Watch Video Solution

**13.** If  $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$  where  $\vec{a}, \vec{b}$  and  $\vec{c}$  are non-coplanar, then

A. 
$$\vec{r} \perp (\vec{c} \times \vec{a})$$
  
B.  $\vec{r} \perp (\vec{a} \times \vec{b})$ 

$$\mathsf{C}.\,\vec{r}\,\perp\,\left(\vec{b}\times\vec{c}\right)$$
$$\mathsf{D}.\,\vec{r}\,=\,\vec{0}$$

# Answer: d



**14.** If 
$$\vec{a}$$
 satisfies  $\vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$  then  $\vec{a}$  is equal to  
A. a)  $\lambda \hat{i} + (2\lambda - 1)\hat{j} + \lambda \hat{k}, \lambda \in R$   
B. b)  $\lambda \hat{i} + (1 - 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$   
C. c)  $\lambda \hat{i} + (2\lambda + 1)\hat{j} + \lambda \hat{k}, \lambda \in R$ 

D. d) 
$$\lambda \hat{i} + (1 + 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$$

#### Answer: c

**15.** Vectors  $3\vec{a} - 5\vec{b}$  and  $2\vec{a} + \vec{b}$  are mutually perpendicular. If  $\vec{a} + 4\vec{b}$  and  $\vec{b} - \vec{a}$  are also mutually perpendicular, then the cosine of the angle between  $\vec{a}$  and  $\vec{b}$  is (a)  $\frac{19}{5\sqrt{43}}$  (b)  $\frac{19}{3\sqrt{43}}$  (c)  $\frac{19}{\sqrt{45}}$  (d)  $\frac{19}{6\sqrt{43}}$ 

A. 
$$\frac{19}{5\sqrt{43}}$$
  
B.  $\frac{19}{3\sqrt{43}}$   
C.  $\frac{19}{\sqrt{45}}$   
D.  $\frac{19}{6\sqrt{43}}$ 

#### Answer: a

Watch Video Solution

**16.** The units vectors orthogonal to the vector  $-\hat{i} + 2\hat{j} + 2\hat{k}$  and making equal angles with the X and Y axes islare) :

$$\mathsf{A.} \pm \frac{1}{3} \left( 2\hat{i} + 2\hat{j} - \hat{k} \right)$$

B. 
$$\frac{19}{5\sqrt{43}}$$
  
C.  $\pm \frac{1}{3} \left( \hat{i} + \hat{j} - \hat{k} \right)$ 

D. none of these

#### Answer: a

Watch Video Solution

**17.** The value of x for which the angle between  $\vec{a} = 2x^2\hat{i} + 4x\hat{j} = \hat{k} + \hat{k}$  and  $\vec{b} = 7\hat{i} - 2\hat{j} = x\hat{k}$ , is obtuse and the angle between  $\vec{b}$  and the z-axis is acute and less than  $\pi/6$ , are

A. *a* < *x* < 1/2

**B.** 1/2 < *x* < 15

C. x < 1/2 or x < 0

D. none of these

#### Answer: d

**18.** If vectors  $\vec{a}$  and  $\vec{b}$  are two adjacent sides of parallelograsm then the representing the altitude of the parallelogram which vector is perpendicular to  $\vec{a}$  is (A)  $\vec{b} + \frac{\vec{b} \times \vec{a}}{|\vec{a}|^2}$  (B)  $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}$  (C)  $\vec{b} - \frac{\vec{b} \cdot \vec{a}}{(|\vec{a}|)^2}$  (D)  $\frac{\vec{a} \times \left(\vec{b} \times \vec{a}\right)}{\vec{b} \mid^{20}}$  $\mathsf{A}.\,\vec{b} + \frac{\vec{b} \times \vec{a}}{|\vec{a}\,|^2}$  $\mathsf{B}.\,\frac{\vec{a}.\,\vec{b}}{\left|\vec{b}\right|^2}$  $\mathsf{C}.\,\vec{b}-\frac{\vec{b}.\,\vec{a}}{|\vec{a}\,|^2}\vec{a}$ D.  $\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^2}$ 

Answer: c

**19.** A parallelogram is constructed on  $3\vec{a} + \vec{b}$  and  $\vec{a} - 4\vec{b}$ , where  $|\vec{a}| = 6$  and  $|\vec{b}| = 8$  and  $\vec{a}$  and  $\vec{b}$  are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48

- A. 40
- B. 64
- C. 32
- D. 48

#### Answer: c

Watch Video Solution

**20.** Let  $\vec{a} \cdot \vec{b} = 0$  where  $\vec{a}$  and  $\vec{b}$  are unit vectors and the vector  $\vec{c}$  is inclined an anlge  $\theta$  to both  $\vec{a}$  and  $\vec{b} \cdot If\vec{c} = m\vec{a} + n\vec{b} + p(\vec{a} \times \vec{b}), (m, n, p \in R)$  then

A. 
$$\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$$
  
B.  $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$   
C.  $0 \le \theta \le \frac{\pi}{4}$   
D.  $0 \le \theta \le \frac{3\pi}{4}$ 

#### Answer: a

Watch Video Solution

**21.**  $\vec{a}$  and  $\vec{c}$  are unit vectors and  $|\vec{b}| = 4$  the angle between  $\vec{a}$  and  $\vec{c}$  $iscos^{-1}(1/4)$  and  $\vec{b} - 2\vec{c} = \lambda\vec{a}$  the value of  $\lambda$  is

A. 3,-4

B. 1/4,3/4

**C**. - 3, 4

D. - 1/4, 
$$\frac{3}{4}$$

#### Answer: a

**22.** Let the position vectors of the points PandQ be  $4\hat{i} + \hat{j} + \lambda\hat{k}and2\hat{i} - \hat{j} + \lambda\hat{k}$ , respectively. Vector  $\hat{i} - \hat{j} + 6\hat{k}$  is perpendicular to the plane containing the origin and the points PandQ. Then  $\lambda$  equals a -1/2 b. 1/2 c. 1 d. none of these

**A.** - 1/2

B.1/2

C. 1

D. none of these

#### Answer: a



**23.** A vector of magnitude 
$$\sqrt{2}$$
 coplanar with the vectors  $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$  and  $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ , and perpendicular to the vector

 $\vec{c} = \hat{i} + \hat{j} + \hat{k}$  is

A. - $\hat{j} + \hat{k}$ 

**B**.  $\hat{i}$  and  $\hat{k}$ 

C.  $\hat{i}$  -  $\hat{k}$ 

D. hati- hatj`

### Answer: a

Watch Video Solution

**24.** Let *P* be a point interior to the acute triangle *ABC* If PA + PB + PC is a null vector, then w.r.t traingel *ABC*, point *P* is its a. centroid b. orthocentre c. incentre d. circumcentre

A. centroid

B. orthocentre

C. incentre

D. circumcentre

#### Answer: a



**25.** G is the centroid of triangle ABC and  $A_1$  and  $B_1$  are the midpoints of sides AB and AC, respectively. If  $\Delta_1$  is the area of quadrilateral  $GA_1AB_1$  and  $\Delta$  is the area of triangle ABC, then  $\frac{\Delta}{\Delta_1}$  is equal to

A.  $\frac{3}{2}$ B. 3 C.  $\frac{1}{3}$ 

D. none of these

### Answer: b

**26.** Points  $\vec{a}, \vec{b}\vec{c}$  and  $\vec{d}$  are coplanar and  $(\sin\alpha)\vec{a} + (2\sin2\beta)\vec{b} + (3\sin3\gamma)\vec{c} - \vec{d} = \vec{0}$ . Then the least value of  $\sin^2\alpha + \sin^22\beta + \sin^23\gamma$  is

**A.** 1/14

B. 14

C. 6

D.  $1/\sqrt{6}$ 

Answer: a

Watch Video Solution

**27.** If  $\vec{a}$  and  $\vec{b}$  are any two vectors of magnitudes 1and 2. respectively, and  $(1 - 3\vec{a}, \vec{b})^2 + |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = 47$  then the angle between  $\vec{a}$  and  $\vec{b}$  is

**Α.** *π*/3

B.  $\pi - \cos^{-1}(1/4)$ C.  $\frac{2\pi}{3}$ D.  $\cos^{-1}(1/4)$ 

#### Answer: c

Watch Video Solution

**28.** If  $\vec{a}$  and  $\vec{b}$  are any two vectors of magnitude 2 and 3 respectively such that  $\left|2\left(\vec{a} \times \vec{b}\right)\right| + \left|3\left(\vec{a}, \vec{b}\right)\right| = k$  then the maximum value of k is (a)  $\sqrt{13}$  (b)  $2\sqrt{13}$  (c)  $6\sqrt{13}$  (d)  $10\sqrt{13}$ 

A.  $\sqrt{13}$ 

B.  $2\sqrt{13}$ 

C.  $6\sqrt{13}$ 

D.  $10\sqrt{13}$ 

Answer: c

**29.**  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are unit vecrtors such that  $|\vec{a} + \vec{b} + 3\vec{c}| = 4$  Angle between  $\vec{a}$  and  $\vec{b}is\theta_1$ , between  $\vec{b}$  and  $\vec{c}is\theta_2$  and between  $\vec{a}$  and  $\vec{b}$  varies  $[\pi/6, 2\pi/3]$ . Then the maximum value of  $\cos\theta_1 + 3\cos\theta_2$  is

A. 3 B. 4 C.  $2\sqrt{2}$ 

D. 6

# Answer: b



**30.** If the vector product of a constant vector  $\vec{O}A$  with a variable vector  $\vec{O}B$  in a fixed plane OAB be a constant vector, then the locus of B is (a).a

straight line perpendicular to  $\vec{OA}$  (b). a circle with centre O and radius equal to  $\left|\vec{OA}\right|$  (c). a straight line parallel to  $\vec{OA}$  (d). none of these

A. a straight line perpendicular to OA

B. a circle with centre O and radius equal to OA

C. a striaght line parallel to OA

D. none of these

#### Answer: c

Watch Video Solution

**31.** Let  $\vec{u}, \vec{v}$  and  $\vec{w}$  be such that  $|\vec{u}| = 1, |\vec{v}| = 2$  and  $|\vec{w}| = 3$  if the projection of  $\vec{v}$  along  $\vec{u}$  is equal to that of  $\vec{w}$  along  $\vec{u}$  and vectors  $\vec{v}$  and  $\vec{w}$  are perpendicular to each other then  $|\vec{u} - \vec{v} + \vec{w}|$  equals

32. If the two adjacent sides of two rectangles are reprresented by

vectors 
$$\vec{p} = 5\vec{a} - 3\vec{b}, \vec{q} = -\vec{a} - 2\vec{b}$$
 and  $\vec{r} = -4\vec{a} - \vec{b}, \vec{s} = -\vec{a} + \vec{b}$ ,

respectively, then the angle between the vectors  $\vec{x} = \frac{1}{3}(\vec{p} + \vec{r} + \vec{s})$  and  $\vec{y} = \frac{1}{5}(\vec{r} + \vec{s})$  is

A. 
$$-\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$$
  
B.  $\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$   
C.  $\pi\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$ 

D. cannot of these

### Answer: b

**33.** If 
$$\vec{\alpha} \mid |(\vec{b} \times \vec{\gamma}), then(\vec{\alpha} \times \vec{\beta}).(\vec{\alpha} \times \vec{\gamma}) = (A) |\vec{\alpha}|^2(\vec{\beta}.\vec{\gamma})$$
 (B)  
 $|\vec{\beta}|^2(\vec{\gamma}.\vec{\alpha})$ (C)  $|\vec{\gamma}|^2(\vec{\alpha}.\vec{\beta})$ (D)  $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$   
A.  $|\vec{\alpha}|^2(\vec{\beta}.\vec{\gamma})$ 

B.  $\left|\vec{\beta}\right|^{2} \left(\vec{\gamma}, \vec{\alpha}\right)$ C.  $\left|\vec{\gamma}\right|^{2} \left(\vec{\alpha}, \vec{\beta}\right)$ D.  $\left|\vec{\alpha}\right| \left|\vec{\beta}\right| \left|\vec{\gamma}\right|$ 

#### Answer: a

Watch Video Solution

**34.** The position vectors of points A,B and C are  $\hat{i} + \hat{j}, \hat{i} + 5\hat{j} - \hat{k}$  and  $2\hat{i} + 3\hat{j} + 5\hat{k}$ , respectively the greatest angle of triangle ABC is

A. 120 °

B.90  $^\circ$ 

C.  $\cos^{-1}(3/4)$ 

D. none of these

### Answer: b



**35.** Given three vectors  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  two of which are non-collinear. Further if  $(\vec{a} + \vec{b})$  is collinear with  $\vec{c}$ ,  $(\vec{b} + \vec{c})$  is collinear with  $\vec{a}$ ,  $|\vec{a}| = |\vec{b}| = |\vec{c}| = \sqrt{2}$  Find the value of  $\vec{a}$ .  $\vec{b} + \vec{b}$ .  $\vec{c} + \vec{c}$ .  $\vec{a}$  a. 3 b. -3 c. 0 d. cannot be evaluated

A. 3

**B.** - 3

C. 0

D. cannot of these

Watch Video Solution

#### Answer: b



A. 0

B.  $\pi/2$ 

**C**. *π* 

D. indeterminate

Answer: d

Watch Video Solution

**37.** If in a right-angled triangle ABC, the hypotenuse AB = p, then  $\overrightarrow{AB} \cdot \overrightarrow{AC} + BC \cdot BA + CA \cdot CB$  is equal to

A.  $2p^2$ B.  $\frac{p^2}{2}$ C.  $p^2$ 

D. none of these

Answer: c

**38.** Resolved part of vector  $\vec{a}$  and along vector  $\vec{b}$  is  $\vec{a}1$  and that prependicular to  $\vec{b}$  is  $\vec{a}2$  then  $\vec{a}1 \times \vec{a}2$  is equilto

A. 
$$\frac{\left(\vec{a} \times \vec{b}\right) \cdot \vec{b}}{\left|\vec{b}\right|^{2}}$$
B. 
$$\frac{\left(\vec{a} \cdot \vec{b}\right) \vec{a}}{\left|\vec{a}\right|^{2}}$$
C. 
$$\frac{\left(\vec{a} \cdot \vec{b}\right) \left(\vec{b} \times \vec{a}\right)}{\left|\vec{b}\right|^{2}}$$
D. 
$$\frac{\left(\vec{a} \cdot \vec{b}\right) \left(\vec{b} \times \vec{a}\right)}{\left|\vec{b} \times \vec{a}\right|}$$

#### Answer: c

**39.** Let  $\vec{a} = 2\hat{i} = \hat{j} + \hat{k}$ ,  $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$  and  $\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$  be three vectors . A vector in the pland of  $\vec{b}$  and  $\vec{c}$  whose projection on  $\vec{a}$  is of magnitude  $\sqrt{\left(\frac{2}{3}\right)}$  is (A)  $2\hat{i} + 3\hat{j} + 3\hat{k}$  (B)  $2\hat{i} + 3\hat{j} - 3\hat{k}$  (C)  $-2\hat{i} - \hat{j} + 5\hat{k}$  (D)  $2\hat{i} + \hat{j} + 5\hat{k}$ A.  $2\hat{i} + 3\hat{j} - 3\hat{k}$ B.  $-2\hat{i} - \hat{j} + 5\hat{k}$ C.  $2\hat{i} + 3\hat{j} + 3\hat{k}$ D.  $2\hat{i} + \hat{i} + 5\hat{k}$ 

#### Answer: b

Watch Video Solution

**40.** If *P* is any arbitrary point on the circumcirlce of the equilateral trangle of side length *l* units, then  $|\vec{P}A|^2 + |\vec{P}B|^2 + |\vec{P}C|^2$  is always equal to  $2l^2$  b.  $2\sqrt{3}l^2$  c.  $l^2$  d.  $3l^2$ 

**A.** 2*l*<sup>2</sup>

**B**.  $2\sqrt{3}l^2$ 

**C**. *l*<sup>2</sup>

**D**. 3*l*<sup>2</sup>

#### Answer: a

Watch Video Solution

**41.** If  $\vec{r}$  and  $\vec{s}$  are non-zero constant vectors and the scalar b is chosen such that  $|\vec{r} + b\vec{s}|$  is minimum, then the value of  $|b\vec{s}|^2 + |\vec{r} + b\vec{s}|^2$  is equal to

A. 2  $|\vec{r}|^2$ B.  $|\vec{r}|^2/2$ C. 3  $|\vec{r}|^2$ D.  $|\vec{r}|^2$ 

# Answer: b



**42.**  $\vec{a}$  and  $\vec{b}$  are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to  $\vec{a}$ ,  $\vec{b}$  and  $\vec{a} \times \vec{b}$  is equal to

A. 
$$\frac{1}{\sqrt{2}} \left( \vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$
  
B. 
$$\frac{1}{2} \left( \vec{a} \times \vec{b} + \vec{a} + \vec{b} \right)$$
  
C. 
$$\frac{1}{\sqrt{3}} \left( \vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$
  
D. 
$$\frac{1}{3} \left( \vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$

#### Answer: a

Watch Video Solution

**43.** Given that  $\vec{a}, \vec{b}, \vec{p}, \vec{q}$  are four vectors such that  $\vec{a} + \vec{b} = \mu \vec{p}, \vec{b}, \vec{q} = 0$  and  $|\vec{b}|^2 = 1$  where  $\mu$  is a sclar. Then  $|(\vec{a}, \vec{q})\vec{p} - (\vec{p}, \vec{q})\vec{a}|$  is equal to
(a)2 $|\vec{p}\vec{q}|$  (b)(1/2) $|\vec{p}.\vec{q}|$  (c) $|\vec{p}\times\vec{q}|$  (d) $|\vec{p}.\vec{q}|$ 

A. 2  $\left| \vec{p} \vec{q} \right|$ 

- B.  $(1/2) | \vec{p} . \vec{q} |$
- C.  $\left| \vec{p} \times \vec{q} \right|$
- D.  $\left| \vec{p} \cdot \vec{q} \right|$

## Answer: d

Watch Video Solution

**44.** The position vectors of the vertices A, B and C of a triangle are three unit vectors  $\vec{a}, \vec{b}$  and  $\vec{c}$  respectively. A vector  $\vec{d}$  is such that  $\vec{d}, \hat{a} = \vec{d}, \hat{b} = \vec{d}, \hat{c}$  and  $\vec{d} = \lambda (\hat{b} + \hat{c})$ . Then triangle ABC is

A. acute angled

B. obtuse angled

C. right angled

D. none of these

Answer: a



**45.** If *a* is real constant *A*, *BandC* are variable angles and  $\sqrt{a^2 - 4} \tan A + a \tan B + \sqrt{a^2 + 4} \tan c = 6a$ , then the least vale of  $\tan^2 A + \tan^2 b + \tan^2 Cis \ 6 \ b. \ 10 \ c. \ 12 \ d. \ 3$ 

A. 6

B. 10

C. 12

D. 3

Answer: d

**46.** The vertex *A* triangle *ABC* is on the line  $\vec{r} = \hat{i} + \hat{j} + \lambda \hat{k}$  and the vertices *BandC* have respective position vectors  $\hat{i}and\hat{j}$ . Let Delta be the area of the triangle and Delta  $[3/2, \sqrt{33}/2]$ . Then the range of values of  $\lambda$  corresponding to *A* is  $[-8, 4] \cup [4, 8]$  b. [-4, 4] c. [-2, 2] d.  $[-4, -2] \cup [2, 4]$ 

A. [-8, -4]cup[4,8]`

B.[-4,4]

C. [-2,2]

D.[-4,-2] U [2,4]

Answer: c

# Watch Video Solution

**47.** A non-zero vecto  $\vec{a}$  is such that its projections along vectors  $\frac{\hat{i} + \hat{j}}{\sqrt{2}}, \frac{-\hat{i} + \hat{j}}{\sqrt{2}}$  and  $\hat{k}$  are equal, then unit vector along  $\vec{a}$  us

A. 
$$\frac{\sqrt{2}\hat{j} - \hat{k}}{\sqrt{3}}$$
  
B. 
$$\frac{\hat{j} - \sqrt{2}\hat{k}}{\sqrt{3}}$$
  
C. 
$$\frac{\sqrt{2}}{\sqrt{3}}\hat{j} + \frac{\hat{k}}{\sqrt{3}}$$
  
D. 
$$\frac{\hat{j} - \hat{k}}{\sqrt{2}}$$

#### Answer: a

**Watch Video Solution** 

**48.** Position vector  $\hat{k}$  is rotated about the origin by angle  $135^{\circ}$  in such a way that the plane made by it bisects the angel between  $\hat{i}and\hat{j}$ . Then its new position is  $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$  b.  $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$  c.  $\frac{\hat{i}}{\sqrt{2}} - \frac{\hat{k}}{\sqrt{2}}$  d. none of these A.  $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$ B.  $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$ C.  $\frac{\hat{i}}{\sqrt{2}} - \frac{\hat{k}}{\sqrt{2}}$ 

## D. none of these

### Answer: d

## Watch Video Solution

**49.** In a quadrilateral ABCD,  $\vec{AC}$  is the bisector of  $\vec{ABandAD}$ , angle between  $\vec{A}Band\vec{A}D$  is  $2\pi/3$ ,  $15\left|\vec{A}C\right| = 3\left|\vec{A}B\right| = 5\left|\vec{A}D\right|$  Then the angle between  $\vec{B}Aand\vec{C}D$  is  $\frac{\cos^{-1}(\sqrt{14})}{7\sqrt{2}}$  b.  $\frac{\cos^{-1}(\sqrt{21})}{7\sqrt{3}}$  c.  $\frac{\cos^{-1}2}{\sqrt{7}}$  d.  $\frac{\cos^{-1}\left(2\sqrt{7}\right)}{14}$  $A.\cos^{-1}\frac{\sqrt{14}}{7\sqrt{2}}$  $B.\cos^{-1}\frac{\sqrt{21}}{7\sqrt{3}}$  $\mathsf{C.}\cos^{-1}\frac{2}{\sqrt{7}}$ D.  $\cos^{-1}\frac{2\sqrt{7}}{14}$ 

#### Answer: c

**50.** In AB, DE and GF are parallel to each other and AD, BG and EF ar parallel to each other . If CD: CE = CG:CB = 2:1 then the value of area  $(\triangle AEG)$ : *area* $(\triangle ABD)$  is equal to (a) 7/2 (b)3 (c)4 (d)9/2

**A.** 7/2

B. 3

C. 4

**D**.9/2

### Answer: b

## Watch Video Solution

**51.** Vectors  $\hat{a}$  in the plane of  $\vec{b} = 2\hat{i} + \hat{j}$  and  $\vec{c} = \hat{i} - \hat{j} + \hat{k}$  is such that it is equally inclined to  $\vec{b}$  and  $\vec{d}$  where  $\vec{d} = \hat{j} + 2\hat{k}$  the value of  $\hat{a}$  is (a)  $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ 

(b) 
$$\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$$
 (c) 
$$\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$$
 (d) 
$$\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$$
  
A. 
$$\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$$
  
B. 
$$\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$$
  
C. 
$$\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$$
  
D. 
$$\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$$

### Answer: b



**52.** Let *ABCD* be a tetrahedron such that the edges *AB*, *ACandAD* are mutually perpendicular. Let the area of triangles *ABC*, *ACDandADB* be 3, 4 and 5sq. units, respectively. Then the area of triangle *BCD* is a.  $5\sqrt{2}$  b. 5  $\sqrt{5}$  . 5

A.  $5\sqrt{2}$ 

C. 
$$\frac{\sqrt{5}}{2}$$
  
D.  $\frac{5}{2}$ 

#### Answer: a

Watch Video Solution

**53.** Let  $f(t) = [t]\hat{i} + (t - [t])\hat{j} + [t + 1]\hat{k}$ , where[.] denotes the greatest integer

function. Then the vectors  $f\left(\frac{5}{4}\right)$  and f(t), 0 < t < 1 are (a)parallel to each

other (b)perpendicular to each other (c)inclined at  $\cos^{-1}\left(\frac{2}{\sqrt{7(1-t^2)}}\right)$ 

(d)inclined at 
$$\cos^{-1}\left(\frac{8+t}{9\cdot\sqrt{1+t^2}}\right)$$

A. parallel to each other

B. perpendicular to each other

C. inclined at 
$$\frac{\cos^{-1}2}{\sqrt{7}(1-t^2)}$$
  
D. inclined at 
$$\frac{\cos^{-1}(8+t)}{9\sqrt{1+t^2}}$$

Answer: d

Watch Video Solution

**54.** If  $\vec{a}$  is parallel to  $\vec{b} \times \vec{c}$ , then  $(\vec{a} \times \vec{b})$ .  $(\vec{a} \times \vec{c})$  is equal to (a)  $|\vec{a}|^2 (\vec{b}, \vec{c})$ 

(b)  $|\vec{b}|^2 (\vec{a}.\vec{c})$  (c)  $|\vec{c}|^2 (\vec{a}.\vec{b})$  (d) none of these

- A.  $|\vec{a}|^2 (\vec{b}. \vec{c})$ B.  $|\vec{b}|^2 (\vec{a}. \vec{c})$
- $\mathsf{C}. \, \left| \vec{c} \right|^2 \left( \vec{a}. \, \vec{b} \right)$

D. none of these

### Answer: a

**55.** The three vectors  $\hat{i} + \hat{j}, \hat{j} + \hat{k}, \hat{k} + \hat{i}$  taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume: \_\_\_\_\_

**A.** 1/3

B. 4

C.  $(3\sqrt{3})/4$ D.  $4\sqrt{3}$ 

Answer: d

56. If 
$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$
 is a on zero vector and  
 $\left| \left( \vec{d} \cdot \vec{c} \right) \left( \vec{a} \times \vec{b} \right) + \left( \vec{d} \cdot \vec{a} \right) \left( \vec{b} \times \vec{c} \right) + \left( \vec{d} \cdot \vec{b} \right) \left( \vec{c} \times \vec{a} \right) \right| = 0$  then (A)  
 $\left| \vec{a} \right| + \left| \vec{b} \right| + \left| \vec{c} \right| = \left| \vec{d} \right|$  (B)  $\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right|$  (C)  $\vec{a}, \vec{b}, \vec{c}$  are coplanar (D)  
 $\vec{a} + \vec{c} = 2\vec{b}$ 

A. 
$$\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right|$$

- $\mathsf{B.} \left| \vec{a} \right| + \left| \vec{b} \right| + \left| \vec{c} \right| = \left| \vec{d} \right|$
- C.  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are coplanar

D. none of these

#### Answer: c

Watch Video Solution

**57.** If  $|\vec{a}| = 2$  and  $|\vec{b}| = 3$  and  $\vec{a} \cdot \vec{b} = 0$ , then  $(\vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b}))))$  is equal to the given diagonal is  $\vec{c} = 4\hat{k} = 8\hat{k}$  then , the volume of a parallelpiped is

A. 48 $\hat{b}$ 

B.-48*b* 

C. 48â

D. - 48â

## Answer: a



**58.** If two diagonals of one of its faces are  $6\hat{i} + 6\hat{k}$  and  $4\hat{j} + 2\hat{k}$  and of the edges not containing the given diagonals is  $\vec{c} = 4\hat{j} - 8\hat{k}$ , then the volume of a parallelpiped is

A. 60

B. 80

C. 100

D. 120

## Answer: d

**59.** The volume of a tetrahedron fomed by the coterminus edges  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}is3$ . Then the volume of the parallelepiped formed by the coterminus edges  $\vec{a} + \vec{b}$ ,  $\vec{b} + \vec{c}$  and  $\vec{c} + \vec{a}$  is

A. 6

B. 18

C. 36

D. 9

Answer: c

Watch Video Solution

**60.** If  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are three mutually orthogonal unit vectors , then the triple product  $\begin{bmatrix} \vec{a} + \vec{b} + \vec{c} & \vec{a} + \vec{b} & \vec{b} + \vec{c} \end{bmatrix}$  equals

A. 0

B. 1 or -1

C. 1

D. 3

## Answer: b

Watch Video Solution

**61.** vector  $\vec{c}$  are perpendicular to vectors  $\vec{a} = (2, -3, 1)$  and  $\vec{b} = (1, -2, 3)$ and satifies the condition  $\vec{c} \cdot (\hat{i} + 2\hat{j} - 7\hat{k}) = 10$  then vector  $\vec{c}$  is equal to

(*a*)(7, 5, 1) (*b*)(-7, -5, -1) (*c*)(1, 1, -1) (*d*) none of these

A. 7,5,1

B. (-7, -5, -1)

C. 1,1,-1

D. none of these

Answer: a

**62.** Given  $\vec{a} = x\hat{i} + y\hat{j} + 2\hat{k}$ ,  $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ ,  $\vec{c} = \hat{i} + 2\hat{j}$ ,  $\vec{a} \perp \vec{b}$ ,  $\vec{a}$ .  $\vec{c} = 4$  then find the value of  $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ .

A.  $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}^2 = \begin{vmatrix} \vec{a} \end{vmatrix}$ B.  $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{a} \end{vmatrix}$ C.  $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = 0$ D.  $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = 0$ 

### Answer: d

**63.** Let 
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
,  $\vec{b} = b_2\hat{j} + b_3\hat{k}$  and  $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$  give three non-zero vectors such that  $\vec{c}$  is a unit vector perpendicular to both

 $\vec{a}$  and  $\vec{b}$ . If the angle between  $\vec{a}$  and  $\vec{b}is\frac{\pi}{6}$ , then prove that  $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} p = \frac{1}{4} \left( a_1^2 + a_2^2 + a_3^2 \right) \left( b_1^2 + b_2^2 + b_3^2 \right)$ A. 0 B. 1 C.  $\frac{1}{4} \left( a_1^2 + a_2^2 + a_3^2 \right) \left( b_1^2 + b_2^2 + b_3^2 \right)$ D.  $\frac{3}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$ 

### Answer: c

Watch Video Solution

**64.** Let  $\vec{r}, \vec{a}, \vec{b}$  and  $\vec{c}$  be four non -zero vectors such that  $\vec{r}, \vec{a} - 0, |\vec{r} \times \vec{b}| = |\vec{r}| |\vec{b}|$  and  $|\vec{r} \times \vec{c}| = |\vec{r}| \vec{c}|$  then [a b c] is equal to A. |a||b||c|

B. - |a||b||c|

C. 0

D. none of these

Answer: c

Watch Video Solution

**65.** If  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are such that  $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 1$ ,  $\vec{c} = \lambda (\vec{a} \times \vec{b})$ , angle between  $\vec{c}$ and  $\vec{b}$  is  $2\pi/3$ ,  $|\vec{a}| = \sqrt{2}$ ,  $|\vec{b}| = \sqrt{3}$  and  $|\vec{c}| = \frac{1}{\sqrt{3}}$  then the angle between  $\vec{a}$ and  $\vec{b}$  is

A.  $\frac{\pi}{6}$ B.  $\frac{\pi}{4}$ C.  $\frac{\pi}{3}$ D.  $\frac{\pi}{2}$ 

Answer: b

**66.** If  $4\vec{a} + 5\vec{b} + 9\vec{c} = 0$  then  $(\vec{a} \times \vec{b}) \times [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})]$  is equal to

A. a vector perpendicular to the plane of  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$ 

B. a scalar quantity

**C**.  $\vec{0}$ 

D. none of these

### Answer: c

Watch Video Solution

**67.** value of 
$$\left[\vec{a} \times \vec{b}\vec{a} \times \vec{c}\vec{d}\right]$$
 is always equal to

 $\mathsf{A}.\left(\vec{a}.\,\vec{d}\right)\left[\vec{a}\vec{b}\vec{c}\,\right]$ 

B. `(veca.vecc)[veca vecb vecd]

 $\mathsf{C}.\left(\vec{a}.\,\vec{b}\right)\left[\vec{a}\,\vec{b}\,\vec{d}\,\right]$ 

D. none of these

## Answer: a

## Watch Video Solution

**68.** Let  $\hat{a}$  and  $\hat{b}$  be mutually perpendicular unit vectors. Then for ant arbitrary  $\vec{r}$ .

A. 
$$\vec{r} = (\vec{r} \cdot \hat{a})\hat{a} + (\vec{r} \cdot \hat{b})\hat{b} + (\vec{r} \cdot (\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$$
  
B.  $\vec{r} = (\vec{r} \cdot \hat{a}) - (\vec{r} \cdot \hat{b})\hat{b} - (\vec{r} \cdot (\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$   
C.  $\vec{r} = (\vec{r} \cdot \hat{a})\hat{a} - (\vec{r} \cdot \hat{b})\hat{b} - (\vec{r} \cdot (\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$ 

D. none of these

### Answer: a

**69.** Let  $\vec{a}$  and  $\vec{b}$  be unit vectors that are perpendicular to each other, then

 $\left[\vec{a} + \left(\vec{a} \times \vec{b}\right) + \left(\vec{a} \times \vec{b}\right)\right]$  is equal to

A. 1

B. 0

**C**. - 1

D. none of these

#### Answer: a

Watch Video Solution

**70.**  $\vec{a}$  and  $\vec{b}$  are two vectors such that  $|\vec{a}| = 1$ ,  $|\vec{b}| = 4$  and  $\vec{a}$ . Vecb = 2. If

vecc =  $(2\vec{a} \times \vec{b})$  -  $3\vec{b}$  then find angle between  $\vec{b}$  and  $\vec{c}$ .

A.  $A\frac{\pi}{3}$ B.  $B\frac{\pi}{6}$ 

C. C
$$\frac{3\pi}{4}$$
  
D. D $\frac{5\pi}{6}$ 

## Answer: d

**71.** If 
$$\vec{b}$$
 and  $\vec{c}$  are unit vectors, then for any arbitary vector  $\vec{a}$ ,  $\left(\left(\left(\vec{a} \times \vec{b}\right) + \left(\vec{a} \times \vec{c}\right)\right) \times \left(\vec{b} \times \vec{c}\right)\right)$ .  $\left(\vec{b} - \vec{c}\right)$  is always equal to

**72.** If 
$$\vec{a}$$
.  $\vec{b} = \beta$  and  $\vec{a} \times \vec{b} = \vec{c}$ , then  $\vec{b}$  is

A. 
$$\frac{\left(\beta \vec{a} - \vec{a} \times \vec{c}\right)}{\left|\vec{a}\right|^{2}}$$
  
B. 
$$\frac{\left(\beta \vec{a} + \vec{a} \times \vec{c}\right)}{\left|\vec{a}\right|^{2}}$$
  
C. 
$$\frac{\left(\beta \vec{c} + \vec{a} \times \vec{c}\right)}{\left|\vec{a}\right|^{2}}$$

D. 
$$\frac{\left(\beta\vec{c}+\vec{a}\times\vec{c}\right)}{\left|\vec{a}\right|^2}$$

### Answer: a

## Watch Video Solution

**73.** If 
$$a(\vec{\alpha} \times \vec{\beta}) = b(\vec{\beta} \times \vec{\gamma}) + c(\vec{\gamma} \times \vec{\alpha}) = \vec{0}$$
 and at least one of a,b and c is  
non zero then vectors  $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$  are (A) parallel (B) coplanar (C) mutually  
perpendicular (D) none of these

A. parallel

B. coplanar

C. mutually perpendicular

D. none of these

## Answer: b

**74.** if  $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \vec{b}$ , where  $\vec{a}, \vec{b}$  and  $\vec{c}$  are non-zero vectors, then

A.  $\vec{a}$ ,  $\vec{b}$  and  $\vec{v}$  can be coplanar

B.  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  must be coplanar

C.  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  cannot be coplanar

D. none of these

#### Answer: c

Watch Video Solution

**75.** If  $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = \frac{1}{2}$  for some non zero vector  $\vec{r}$  and  $\vec{a}, \vec{b}, \vec{c}$  are non coplanar, then the area of the triangle whose vertices are  $A(\vec{a}), B(\vec{b})$  and  $C(\vec{c})$  is

A.  $\left| \left[ \vec{a} \vec{b} \vec{c} \right] \right|$ B.  $\left| \vec{r} \right|$ 

$$\mathsf{C}.\left|\left[\vec{a}\vec{b}\vec{c}\right]\vec{r}\right|$$

D. none of these

Answer: c

Watch Video Solution

**76.** A vector of magnitude 10 along the normal to the curve  $3x^2 + 8xy + 2y^2 - 3 = 0$  at its point P(1, 0) can be  $6\hat{i} + 8\hat{j}$  b.  $-8\hat{i} + 3\hat{j}$  c.  $6\hat{i} - 8\hat{j}$ d.  $8\hat{i} + 6\hat{j}$ 

A.  $6\hat{i} + 8\hat{j}$ B.  $-8\hat{i} + 3\hat{j}$ C.  $6\hat{i} - 8\hat{j}$ D.  $8\hat{i} + 6\hat{j}$ 

Answer: a

77. If  $\vec{a}$  and  $\vec{b}$  are two unit vectors inclined at an angle  $\frac{\pi}{3}$  then  $\{\vec{a} \times (\vec{b} + \vec{a} \times \vec{b})\}$ .  $\vec{b}$  is equal to (a)  $-\frac{3}{4}$  (b)  $\frac{1}{4}$  (c)  $\frac{3}{4}$  (d)  $\frac{1}{2}$ A.  $\frac{-3}{4}$ B.  $\frac{1}{4}$ C.  $\frac{3}{4}$ D.  $\frac{1}{2}$ 

#### Answer: a

**D** Watch Video Solution

**78.** If  $\vec{a}$  and  $\vec{b}$  are othogonal unit vectors, then for a vector  $\vec{r}$  non - coplanar with  $\vec{a}$  and  $\vec{b}$  vector  $\vec{r} \times \vec{a}$  is equal to

A. 
$$\left[\vec{r}\vec{a}\vec{b}\right]\vec{b} - \left(\vec{r}.\vec{b}\right)\left(\vec{b}\times\vec{a}\right)$$
  
B.  $\left[\vec{r}\vec{a}\vec{b}\right]\left(\vec{a}+\vec{b}\right)$ 

$$\mathsf{C}.\left[\vec{r}\vec{a}\vec{b}\right]\vec{a}+\left(\vec{r}.\vec{a}\right)\vec{a}\times\vec{b}$$

D. none of these

Answer: a

Watch Video Solution

**79.** If  $\vec{a} + \vec{b}$ ,  $\vec{c}$  are any three non- coplanar vectors then the equation  $\left[\vec{b} \times \vec{c} \, \vec{c} \times \vec{a} \, \vec{a} \times \vec{b}\right] x^2 + \left[\vec{a} + \vec{b} \, \vec{b} + \vec{c} \, \vec{c} + \vec{a}\right] x + 1 + \left[\vec{b} - \vec{c} \, \vec{c} - \vec{c} - \vec{a} \, \vec{a} - \vec{b}\right] = 0$ 

has roots

A. real and distinct

B. real

C. equal

D. imaginary

Answer: c

**80.** Sholve the simultasneous vector equations for  $\vec{x}$  and  $\vec{y}: \vec{x} + \vec{c} \times \vec{y} = \vec{a}$  and  $\vec{y} + \vec{c} \times \vec{x} = \vec{b}, \vec{c} \neq 0$ 

$$A. \vec{x} = \frac{\vec{b} \times \vec{c} + \vec{a} + (\vec{c}. \vec{a})\vec{c}}{1 + \vec{c}. \vec{c}}$$
$$B. \vec{x} = \frac{\vec{c} \times \vec{b} + \vec{b} + (\vec{c}. \vec{a})\vec{c}}{1 + \vec{c}. \vec{c}}$$
$$C. \vec{y} = \frac{\vec{a} \times \vec{c} + \vec{b} + (\vec{c}. \vec{b})\vec{c}}{1 + \vec{c}. \vec{c}}$$

D. none of these

## Answer: b

Watch Video Solution

**81.** The condition for equations  $\vec{r} \times \vec{a} = \vec{b}$  and  $\vec{r} \times \vec{c} = \vec{d}$  to be consistent

is

A.  $\vec{b}$ .  $\vec{c} = \vec{a}$ .  $\vec{d}$ 

B.  $\vec{a}$ .  $\vec{b} = \vec{c}$ .  $\vec{d}$ C.  $\vec{b}$ .  $\vec{c} + \vec{a}$ .  $\vec{d} = 0$ D.  $\vec{a}$ .  $\vec{b} + \vec{c}$ .  $\vec{d} = 0$ 

### Answer: c

Watch Video Solution

**82.** If 
$$\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$$
,  $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$  then  $\begin{bmatrix} \vec{a}\vec{b}\vec{i} \end{bmatrix} \hat{i} + \begin{bmatrix} \vec{a}\vec{b}\vec{j} \end{bmatrix} \hat{j} + \begin{bmatrix} \vec{a}\vec{b}\hat{k} \end{bmatrix} \hat{k}$  is

equal to

**83.**  
$$\vec{a} = 2\hat{i} + \hat{i} + \hat{k}, \vec{b} = \hat{i} + 2\hat{i} + 2\hat{k}, \vec{c} = \hat{i} + \hat{i} + 2\hat{k} \text{ and } (1 + \alpha)\hat{i} + \beta(1 + \alpha)\hat{i} + \gamma(1 + \alpha)\hat{i}$$

A. -2, -4, 
$$-\frac{2}{3}$$
  
B. 2, -4,  $\frac{2}{3}$ 

C. -2, 4, 
$$\frac{2}{3}$$
  
D. 2, 4,  $-\frac{2}{3}$ 

Answer: a

Watch Video Solution

**84.** Let 
$$(\vec{a}(x) = (\sin x)\hat{i} + (\cos x)\hat{j}$$
 and  $\vec{b}(x) = (\cos 2x)\hat{i} + (\sin 2x)\hat{j}$  be two

variable vectors ( $x \in R$ ). Then  $\vec{a}(x)$  and  $\vec{b}(x)$  are

A. collinear for unique value of x

B. perpendicular for infinte values of x.

C. zero vectors for unique value of x

D. none of these

Answer: b

**85.** For any vectors  
$$\vec{a}$$
 and  $\vec{b}$ ,  $(\vec{a} \times \hat{i}) + (\vec{b} \times \hat{i}) + (\vec{a} \times \hat{j})$ .  $(\vec{b} \times \hat{j}) + (\vec{a} \times \hat{k})$ .  $(\vec{b} \times \hat{k})$  is always  
equal to

A. *ā*. *b* 

B. 2*ā*. Vecb

C. zero

D. none of these

## Answer: b

Watch Video Solution

**86.** If  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are three non coplanar vectors and  $\vec{r}$  is any vector in space, then

$$\left(\vec{a} \times \vec{b}\right) \times \left(\vec{r} \times \vec{c}\right) + \left(\vec{b} \times \vec{c}\right) \times \left(\vec{r} \times \vec{a}\right) + \left(\vec{c} \times \vec{a}\right) \times \left(\vec{r} \times \vec{b}\right) =$$

A.  $\left[\vec{a}\vec{b}\vec{c}\right]\vec{r}$ 

B. 2 $\left[\vec{a}\vec{b}\vec{c}\right]\vec{r}$ C. 3 $\left[\vec{a}\vec{b}\vec{c}\right]\vec{r}$ 

D. none of these

## Answer: b

Watch Video Solution

87. If 
$$\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$$
,  $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}$  and  $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ , where  $\vec{a}, \vec{b}$  and  $\vec{c}$  are three non- coplanar vectors then the value of the expression  $\left(\vec{a} + \vec{b} + \vec{c}\right)$ .  $\left(\vec{p} + \vec{q} + \vec{r}\right)$  is (a)3 (b)2 (c)1 (d)0  
A.3

B. 2

C. 1

D. 0

### Answer: a

## Watch Video Solution

**88.** 
$$A(\vec{a}), B(\vec{b})$$
 and  $C(\vec{c})$  are the vertices of triangle ABC and  $R(\vec{r})$  is any

point in the plane of triangle *ABC*, then  $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$  is always equal to a. zero b.  $\left[\vec{a}\vec{b}\vec{c}\right]$  c. -  $\left[\vec{a}\vec{b}\vec{c}\right]$  d. none of these

### A. zero

B.  $\left[\vec{a}\vec{b}\vec{c}\right]$ C. -  $\left[\vec{a}\vec{b}\vec{c}\right]$ 

D. none of these

## Answer: b

**89.** If  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are non- coplanar vectors and  $\vec{a} \times \vec{c}$  is perpendicular to  $\vec{a} \times (\vec{b} \times \vec{c})$ , then the value of  $[\vec{a} \times (\vec{b} \times \vec{c})] \times \vec{c}$  is equal to

- A.  $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} \vec{c}$ B.  $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} \vec{b}$
- **C**. 0
- D.  $\left[\vec{a}\vec{b}\vec{c}\right]\vec{a}$

### Answer: c

> Watch Video Solution

**90.** If *V* be the volume of a tetrahedron and *V*' be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and V = KV', *thenK* is equal to a. 9 b. 12 c. 27 d. 81

A. 9

B. 12

C. 27

D. 81

## Answer: c



**91.** 
$$\left[\left(\vec{a} \times \vec{b}\right) \times \left(\vec{b} \times \vec{c}\right) \left(\vec{b} \times \vec{c}\right) \times \left(\vec{c} \times \vec{a}\right) \left(\vec{c} \times \vec{a}\right) \times \left(\vec{a} \times \vec{b}\right)\right]$$
 is equal to  
( where  $\vec{a}, \vec{b}$  and  $\vec{c}$  are non - zero non- colanar vectors). (a)  $\left[\vec{a}\vec{b}\vec{c}\right]^2$   
(b)  $\left[\vec{a}\vec{b}\vec{c}\right]^3$  (c)  $\left[\vec{a}\vec{b}\vec{c}\right]^4$  (d)  $\left[\vec{a}\vec{b}\vec{c}\right]$   
A.  $\left[\vec{a}\vec{b}\vec{c}\right]^2$   
B.  $\left[\vec{a}\vec{b}\vec{c}\right]^3$   
C.  $\left[\vec{a}\vec{b}\vec{c}\right]^4$   
D.  $\left[\vec{a}\vec{b}\vec{c}\right]$ 

## Answer: c

92.

$$\vec{r} = x_1 \left( \vec{a} \times \vec{b} \right) + x_2 \left( \vec{b} \times \vec{a} \right) + x_3 \left( \vec{c} \times \vec{d} \right)$$
 and  $4 \left[ \vec{a} \vec{b} \vec{c} \right] = 1$  then  $x_1 + x_2 + x_3$ 

is equal to

A. 
$$\frac{1}{2}\vec{r}$$
.  $\left(\vec{a}+\vec{b}+\vec{c}\right)$   
B.  $\frac{1}{4}\vec{r}$ .  $\left(\vec{a}+\vec{b}+\vec{c}\right)$   
C.  $2\vec{r}$ .  $\left(\vec{a}+\vec{b}+\vec{c}\right)$   
D.  $4\vec{r}$ .  $\left(\vec{a}+\vec{b}+\vec{c}\right)$ 

## Answer: d

Watch Video Solution

**93.** If the vectors  $\vec{a}$  and  $\vec{b}$  are perpendicular to each other then a vector  $\vec{v}$  in terms of  $\vec{a}$  and  $\vec{b}$  satisfying the equations  $\vec{v} \cdot \vec{a} = 0$ ,  $\vec{v} \cdot \vec{b} = 1$  and  $\begin{bmatrix} \vec{v} & \vec{a} & \vec{b} \end{bmatrix} = 1$  is

A. 
$$\frac{\vec{b}}{\left|\vec{b}\right|^{2}} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|^{2}}$$
  
B. 
$$\frac{\vec{b}}{\left|\vec{b}\right|} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|^{2}}$$
  
C. 
$$\frac{\vec{b}}{\left|\vec{b}\right|} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|}$$

D. none of these

#### Answer: a

Watch Video Solution

**94.** If  $\vec{a}' = \hat{i} + \hat{j}$ ,  $\vec{b}' = \hat{i} - \hat{j} + 2\hat{k}$  and  $\vec{c}' = 2\hat{i} - \hat{j} - \hat{k}$  then the altitude of the parallelepiped formed by the vectors,  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  having base formed by  $\vec{b}$  and  $\vec{c}$  is ( where  $\vec{a}'$  is recipocal vector  $\vec{a}$ ) (a)1 (b) $3\sqrt{2}/2$  (c) $1/\sqrt{6}$  (d) $1/\sqrt{2}$ 

## A. 1

**B**.  $3\sqrt{2}/2$
C.  $1/\sqrt{6}$ 

D.  $1/\sqrt{2}$ 

## Answer: d

Watch Video Solution

**95.** If 
$$\vec{a} = \hat{i} + \hat{j}$$
,  $\vec{b} = \hat{j} + \hat{k}$ ,  $\vec{c} = \hat{k} + \hat{i}$  then in the reciprocal system of vectors

 $\vec{a}, \vec{b}, \vec{c}$  reciprocal  $\vec{a}$  of vector  $\vec{a}$  is

A. 
$$\frac{\hat{i} + \hat{j} + \hat{k}}{2}$$
  
B. 
$$\frac{\hat{i} - \hat{j} + \hat{k}}{2}$$
  
C. 
$$\frac{-\hat{i} - \hat{j} + \hat{k}}{2}$$
  
D. 
$$\frac{\hat{i} + \hat{j} - \hat{k}}{2}$$

## Answer: d

**96.** If the unit vectors  $\vec{a}$  and  $\vec{b}$  are inclined of an angle  $2\theta$  such that  $\left|\vec{a} - \vec{b}\right| < 1$  and  $0 \le \theta \le \pi$  then  $\theta$  in the interval

A. [0, π/6)

**B**. (5π/6, π]

**C**. [π/6, π/2]

D. (π/2, 5π/6]

#### Answer: a,b

97. 
$$\vec{b}$$
 and  $\vec{c}$  are non- collinear if  
 $\vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b})\vec{b} = (4 - 2x - \sin y)\vec{b} + (x^2 - 1)\vec{c}$  and  $d(\vec{\cdot} \cdot \vec{c})\vec{a} = \vec{a}$  then  
A. x =1  
B. x = -1

C. 
$$y = (4n + 1)\frac{\pi}{2}, n \in I$$
  
D.  $y(2n + 1)\frac{\pi}{2}, n \in I$ 

Answer: a,c



**98.** Let 
$$\vec{a} \cdot \vec{b} = 0$$
 where  $\vec{a}$  and  $\vec{b}$  are unit vectors and the vector  $\vec{c}$  is  
inclined an anlge  $\theta$  to both  
 $\vec{a}$  and  $\vec{b} \cdot If\vec{c} = m\vec{a} + n\vec{b} + p(\vec{a} \times \vec{b}), (m, n, p \in R)$  then  
A.  $\alpha = \beta$   
B.  $\gamma^2 = 1 - 2\alpha^2$   
C.  $\gamma^2 = -\cos 2\theta$   
D.  $\beta^2 = \frac{1 + \cos 2\theta}{2}$ 

Answer: a,b,c,d

**99.**  $\vec{a}$  and  $\vec{b}$  are two given vectors. On these vectors as adjacent sides a parallelogram is constructed. The vector which is the altitude of the parallelogam and which is perpendicular to  $\vec{a}$  is not equal to

A. 
$$\frac{\left(\vec{a}.\vec{b}\right)}{\left|\vec{a}\right|^{2}}\vec{a} - \vec{b}$$
  
B. 
$$\frac{1}{\left|\vec{a}\right|^{2}}\left\{\left|\vec{a}\right|^{2}\vec{b} - \left(\vec{a}.\vec{b}\right)\vec{a}\right\}$$
  
C. 
$$\frac{\vec{a} \times \left(\vec{a} \times \vec{b}\right)}{\left|\vec{a}\right|^{2}}$$
  
D. 
$$\frac{\vec{a} \times \left(\vec{b} \times \vec{a}\right)}{\left|\vec{b}\right|^{2}}$$

#### Answer: a,b,c



**100.** If  $\vec{a} \times (\vec{b} \times \vec{c})$  is perpendicular to  $(\vec{a} \times \vec{b}) \times \vec{c}$ , we may have

A. 
$$(\vec{a}. \vec{c}) |\vec{b}|^2 = (\vec{a}. \vec{b}) (\vec{b}.$$
  
B.  $\vec{a}. \vec{b} = 0$   
C.  $\vec{a}. \vec{c} = 0$   
D.  $\vec{b}. \vec{c} = 0$ 

 $\vec{c}$ 

#### Answer: a,c

Watch Video Solution

**101.** If 
$$\vec{p} = \frac{\vec{b} \times \vec{c}}{\begin{bmatrix}\vec{a} & \vec{b} & \vec{c}\end{bmatrix}}$$
,  $\vec{q} = \frac{\vec{c} \times \vec{a}}{\begin{bmatrix}\vec{a} & \vec{b} & \vec{c}\end{bmatrix}}$ ,  $\vec{r} = \frac{\vec{a} \times \vec{b}}{\begin{bmatrix}\vec{a} & \vec{b} & \vec{b}\end{bmatrix}}$  where  $\vec{a}, \vec{b}, \vec{c}$  are three non-coplanar vectors, then the value of the expression  $(\vec{a} + \vec{b} + \vec{c})$ .  $(\vec{p} + \vec{q} + \vec{r})$  is

# Watch Video Solution

**102.**  $a_1, a_2, a_3 \in \mathbb{R} - \{0\}$  and  $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0$  " for all " x in R then (a) vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = 4\hat{i} + 2\hat{j} + \hat{k}$  are perpendicular to each other (b)vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = \hat{i} + \hat{j} + 2\hat{k}$  are parallel to each each other (c)if vector  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  is of length  $\sqrt{6}$  units, then on of the ordered trippplet  $(a_1, a_2, a_3) = (1, -1, -2)$  (d)if  $2a_1 + 3a_2 + 6a_3 = 26$ , then  $|\vec{a}\hat{i} + a_2\hat{j} + a_3\hat{k}|is2\sqrt{6}$ 

A. vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = 4\hat{i} + 2\hat{j} + \hat{k}$  are perpendicular to

each other

B. vectors  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = \hat{i} + \hat{j} + 2\hat{k}$  are parallel to each

each other

C. if vector  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  is of length  $\sqrt{6}$  units, then on of the ordered trippplet  $(a_1, a_2, a_3) = (1, -1, -2)$ D. if  $2a_1 + 3a_2 + 6a_3 + 6a_3 = 26$ , then  $|\vec{a}\hat{i} + a_2\hat{j} + a_3\hat{k}|is2\sqrt{6}$ 

Answer: a,b,c,d

Watch Video Solution

**103.** If  $\vec{a}$  and b are two vectors and angle between them is  $\theta$ , then

A. 
$$\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} \cdot \vec{b} \right)^2 = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2$$
  
B.  $\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} \cdot \vec{b} \right)^2$ , if  $\theta = \pi/4$   
C.  $\vec{a} \times \vec{b} = \left( \vec{a} \cdot Vecb \right) \hat{n}$  (where  $\hat{n}$  is a normal unit vector ) if  $\theta f = \pi/4$   
D.  $\left( \vec{a} \times \vec{b} \right) \cdot \left( \vec{a} + \vec{b} \right) = 0$ 

#### Answer: a,b,c,d



**104.** Let  $\vec{a}$  and  $\vec{b}$  be two non-zero perpendicular vectors. A vector  $\vec{r}$  satisfying the equation  $\vec{r} \times \vec{b} = \vec{a}$  can be

A. 
$$\vec{b} - \frac{\vec{a} \times \vec{b}}{\left|\vec{b}\right|^2}$$
  
B.  $2\vec{b} - \frac{\vec{a} \times \vec{b}}{\left|\vec{b}\right|^2}$   
C.  $\left|\vec{a}\right|\vec{b} - \frac{\vec{a} \times \vec{b}}{\left|\vec{b}\right|^2}$ 

D. 
$$\left| \vec{b} \right| \vec{b} - \frac{\vec{a} \times \vec{b}}{\left| \vec{b} \right|^2}$$

Answer: a,b,cd,

# Watch Video Solution

**105.** If vector 
$$\vec{b} = (\tan \alpha, -1, 2\sqrt{\sin \alpha/2})$$
 and  $\vec{c} = (\tan \alpha, \tan \alpha, -\frac{3}{\sqrt{\sin \alpha/2}})$  are orthogonal and vector  $\vec{a} = (1, 3, \sin 2\alpha)$  makes an obtuse angle with the z-axis, then the value of  $\alpha$  is  $a \cdot \alpha = (4n + 1)\pi + \tan^{-1}2$   
 $b \cdot \alpha = (4n + 1)\pi - \tan^{-1}2 c \cdot \alpha = (4n + 2)\pi + \tan^{-1}2 d \cdot \alpha = (4n + 2)\pi - \tan^{-1}2$ 

A. 
$$\alpha = (4n + 1)\pi + \tan^{-1}2$$

B.  $\alpha = (4n + 1)\pi - \tan^{-1}2$ 

C. 
$$\alpha = (4n + 2)\pi + \tan^{-1}2$$

D. 
$$\alpha = (4n + 2)\pi - \tan^{-1}2$$

# Answer: b,d



**106.** Let 
$$\vec{r}$$
 be a unit vector satisfying  
 $\vec{r} \times \vec{a} = \vec{b}$ , where  $|\vec{a}| = \sqrt{3}$  and  $|\vec{b}| = \sqrt{2}$ , then  $(a)\vec{r} = \frac{2}{3}(\vec{a} + \vec{a} \times \vec{b})$  (b)  
 $\vec{r} = \frac{1}{3}(\vec{a} + \vec{a} \times \vec{b})(c)\vec{r} = \frac{2}{3}(\vec{a} - \vec{a} \times \vec{b})(d)\vec{r} = \frac{1}{3}(-\vec{a} + \vec{a} \times \vec{b})$   
A.  $\vec{r} = \frac{2}{3}(\vec{a} + \vec{a} \times \vec{b})$   
B.  $\vec{r} = \frac{1}{3}(\vec{a} + \vec{a} \times \vec{b})$   
C.  $\vec{r} = \frac{2}{3}(\vec{a} - \vec{a} \times \vec{b})$   
D.  $\vec{r} = \frac{1}{3}(-\vec{a} + \vec{a} \times \vec{b})$ 

#### Answer: b,d



**107.** If  $\vec{a}$  and  $\vec{b}$  are unequal unit vectors such that  $(\vec{a} - \vec{b}) \times [(\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b})] = \vec{a} + \vec{b}$  then angle  $\theta$  between  $\vec{a}$  and  $\vec{b}$  is

A. 0

**B**. *π*/2

 $C. \pi/4$ 

**D**. *π* 

#### Answer: b,d

Watch Video Solution

**108.** If  $\vec{a}$  and  $\vec{b}$  are two unit vectors perpenicualar to each other and  $\vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})$ , then which of the following is (are) true ?

A. 
$$\lambda_1 = \vec{a} \cdot \vec{c}$$
  
B.  $\lambda_2 = \left| \vec{b} \times \vec{c} \right|$   
C.  $\lambda_3 = \left| \vec{a} \times \vec{b} \right| \times \vec{c} \mid$   
D.  $\lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 \left( \vec{a} \times \vec{b} \right)$ 

Answer: a,d

**109.** If vectors  $\vec{a}$  and  $\vec{b}$  are non collinear then  $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}$  is (A) a unit

vector (B) in the plane of  $\vec{a}$  and  $\vec{b}$  (C) equally inclined to  $\vec{a}$  and  $\vec{b}$  (D) perpendicular to  $\vec{a} \times \vec{b}$ 

A. a unit vector

B. in the plane of  $\vec{a}$  and  $\vec{b}$ 

C. equally inclined to  $\vec{a}$  and  $\vec{b}$ 

D. perpendicular to  $\vec{a} \times \vec{b}$ 

Answer: b,c,d



**110.** If  $\vec{a}$  and  $\vec{b}$  are non - zero vectors such that  $\left| \vec{a} + \vec{b} \right| = \left| \vec{a} - 2\vec{b} \right|$  then

A. 
$$2\vec{a} \cdot \vec{b} = |\vec{b}|^2$$
  
B.  $\vec{a} \cdot \vec{b} = |\vec{b}|^2$   
C. least value of  $\vec{a} \cdot Vecb + \frac{1}{|\vec{b}|^2 + 2}$  is  $\sqrt{2}$   
D. least value of  $\vec{a} \cdot \vec{b} + \frac{1}{|\vec{b}|^2 + 2}$  is  $\sqrt{2} - 1$ 

## Answer: a,d



**111.** Let 
$$\vec{a}\vec{b}$$
 and  $\vec{c}$  be non-zero vectors aned  
 $\vec{V}_1 = \vec{a} \times (\vec{b} \times \vec{c})$  and  $\vec{V}_2 = (\vec{a} \times \vec{b}) \times \vec{c}$ .vectors  $\vec{V}_1$  and  $\vec{V}_2$  are equal.

Then

- A.  $\vec{a}$  and  $\vec{b}$  ar orthogonal
- **B**.  $\vec{a}$  and  $\vec{c}$  are collinear

C.  $\vec{b}$  and  $\vec{c}$  ar orthogonal

D.  $\vec{b} = \lambda (\vec{a} \times \vec{c})$  when  $\lambda$  is a scalar

# Answer: b,d



**112.** Vectors  $\vec{A}$  and  $\vec{B}$  satisfying the vector equation  $\vec{A} + \vec{B} = \vec{a}, \vec{A} \times \vec{B} = \vec{b}$  and  $\vec{A}, \vec{a} = 1$ . where veca and  $\vec{b}$  are given vectosrs, are

A. 
$$\vec{A} = \frac{\left(\vec{a} \times \vec{b}\right) - \vec{a}}{a^2}$$
  
B.  $\vec{B} = \frac{\left(\vec{b} \times \vec{a}\right) + \vec{a}\left(a^2 - 1\right)}{a^2}$   
C.  $\vec{A} = \frac{\left(\vec{a} \times \vec{b}\right) + \vec{a}}{a^2}$   
D.  $\vec{B} = \frac{\left(\vec{b} \times \vec{a}\right) - \vec{a}\left(a^2 - 1\right)}{a^2}$ 

## Answer: b,c,



**113.** A vector  $\vec{d}$  is equally inclined to three vectors  $\vec{a} = \hat{i} - \hat{j} + \hat{k}, \vec{b} = 2\hat{i} + \hat{j}$  and  $\vec{c} = 3\hat{j} - 2\hat{k}$ . Let  $\vec{x}, \vec{y}$  and  $\vec{z}$  be three vectors in the plane of  $\vec{a}, \vec{b}; \vec{b}, \vec{;} \vec{c}, \vec{a}$ , respectively. Then

A.  $\vec{x} \cdot \vec{d} = -1$ B.  $\vec{y} \cdot \vec{d} = 1$ C.  $\vec{z} \cdot \vec{d} = 0$ D.  $\vec{r} \cdot \vec{d} = 0$ , where  $\vec{r} = \lambda \vec{x} + \mu \vec{y} + \delta \vec{z}$ 

#### Answer: c.d



**114.** Vectors perpendicular  $\operatorname{to}\hat{i} - \hat{j} - \hat{k}$  and in the plane of  $\hat{i} + \hat{j} + \hat{k}$  and  $-\hat{i} + \hat{j} + \hat{k}$  are (A)  $\hat{i} + \hat{k}$  (B)  $2\hat{i} + \hat{j} + \hat{k}$  (C)  $3\hat{i} + 2\hat{j} + \hat{k}$  (D)  $-4\hat{i} - 2\hat{j} - 2\hat{k}$ 

A.  $\hat{i} + \hat{k}$ 

B.  $2\hat{i} + \hat{j} + \hat{k}$ C.  $3\hat{i} + 2\hat{j} + \hat{k}$ D.  $-4\hat{i} - 2\hat{j} - 2\hat{k}$ 

#### Answer: b,d

Watch Video Solution

115. If the sides  $\overrightarrow{AB}$  of an equilateral triangle ABC lying in the xy-plane is  $3\hat{i}$ then the side  $\overrightarrow{CB}$  can be (A)  $-\frac{3}{2}(\hat{i}-\sqrt{3})$  (B)  $\frac{3}{2}(\hat{i}-\sqrt{3})$  (C)  $-\frac{3}{2}(\hat{i}+\sqrt{3})$  (D)  $\frac{3}{2}(\hat{i}+\sqrt{3})$ 

A.  $-\frac{3}{2}(\hat{i}-\sqrt{3}\hat{j})$ B.  $-\frac{3}{2}(\hat{i}-\sqrt{3}\hat{j})$ C.  $-\frac{3}{2}(\hat{i}+\sqrt{3}\hat{j})$ D.  $\frac{3}{2}(\hat{i}+\sqrt{3}\hat{j})$ 

Answer: b,d

**116.** Let  $\hat{a}$  be a unit vector and  $\hat{b}$  a non zero vector non parallel to  $\vec{a}$ . Find the angles of the triangle tow sides of which are represented by the vectors.  $\sqrt{3} \left( \hat{\times} \vec{b} \right)$  and  $\vec{b} - \left( \hat{a} \cdot \vec{b} \right) \hat{a}$ 

- A.  $\tan^{-1}\left(\sqrt{3}\right)$ B.  $\tan^{-1}\left(1/\sqrt{3}\right)$
- $C. \cot^{-1}(0)$
- D. tant^(-1)(1)`

#### Answer: a,b,c

# Watch Video Solution

**117.**  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are unimodular and coplanar. A unit vector  $\vec{d}$  is perpendicualt to them,  $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \frac{1}{6}\hat{i} - \frac{1}{3}\hat{j} + \frac{1}{3}\hat{k}$ , and the angle

between  $\vec{a}$  and  $\vec{b}is30^{\circ}$  then  $\vec{c}$  is

A. 
$$(\hat{i} - 2\hat{j} + 2\hat{k})/3$$
  
B.  $(-\hat{i} + 2\hat{j} - 2\hat{k})/3$   
C.  $(-\hat{i} + 2\hat{j} - \hat{k})/3$   
D.  $(-2\hat{i} - 2\hat{j} + \hat{k})/3$ 

Answer: a,b

Watch Video Solution

**118.** If  $\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}$  then  $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} =$ 

A. 
$$2\left(\vec{a} \times \vec{b}\right)$$
  
B.  $6\left(\vec{b} \times \vec{c}\right)$   
C.  $3\left(\vec{c} \times \vec{a}\right)$   
D.  $\vec{0}$ 

## Answer: c,d



**119.** Let  $\vec{a}$  and  $\vec{b}$  be two non-collinear unit vectors. If  $\vec{u} = \vec{a} - (\vec{a}, \vec{b})\vec{b}$  and  $\vec{v} = \vec{a} \times \vec{b}$ , then  $|\vec{v}|$  is

- A. |*ū* |
- $\mathsf{B.}\left|\vec{u}\right| + \left|\vec{u}.\vec{b}\right|$
- C.  $\left| \vec{u} \right| + \left| \vec{u} \cdot \vec{a} \right|$
- D. none of these

## Answer: b,d



**120.** if 
$$\vec{a} \times \vec{b} = \vec{c}$$
,  $\vec{b} \times \vec{c} = \vec{a}$ , where  $\vec{c} \neq \vec{0}$  then (a)  $|\vec{a}| = |\vec{c}|$  (b)  $|\vec{a}| = |\vec{b}|$   
(c)  $|\vec{b}| = 1$  (d)  $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$ 

A.  $|\vec{a}| = |\vec{c}|$ B.  $|\vec{a}| = |\vec{b}|$ C.  $|\vec{b}| = 1$ D.  $|\vec{a}| = \vec{b}| = |\vec{c}| = 1$ 

#### Answer: a,c

Watch Video Solution

**121.** Let  $\vec{a}, \vec{b}$ , and  $\vec{c}$  be three non- coplanar vectors and  $\vec{d}$  be a non-zero, which is perpendicular to  $(\vec{a} + \vec{b} + \vec{c})$ . Now $\vec{d} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2(\vec{c} \times \vec{a})$ . Then A.  $\frac{\vec{d}.(\vec{a} + \vec{c})}{[\vec{a}\vec{b}\vec{c}]} = 2$ B.  $\frac{\vec{d}.(\vec{a} + \vec{c})}{[\vec{a}\vec{b}\vec{c}]} = -2$ C. minimum value of  $x^2 + y^2 i s \pi^2 / 4$  D. minimum value of  $x^2 + y^2 i s 5\pi^2/4$ 

#### Answer: b,d



**122.** If  $\vec{a}, \vec{b}, and \leftrightarrow c$  are three unit vectors such that  $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{1}\vec{b}, then(\vec{b}and\vec{c} \text{ being non-parallel})$  angle between  $\vec{a}and\vec{b}$  is $\pi/3$  b.a n g l eb e t w e e n $\vec{a}and\vec{c}$  is $\pi/3$  c. a. angle between  $\vec{a}and\vec{b}$  is $\pi/2$  d. a. angle between  $\vec{a}and\vec{c}$  is $\pi/2$ 

A. angle between  $\vec{a}$  and  $\vec{b}is\pi/3$ 

B. angle between  $\vec{a}$  and  $\vec{c} i s \pi/3$ 

C. angle between  $\vec{a}$  and  $\vec{b}is\pi/2$ 

D. angle between  $\vec{a}$  and  $\vec{c}is\pi/2$ 

#### Answer: b,c

**123.** If in triangle ABC,  $\overrightarrow{AB} = \frac{\overrightarrow{u}}{|\overrightarrow{u}|} - \frac{\overrightarrow{v}}{|\overrightarrow{v}|}$  and  $\overrightarrow{AC} = \frac{2\overrightarrow{u}}{|\overrightarrow{u}|}$ , where  $|\overrightarrow{u}| \neq |\overrightarrow{v}|$ , then  $(a)1 + \cos 2A + \cos 2B + \cos 2C = 0$  (b)sin $A = \cos C$  (c)projection of AC on BC is equal to BC (d) projection of AB on BC is equal to AB

A.  $1 + \cos 2A + \cos 2B + \cos 2C = 0$ 

 $B. \sin A = \cos C$ 

C. projection of AC on BC is equal to BC

D. projection of AB on BC is equal to AB

#### Answer: a,b,c

Watch Video Solution

**124.** 
$$\begin{bmatrix} \vec{a} \times \vec{b} & \vec{c} \times \vec{d} & \vec{e} \times \vec{f} \end{bmatrix}$$
 is equal to

**125.** The scalars I and m such that  $l\vec{a} + m\vec{b} = \vec{c}$ , where  $\vec{a}, \vec{b}$  and  $\vec{c}$  are given vectors, are equal to

$$A. l = \frac{\left(\vec{c} \times \vec{b}\right). \left(\vec{a} \times \vec{b}\right)}{\left(\vec{a} \times \vec{b}\right)^{2}}$$
$$B. l = \frac{\left(\vec{c} \times \vec{a}\right). \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)}$$
$$C. m = \frac{\left(\vec{c} \times \vec{a}\right). \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)^{2}}$$
$$D. m = \frac{\left(\vec{c} \times \vec{a}\right). \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)^{2}}$$

#### Answer: a,c

Watch Video Solution

**126.** If  $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$ .  $(\vec{a} \times \vec{d}) = 0$  then which of the following may be true ?

A.  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  and  $\vec{d}$  are nenessarily coplanar

B.  $\vec{a}$  lies in the plane of  $\vec{c}$  and  $\vec{d}$ 

C.  $\vec{b}$  lies in the plane of  $\vec{a}$  and  $\vec{d}$ 

D.  $\vec{c}$  lies in the plane of  $\vec{a}$  and  $\vec{d}$ 

#### Answer: b,c,d

Watch Video Solution

**127.** A, B, CandD are four points such that  $\vec{AB} = m(2\hat{i} - 6\hat{j} + 2\hat{k}), \vec{BC} = (\hat{i} - 2\hat{j}) and\vec{CD} = n(-6\hat{i} + 15\hat{j} - 3\hat{k})$  If CD

intersects AB at some point E, then a.  $m \ge 1/2$  b. $n \ge 1/3$  c. m = n d. m < n

A. (a)  $m \ge 1/2$ B. (b)  $n \ge 1/3$ C. (c) m= n D. (d) m < n

## Answer: a,b



**128.** If the vectors  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are non -coplanar and l, m, n are distinct scalars

such that

$$\left[ l\vec{a} + m\vec{b} + n\vec{c} \quad l\vec{b} + m\vec{c} + n\vec{a} \quad l\vec{c} + m\vec{a} + n\vec{b} \right] = 0 \text{ then}$$

A. a)l + m + n = 0

B. b) roots of the equation  $lx^2 + mx + n = 0$  are equal

$$C. c)l^2 + m^2 + n^2 = 0$$

D. d) $l^3 + m^2 + n^3 = 3lmn$ 

### Answer: a,b,d

**129.** Let  $\vec{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$ ,  $\vec{\beta} = b\hat{i} + c\hat{j} + a\hat{k}$  and  $\vec{\gamma} = c\hat{i} + a\hat{j} + b\hat{k}$  be three coplnar vectors with  $a \neq b$ , and  $\vec{v} = \hat{i} + \hat{j} + \hat{k}$ . Then  $\vec{v}$  is perpendicular to

**Α**. α

B.  $\vec{\beta}$ 

C.  $\vec{\gamma}$ 

D. none of these

#### Answer: a,b,c

Watch Video Solution

**130.** if vectors  $\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ ,  $\vec{B} = \hat{i} + \hat{j} + 5\hat{k}$  and  $\vec{C}$  from a left - handed system, then  $\vec{C}$  is

A. a)11 $\hat{i}$  - 6 $\hat{j}$  -  $\hat{k}$ B. b)-11 $\hat{i}$  - 6 $\hat{j}$  -  $\hat{k}$ C. c)-11 $\hat{i}$  - 6 $\hat{j}$  +  $\hat{k}$  D. d)-  $11\hat{i} + 6\hat{j} - \hat{k}$ 

# Answer: b,d

# Watch Video Solution

**131.** If 
$$\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$$
,  $\vec{b} = y\hat{i} + z\hat{j} + x\hat{k}$  and  $\vec{c} = z\hat{i} + x\hat{j} + y\hat{k}$ ,  
then  $\vec{a} \times (\vec{b} \times \vec{c})$  is  
(a)parallel to  $(y - z)\hat{i} + (z - x)\hat{j} + (x - y)\hat{k}$  (b)orthogonal to  $\hat{i} + \hat{j} + \hat{k}$   
(c)orthogonal to  $(y + z)\hat{i} + (z + x)\hat{j} + (x + y)\hat{k}$  (d)orthogonal to  $x\hat{i} + y\hat{j} + z\hat{k}$   
A. parallel to  $(y - z)\hat{i} + (z - x)\hat{j} + (x - y)\hat{k}$   
B. orthogonal to  $\hat{i} + \hat{j} + \hat{k}$   
C. orthogonal to  $(y + z)\hat{i} + (z + x)\hat{j} + (x + y)\hat{k}$   
D. orthogonal to  $x\hat{i} + y\hat{j} + z\hat{k}$ 

Answer: a,b,c,d

**132.** If  $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$  then A.  $(\vec{c} \times \vec{a}) \times \vec{b} = \vec{0}$ B.  $\vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$ C.  $\vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$ D.  $\vec{c} \times \vec{a} \times \vec{b} = \vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$ 

#### Answer: a,c,d

Watch Video Solution

**133.** A vector  $\vec{d}$  is equally inclined to three vectors  $\vec{a} = \hat{i} - \hat{j} + \hat{k}, \vec{b} = 2\hat{i} + \hat{j}$  and  $\vec{c} = 3\hat{j} - 2\hat{k}$ . Let  $\vec{x}, \vec{y}$  and  $\vec{z}$  be three vectors in the plane of  $\vec{a}, \vec{b}; \vec{b}, \vec{;} \vec{c}, \vec{a}$ , respectively. Then

A. (a)  $\vec{z} \cdot \vec{d} = 0$ B. (b)  $\vec{x} \cdot \vec{d} = 1$  C. (c) $\vec{y}$ .  $\vec{d}$  = 32

D. (d)  $\vec{r} \cdot \vec{d} = 0$ , where  $\vec{r} = \lambda \vec{x} + \mu \vec{y} + \gamma \vec{z}$ 

#### Answer: a,d



**134.** A parallelogram is constructed on the vectors  $\vec{a} = 3\vec{\alpha} - \vec{\beta}, \vec{b} = \vec{\alpha} + 3\vec{\beta}.$  If  $|\vec{\alpha}| = |\vec{\beta}| = 2$  and angle between  $\vec{\alpha}$  and  $\vec{\beta}is\frac{\pi}{3}$ 

then the length of a diagonal of the parallelogram is

A.  $4\sqrt{5}$ 

B.  $4\sqrt{3}$ 

C.  $4\sqrt{7}$ 

D. none of these

## Answer: b,c

**1.** (a)Statement 1: Vector  $\vec{c} = -5\hat{i} + 7\hat{j} + 2\hat{k}$  is along the bisector of angle between  $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$  and  $\vec{b} = 8\hat{i} + \hat{j} - 4\hat{k}$ .

Statement 2 :  $\vec{c}$  is equally inclined to  $\vec{a}$  and  $\vec{b}$ .

A. (a) Both the statements are true and statement 2 is the correct explanation for statement 1.

B. (b) Both statements are true but statement 2 is not the correct

explanation for statement 1.

C. (c) Statement 1 is true and Statement 2 is false

D. (d) Statement 1 is false and Statement 2 is true.

Answer: b

**2.** Statement1: A component of vector  $\vec{b} = 4\hat{i} + 2\hat{j} + 3\hat{k}$  in the direction perpendicular to the direction of vector  $\vec{a} = \hat{i} + \hat{j} + \hat{k}i\hat{s}\hat{i} - \hat{j}$ Statement 2: A component of vector in the direction of  $\vec{a} = \hat{i} + \hat{j} + \hat{k}i\hat{s}\hat{2}\hat{i} + 2\hat{j} + 2\hat{k}$ 

A. (a) Both the statements are true and statement 2 is the correct explanation for statement 1.

B. (b) Both statements are true but statement 2 is not the correct explanation for statement 1.

C. (c) Statement 1 is true and Statement 2 is false

D. (d)Statement 1 is false and Statement 2 is true.

#### Answer: c



3. Statement 1: Distance of point D( 1,0,-1) from the plane of points A(

1,-2,0), B (3, 1,2) and C(-1,1,-1) is 
$$\frac{8}{\sqrt{229}}$$

Statement 2: volume of tetrahedron formed by the points A,B, C and D is

 $\sqrt{229}$ 

A. (a) Both the statements are true and statement 2 is the correct

explanation for statement 1.

B. (b) Both statements are true but statement 2 is not the correct

explanation for statement 1.

- C. (c) Statement 1 is true and Statement 2 is false
- D. (d) Statement 1 is false and Statement 2 is true.

#### Answer: d

Watch Video Solution

**4.** Let  $\vec{r}$  be a non - zero vector satisfying  $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$  for given non-zero vectors  $\vec{a}\vec{b}$  and  $\vec{c}$ Statement 1:  $\begin{bmatrix} \vec{a} - \vec{b}\vec{b} - \vec{c}\vec{c} - \vec{a} \end{bmatrix} = 0$ Statement 2:  $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = 0$  A. Both the statements are true and statement 2 is the correct

explanation for statement 1.

B. Both statements are true but statement 2 is not the correct

explanation for statement 1.

- C. Statement 1 is true and Statement 2 is false
- D. Statement 1 is false and Statement 2 is true.

#### Answer: b

Watch Video Solution

5. Statement 1: If  $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ ,  $\vec{b}\hat{i} + b_2\hat{j} + b_3\hat{k}$  and  $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$  are three mutually perpendicular unit vectors then  $a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$ ,  $a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$  and  $a_3\hat{i} + b_3\hat{j} + c_3\hat{k}$  may be mutually perpendicular unit vectors.

Statement 2 : value of determinant and its transpose are the same.

A. Both the statements are true and statement 2 is the correct

explanation for statement 1.

B. Both statements are true but statement 2 is not the correct

explanation for statement 1.

- C. Statement 1 is true and Statement 2 is false
- D. Statement 1 is false and Statement 2 is true.

#### Answer: a

Watch Video Solution

**6.** Statement 1:  $\vec{A} = 2\hat{i} + 3\hat{j} + 6\hat{k}, \vec{B} = \hat{i} + \hat{j} - 2\hat{k}$  and  $\vec{C} = \hat{i} + 2\hat{j} + \hat{k}$  then

 $\begin{vmatrix} \vec{A} \times \left( \vec{A} \times \left( \vec{A} \times \vec{B} \right) \right), \vec{C} \end{vmatrix} = 243 \qquad \text{Statement} \qquad 2:$  $\begin{vmatrix} \vec{A} \times \left( \vec{A} \times \left( \vec{A} \times \vec{B} \right) \right), \vec{C} \end{vmatrix} = \begin{vmatrix} \vec{A} \end{vmatrix}^2 \left| \begin{bmatrix} \vec{A} \vec{B} \vec{C} \end{bmatrix} \end{vmatrix}$ 

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct

explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

#### Answer: d

Watch Video Solution

7. Statement 1:  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  arwe three mutually perpendicular unit vectors and  $\vec{d}$  is a vector such that  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  and  $\vec{d}$  are non- coplanar. If  $\left[\vec{d}\vec{b}\vec{c}\right] = \left[\vec{d}\vec{a}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{a}\right] = 1$ , then  $\vec{d} = \vec{a} + \vec{b} + \vec{c}$ Statement 2:  $\left[\vec{d}\vec{b}\vec{c}\right] = \left[\vec{d}\vec{a}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{a}\right] \Rightarrow \vec{d}$  is equally inclined to  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$ .

A. (a) Both the statements are true and statement 2 is the correct explanation for statement 1.

B. (b) Both statements are true but statement 2 is not the correct

explanation for statement 1.

C. (c) Statement 1 is true and Statement 2 is false

D. (d) Statement 1 is false and Statement 2 is true.

#### Answer: b

Watch Video Solution

**8.** Consider three vectors  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$ 

Statement 1: 
$$\vec{a} \times \vec{b} = \left(\left(\hat{i} \times \vec{a}\right), \vec{b}\right)\hat{i} + \left(\left(\hat{j} \times \vec{a}\right), \vec{b}\right)\hat{j} + \left(\hat{k} \times \vec{a}\right), \vec{b})\hat{k}$$
  
Statement 2:  $\vec{c} = \left(\hat{i}, \vec{c}\right)\hat{i} + \left(\hat{j}, \vec{c}\right)\hat{j} + \left(\hat{k}, \vec{c}\right)\hat{k}$ 

A. (a) Both the statements are true and statement 2 is the correct explanation for statement 1.

B. (b) Both statements are true but statement 2 is not the correct explanation for statement 1.

C. (c) Statement 1 is true and Statement 2 is false

D. (d) Statement 1 is false and Statement 2 is true.

#### Answer: a

# **Watch Video Solution**

**Comprehension Type** 

**1.** Let  $\vec{u}, \vec{v}$  and  $\vec{w}$  be three unit vectors such that  $\vec{u} + \vec{v} + \vec{w} = \vec{a}, \vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}, (\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}, \vec{a}. \vec{u} = 3/2, \vec{a}. \vec{v} = 7/4$  and |Vector  $\vec{u}$  is

A. 
$$\vec{a} - \frac{2}{3}\vec{b} + \vec{c}$$
  
B.  $\vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$   
C.  $2\vec{a} - \vec{b} + \frac{1}{3}\vec{c}$   
D.  $\frac{4}{3}\vec{a} - \vec{b} + \frac{2}{3}\vec{c}$
## Answer: b



| 2.         | Let                           | <i>ū</i> , <i>v</i> | and $\vec{w}$                                  | be             | three                               | unit                         | vectors                    | such                      | that   |
|------------|-------------------------------|---------------------|------------------------------------------------|----------------|-------------------------------------|------------------------------|----------------------------|---------------------------|--------|
| <i>ū</i> + | $\vec{v} + \vec{w} =$         | ā, ū                | $\times \left( \vec{v} \times \vec{w} \right)$ | $) = \vec{b},$ | $\left(\vec{u}\times\vec{v}\right)$ | $\langle \vec{w} = \vec{c},$ | $\vec{a}.  \vec{u} = 3/2,$ | $\vec{a}$ . $\vec{v}$ = 7 | /4 and |
| Vect       | or $\vec{u}$ is               |                     |                                                |                |                                     |                              |                            |                           |        |
| ,          | <b>4.</b> 2 <i>ā</i> - 3      | Ċ                   |                                                |                |                                     |                              |                            |                           |        |
| E          | <b>3</b> . 3 <i>b</i> - 4     | C                   |                                                |                |                                     |                              |                            |                           |        |
| (          | C4 <i>ċ</i>                   |                     |                                                |                |                                     |                              |                            |                           |        |
| [          | <b>D.</b> $\vec{a} + \vec{b}$ | + 2 <i>č</i>        |                                                |                |                                     |                              |                            |                           |        |
|            |                               |                     |                                                |                |                                     |                              |                            |                           |        |

### Answer: c

**3.** Let  $\vec{u}, \vec{v}$  and  $\vec{w}$  be three unit vectors such that  $\vec{u} + \vec{v} + \vec{w} = \vec{a}, \vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}, (\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}, \vec{a}. \vec{u} = 3/2, \vec{a}. \vec{v} = 7/4$  and |Vector  $\vec{u}$  is

A. 
$$\frac{2}{3}(2\vec{c} - \vec{b})$$
  
B.  $\frac{1}{3}(\vec{a} - \vec{b} - \vec{c})$   
C.  $\frac{1}{3}\vec{a} - \frac{2}{3}\vec{b} - 2\vec{c}$   
D.  $\frac{4}{3}(\vec{c} - \vec{b})$ 

#### Answer: d

Watch Video Solution

**4.** Vectors  $\vec{x}, \vec{y}, \vec{z}$  each of magnitude  $\sqrt{2}$  make angles of  $60^0$  with each other. If  $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}, \vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$  and  $\vec{x} \times \vec{y} = \vec{c}$ . Find  $\vec{x}, \vec{y}, \vec{z}$  in terms of  $\vec{a}, \vec{b}, \vec{c}$ .

5. Vectors  $\vec{x}, \vec{y}, \vec{z}$  each of magnitude  $\sqrt{2}$  make angles of  $60^0$  with each other. If  $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}, \vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$  and  $\vec{x} \times \vec{y} = \vec{c}$ . Find  $\vec{x}, \vec{y}, \vec{z}$  in terms of  $\vec{a}, \vec{b}, \vec{c}$ .

## Watch Video Solution

**6.** Vectors  $\vec{x}, \vec{y}, \vec{z}$  each of magnitude  $\sqrt{2}$  make angles of  $60^0$  with each other. If  $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$ ,  $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$  and  $\vec{x} \times \vec{y} = \vec{c}$ , find vecx, vecy, vecz  $\in$  *termsof* veca, vecb and vecc'.

A. 
$$\frac{1}{2} \left[ \left( \vec{a} - \vec{c} \right) \times \vec{c} - \vec{b} + \vec{a} \right]$$
  
B.  $\frac{1}{2} \left[ \left( \vec{a} - \vec{b} \right) \times \vec{c} + \vec{b} - \vec{a} \right]$   
C.  $\frac{1}{2} \left[ \vec{c} \times \left( \vec{a} - \vec{b} \right) + \vec{b} + \vec{a} \right]$ 

D. none of these

#### Answer: b

7. If  $\vec{x} \cdot x\vec{y} = \vec{a}, \vec{y} \times \vec{z} = \vec{b}, \vec{x}. \vec{b} = \gamma, \vec{x}. \vec{y} = 1$  and  $\vec{y}. \vec{z} = 1$  then find x,y,z in

terms of `veca,vecb and gamma.

A. A. 
$$\frac{1}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$
  
B. B. 
$$\frac{\gamma}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} \times \vec{b} - \vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$
  
C. C. 
$$\frac{\gamma}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} \times \vec{b} + \vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$

D. D. none of these

### Answer: b

Watch Video Solution

**8.** Vectors  $\vec{x}, \vec{y}, \vec{z}$  each of magnitude  $\sqrt{2}$  make angles of  $60^0$  with each other. If  $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}, \vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$  and  $\vec{x} \times \vec{y} = \vec{c}$ . Find  $\vec{x}, \vec{y}, \vec{z}$  in terms of  $\vec{a}, \vec{b}, \vec{c}$ .

A. 
$$\frac{\vec{a} \times \vec{b}}{\gamma}$$

B. 
$$\vec{a} + \frac{\vec{a} \times \vec{b}}{\gamma}$$
  
C.  $\vec{a} + \vec{b} + \frac{\vec{a} \times \vec{b}}{\gamma}$ 

#### Answer: a

Watch Video Solution

**9.** If  $\vec{x} \cdot x\vec{y} = \vec{a}, \vec{y} \times \vec{z} = \vec{b}, \vec{x}, \vec{b} = \gamma, \vec{x}, \vec{y} = 1$  and  $\vec{y}, \vec{z} = 1$  then find x,y,z in

terms of `veca,vecb and gamma.

A. 
$$\frac{\gamma}{\left|\vec{a}\times\vec{b}\right|^{2}}\left[\vec{a}+\vec{b}\times\left(\vec{a}\times\vec{b}\right)\right]$$
  
B. 
$$\frac{\gamma}{\left|\vec{a}\times\vec{b}\right|^{2}}\left[\vec{a}+\vec{b}-\vec{a}\times\left(\vec{a}\times\vec{b}\right)\right]$$
  
C. 
$$\frac{\gamma}{\left|\vec{a}\times\vec{b}\right|^{2}}\left[\vec{a}+\vec{b}+\vec{a}\times\left(\vec{a}\times\vec{b}\right)\right]$$

D. none of these

Answer: c

**10.** Given two orthogonal vectors  $\vec{A}$  and  $\vec{B}$  each of length unity. Let  $\vec{P}$  be the vector satisfying the equation  $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$ . then

 $\vec{P}$  is equal to

A. *P* B. −*P* C. 2*B* 

 $\mathsf{D}.\vec{A}$ 

## Answer: b



**11.** Given two orthogonal vectors  $\vec{A}$  and  $\vec{B}$  each of length unity. Let  $\vec{P}$  be

the vector satisfying the equation  $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$ . then

# $\vec{P}$ is equal to

A. 
$$\frac{\vec{A}}{2} + \frac{\vec{A} \times \vec{B}}{2}$$
  
B.  $\frac{\vec{A}}{2} + \frac{\vec{B} \times \vec{A}}{2}$   
C.  $\frac{\vec{A} \times \vec{B}}{2} - \frac{\vec{A}}{2}$   
D.  $\vec{A} \times \vec{B}$ 

#### Answer: B

Watch Video Solution

12. Given two orthogonal vectors  $\vec{A}$  and VecB each of length unity. Let  $\vec{P}$ 

be the vector satisfying the equation  $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$ . then

which of the following statements is false ?

A. vectors  $\vec{P}$ ,  $\vec{A}$  and  $\vec{P} \times \vec{B}$  ar linearly dependent.

B. vectors  $\vec{P}$ ,  $\vec{B}$  and  $\vec{P} \times \vec{B}$  ar linearly independent

C.  $\vec{P}$  is orthogonal to  $\vec{B}$  and has length  $\frac{1}{\sqrt{2}}$ .

D. none of these

Answer: d

Watch Video Solution

**13.** Let 
$$\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$$
,  $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$  and  $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$ . Let  $\vec{a}_1$  be the projection of  $\vec{a}$  on  $\vec{b}$  and  $\vec{a}_2$  be the projection of  $\vec{a}_1$  on  $\vec{c}$ . Then  $\vec{a}_2$  is equal to

A. (a) 
$$\frac{943}{49} \left( 2\hat{i} - 3\hat{j} - 6\hat{k} \right)$$
  
B. (b)  $\frac{943}{49^2} \left( 2\hat{i} - 3\hat{j} - 6\hat{k} \right)$   
C. (c)  $\frac{943}{49} \left( -2\hat{i} + 3\hat{j} + 6\hat{k} \right)$   
D. (d)  $\frac{943}{49^2} \left( -2\hat{i} + 3\hat{j} + 6\hat{k} \right)$ 

## Answer: b

**14.** Let  $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$ ,  $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$  and  $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$ . Let  $\vec{a}_1$  be the projection of  $\vec{a}$  on  $\vec{b}$  and  $\vec{a}_2$  be the projection of  $\vec{a}_1$  on  $\vec{c}$ . Then  $\vec{a}_1$ .  $\vec{b}$  is equal to

A. (a) -41

**B.(b)**-41/7

C. (c) 41

D. (d) 287

#### Answer: a

Watch Video Solution

**15.** Let  $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$ ,  $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$  and  $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$ . Let  $\vec{a}_1$  be the projection of  $\vec{a}$  on  $\vec{b}$  and  $\vec{a}_2$  be the projection of  $\vec{a}_1$  on  $\vec{c}$ . Then  $\vec{a}_2$  is equal to

- A.  $\vec{a}$  and  $vcea_2$  are collinear
- B.  $\vec{a}_1$  and  $\vec{c}$  are collinear
- C.  $\vec{a}m\vec{a}_1$  and  $\vec{b}$  are coplanar
- D.  $\vec{a}$ ,  $\vec{a}_1$  and  $a_2$  are coplanar

#### Answer: c



**16.** Consider a triangular pyramid ABCD the position vectors of whose angular points are A(3, 0, 1), B(-1, 4, 1), C(5, 2, 3) and D(0, -5, 4) Let G be the point of intersection of the medians of the triangle BCD. The length of the vec AG is

A.  $\sqrt{17}$ 

B.  $\sqrt{51}/3$ 

C.  $3/\sqrt{6}$ 

D.  $\sqrt{59}/4$ 

## Answer: b



**17.** Consider a triangular pyramid ABCD the position vectors of whone agular points are A(3, 0, 1), B(-1, 4, 1), C(5, 3, 2) and D(0, -5, 4) Let G be the point of intersection of the medians of the triangle BCT. The length of the perpendicular from the vertex D on the opposite face

A. (a) 24

B. (b)  $8\sqrt{6}$ 

C. (c)  $4\sqrt{6}$ 

D. (d) none of these

Answer: c

**18.** Consider a triangular pyramid ABCD the position vectors of whose agular points are A(3, 0, 1), B(-1, 4, 1), C(5, 3, 2) and D(0, -5, 4) Let G be the point of intersection of the medians of the triangle BCD. The length - of the vector AG is

A.  $14/\sqrt{6}$ B.  $2/\sqrt{6}$ C.  $3/\sqrt{6}$ 

D.  $\sqrt{5}$ 

#### Answer: a

Watch Video Solution

19. Vertices of a parallelogram taken in order are A, (2,-1,4), B (1,0,-1), C (

1,2,3) and D (x,y,z) The distance between the parallel lines AB and CD is

A. (a)  $\sqrt{6}$ 

B. (b)  $3\sqrt{6/5}$ 

C. (c)  $2\sqrt{2}$ 

D. (d) 3

Answer: c

Watch Video Solution

20. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1)C( 1,2,3)

and D.

Distance of the point P (8, 2,-12) from the plane of the parallelogram is

A. 
$$\frac{4\sqrt{6}}{9}$$
  
B. 
$$\frac{32\sqrt{6}}{9}$$
  
C. 
$$\frac{16\sqrt{6}}{9}$$

D. none

Answer: b

21. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1)C( 1,2,3)

and D.

Distance of the point P ( 8, 2,-12) from the plane of the parallelogram is

A. 14, 4,2

B. 2,4,14

C. 4,2,14

D. 2,14,4

## Answer: d

# Watch Video Solution

**22.** Let  $\vec{r}$  is a positive vector of a variable pont in cartesian OXY plane

such that 
$$\vec{r} \cdot \left(10\hat{j} - 8\hat{i} - \vec{r}\right) = 40$$
 and

 $p_1 = \max\left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}, p_2 = \min\left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}.$  A tangent line is drawn to the curve  $y = \frac{8}{x^2}$  at the point A with abscissa 2. The drawn line cuts x-axis at a point B

A. (a) 9 B. (b)  $2\sqrt{2} - 1$ C. (c)  $6\sqrt{6} + 3$ D. (d) 9 -  $4\sqrt{2}$ 

#### Answer: d

Watch Video Solution

23. Let  $\vec{r}$  is a positive vector of a variable pont in cartesian OXY plane

such that 
$$\vec{r} \cdot (10\hat{j} - 8\hat{i} - \vec{r}) = 40$$
 and

$$p_1 = \max\left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}, p_2 = \min\left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}.$$
 Then  $p_1 + p_2$  is

equal to

| A | • | 2 |
|---|---|---|
|   |   |   |

B. 10

C. 18

D. 5

#### Answer: c

**Watch Video Solution** 

**24.** Let  $\vec{r}$  is a positive vector of a variable pont in cartesian OXY plane

such that 
$$\vec{r} \cdot \left(10\hat{j} - 8\hat{i} - \vec{r}\right) = 40$$
 and

$$p_1 = \max\left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}, p_2 = \min\left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}.$$
 Then  $p_1 + p_2$  is

equal to

A. 1

B. 2

C. 3

#### Answer: c

## Watch Video Solution

**25.** Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector  $\vec{a}$ . The vector of the faces containing vertices A, B, C and A, B, D are  $\vec{b}$  and  $\vec{c}$ , respectively, i.e.  $\overrightarrow{AB} \times \overrightarrow{AC} = \vec{b}$  and  $\overrightarrow{AD} \times \overrightarrow{AB} = \vec{c}$  the projection of each edge AB and AC on diagonal vector  $\vec{a}is\frac{|\vec{a}|}{3}$  vector  $\overrightarrow{AB}$  is

A. 
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$
  
B.  $\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$   
C.  $\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} - \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$ 

#### Answer: a

## Watch Video Solution

**26.** Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector  $\vec{a}$ . The vector of the faces containing vertices A, B, C and A, B, D are  $\vec{b}$  and  $\vec{c}$ , respectively , i.e.  $\overrightarrow{AB} \times \overrightarrow{AC}$  and  $\overrightarrow{AD} \times \overrightarrow{AB} = \vec{c}$  the projection of each edge AB and AC on diagonal vector  $\vec{a}$  is  $\frac{|\vec{a}|}{3}$  vector  $\overrightarrow{AD}$  is

A. 
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$
  
B. 
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$
  
C. 
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} - \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$

#### Answer: C

## Watch Video Solution

**27.** Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector  $\vec{a}$ . The vector of the faces containing vertices A, B, C and A, B, D are  $\vec{b}$  and  $\vec{c}$ , respectively, i.e.  $\overrightarrow{AB} \times \overrightarrow{AC} = \vec{b}$  and  $\overrightarrow{AD} \times \overrightarrow{AB} = \vec{c}$  the projection of each edge AB and AC on diagonal vector  $\vec{a}$  is  $\frac{|\vec{a}|}{3}$  vector  $\overrightarrow{AB}$  is

A. 
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$
  
B.  $\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$   
C.  $\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} - \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$ 

## Answer: A





**5.** Given two vectors 
$$\vec{a} = -\hat{i} + 2\hat{j} + 2\hat{k}$$
 and  $\vec{b} = -2\hat{i} + \hat{j} + 2\hat{k}$ 

find  $\left| \vec{a} \times \vec{b} \right|$ 

# Watch Video Solution

6.
View Text Solution

7. Volume of parallelpiped formed by vectors  $\vec{a} \times \vec{b}$ ,  $\vec{b} \times \vec{c}$  and  $\vec{c} \times \vec{a}$  is 36

# sq. units.

| Watch Video Solution |
|----------------------|
|                      |
| 8. 📄                 |
| View Text Solution   |
|                      |
| 9. 📄                 |
| View Text Solution   |
|                      |
| 10. 📄                |
| View Text Solution   |

**1.** If  $\vec{a}$  and  $\vec{b}$  are any two unit vectors, then find the greatest postive

integer in the range of 
$$\frac{3\left|\vec{a}+\vec{b}\right|}{2}+2\left|\vec{a}-\vec{b}\right|$$

Watch Video Solution

**2.** Let  $\vec{u}$  be a vector on rectangular coordinate system with sloping angle 60° suppose that  $|\vec{u} - \hat{i}|$  is geomtric mean of  $|\vec{u}|$  and  $|\vec{u} - 2\hat{i}|$ , where  $\hat{i}$  is the unit vector along the x-axis. Then find the value of  $\frac{\sqrt{2} - 1}{|\vec{u}|}$ 

Watch Video Solution

**3.** Find the absolute value of parameter t for which the area of the triangle whose vertices the A(-1, 1, 2); B(1, 2, 3) and C(t, 1, 1) is minimum.

**4.** If 
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
,  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ ,  $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$  and

$$\begin{bmatrix} 3\vec{a} + \vec{b} & 3\vec{b} + \vec{c} & 3\vec{c} + \vec{a} \end{bmatrix} = \lambda \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 then find the value of  $\frac{\lambda}{4}$ 

Watch Video Solution

**5.** Let 
$$\vec{a} = \alpha \hat{i} + 2\hat{j} - 3\hat{k}$$
,  $\vec{b} = \hat{i} + 2\alpha \hat{j} - 2\hat{k}$  and  $\vec{c} = 2\hat{i} - \alpha \hat{j} + \hat{k}$ . Find the value of  $6\alpha$ . Such that  $\left\{ \left( \vec{a} \times \vec{b} \right) \times \left( \vec{b} \times \vec{c} \right) \right\} \times \left( \vec{c} \times \vec{a} \right) = 0$ 

### Watch Video Solution

**6.** If  $\vec{x}, \vec{y}$  are two non-zero and non-collinear vectors satisfying  $\left[(a-2)\alpha^2 + (b-3)\alpha + c\right]\vec{x} + \left[(a-2)\beta^2 + (b-3)\beta + c\right]\vec{y} + \left[(a-2)\gamma^2 + (b-3)\gamma + c\right]\vec{y}$ are three distinct real numbers, then find the value of  $\left(a^2 + b^2 + c^2 - 4\right)^{\cdot}$ 

7. Let  $\vec{u}$  and  $\vec{v}$  be unit vectors such that  $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$  and  $\vec{w} \times \vec{u} = \vec{v}$ .

Find the value of  $\begin{bmatrix} \vec{u} \, \vec{v} \, \vec{w} \end{bmatrix}$ 

## Watch Video Solution

**8.** The volume of the tetrahedron whose vertices are the points with positon vectors  $\hat{i} - 6\hat{j} + 10\hat{k}$ ,  $-\hat{i} - 3\hat{j} + 7\hat{k}$ ,  $5\hat{i} - \hat{j} + \lambda\hat{k}$  and  $7\hat{i} - 4\hat{j} + 7\hat{k}$  is 11 cubic units if the value of  $\lambda$  is

Watch Video Solution

9. Given that  

$$\vec{u} = \hat{i} + 2\hat{j} + 3\hat{k}, \vec{v} = 2\hat{i} + \hat{k} + 4\hat{k}, \vec{w} = \hat{i} + 3\hat{j} + 3\hat{k} \text{ and } (\vec{u} \cdot \vec{R} - 15)\hat{i} + (\vec{c} \cdot \vec{R} - 30)\hat{j}$$
.  
Then find the greatest integer less than or equal to  $|\vec{R}|$ .

**10.** Let a three-dimensional vector  $\vec{V}$  satisfy the condition ,  $2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j}) = 2\hat{i} + \hat{k}$ . If  $3\left|\vec{V}\right| = \sqrt{m}$ . Then find the value of m.

## Watch Video Solution

**11.** If  $\vec{a}, \vec{b}, \vec{c}$  are unit vectors such that  $\vec{a}. \vec{b} = 0 = \vec{a}. \vec{c}$  and the angle between  $\vec{b}$  and  $\vec{c}is\frac{\pi}{3}$ , then find the value of  $\left|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}\right|$ 

Watch Video Solution

**12.** Let  $\vec{O}A = \vec{a}, \vec{O}B = 10\vec{a} + 2\vec{b}and\vec{O}C = \vec{b}$ , where O, Aand C are noncollinear points. Let p denotes the area of quadrilateral OACB, and let qdenote the area of parallelogram with OAandOC as adjacent sides. If p = kq, then find  $\vec{k}$ 



**13.** Find the work done by the force  $F = 3\hat{i} - \hat{j} - 2\hat{k}$  acting on a particle such

that the particle is displaced from point A(-3, -4, 1)topointB(-1, -1, -2)

Watch Video Solution

**14.** If  $\vec{a}$  and  $\vec{b}$  are vectors in space given by  $\vec{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}$  and  $\vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$ then find the value of  $(2\vec{a} + \vec{b})$ .  $[(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})]$ 

Watch Video Solution

**15.** Let  $\vec{a} = -\hat{i} - \hat{k}$ ,  $\vec{b} = -\hat{i} + \hat{j}$  and  $\vec{c} = i + 2\hat{j} + 3\hat{k}$  be three given vectors. If  $\vec{r}$  is a vector such that  $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$  and  $\vec{r} \cdot \vec{a} = 0$  then find the value of  $\vec{r} \cdot \vec{b}$ .



**17.** Let  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  be three non coplanar unit vectors such that the angle between every pair of them is  $\frac{\pi}{3}$ . If  $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p\vec{a} + q\vec{b} + r\vec{c}$  where p,q,r are scalars then the value of  $\frac{p^2 + 2q^2 + r^2}{q^2}$  is

Watch Video Solution

#### **Subjective Type**

**1.** From a point *O* inside a triangle *ABC*, perpendiculars *OD*, *OEandOf* are drawn to rthe sides *BC*, *CAandAB*, respectively. Prove that the perpendiculars from *A*, *B*, *andC* to the sides *EF*, *FDandDE* are concurrent.

**2.**  $A_1, A_2, \dots, A_n$  are the vertices of a regular plane polygon with n sides

and O ars its centre. Show that 
$$\sum_{i=1}^{n-1} \left( \overrightarrow{OA_i} \times \overrightarrow{OA_{i+1}} \right) = (n-1) \left( \overrightarrow{OA_1} \times \overrightarrow{OA_2} \right)$$



**3.** If c is a given non - zero scalar, and  $\vec{A}$  and  $\vec{B}$  are given non-zero , vectors such that  $\vec{A} \perp \vec{B}$ . Then find vector,  $\vec{X}$  which satisfies the equations  $\vec{A}$ .  $\vec{X} = c$  and  $\vec{A} \times \vec{X} = \vec{B}$ .

Watch Video Solution

**4.** *A*, *B*, *CandD* are any four points in the space, then prove that  $\left| \vec{AB} \times \vec{CD} + \vec{BC} \times \vec{AD} + \vec{CA} \times \vec{BD} \right| = 4$  (area of *ABC*.)

**5.** If the vectors  $\vec{a}, \vec{b}$ , and  $\vec{c}$  are coplanar show that

 $\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \end{vmatrix} = 0$  $\begin{vmatrix} \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \end{vmatrix}$ 

Watch Video Solution

**6.** 
$$\vec{A} = (2\vec{i} + \vec{k}), \vec{B} = (\vec{i} + \vec{j} + \vec{k})$$
 and  $\vec{C} = 4\vec{i} - \vec{3}j + 7\vec{k}$  determine a  $\vec{R}$ 

satisfying  $\vec{R} \times \vec{B} = \vec{C} \times \vec{B}$  and  $\vec{R} \cdot \vec{A} = 0$ 

## Watch Video Solution

7. Determine the value of c so that for the real x, vectors cx  $\hat{i} - 6\hat{j} - 3\hat{k}$  and  $x\hat{i} + 2\hat{j} + 2cx\hat{k}$  make an obtuse angle with each other.

**8.** If vectors,  $\vec{b}$ ,  $\vec{c}$  and  $\vec{d}$  are not coplanar, the prove that vector  $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) + (\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c})$  is parallel to  $\vec{a}$ .

## Watch Video Solution

**9.** The position vectors of the vertices A, B and C of a tetrahedron ABCD are  $\hat{i} + \hat{j} + \hat{k}$ ,  $\hat{k}$ ,  $\hat{i}$  and  $\hat{3}i$ ,respectively. The altitude from vertex D to the opposite face ABC meets the median line through Aof triangle ABC at a point E. If the length of the side AD is 4 and the volume of the tetrahedron is $2\sqrt{2}/3$ , find the position vectors of the point E for all its possible positions

## Watch Video Solution

**10.** Let a , b and c be non-coplanar unit vectors equally inclined to one another at an acute angle  $\theta$  then [ a b c ] in terms of  $\theta$  is equal to :

**11.** If  $\vec{A}, \vec{B}$  and  $\vec{C}$  are vectors such that  $|\vec{B}| = |\vec{C}|$  prove that  $\left[\left(\vec{A} + \vec{B}\right) \times \left(\vec{A} + \vec{C}\right)\right] \times \left(\vec{B} + \vec{C}\right)$ .  $\left(\vec{B} + \vec{C}\right) = 0$ 

Watch Video Solution

**12.** For any two vectors 
$$\vec{u}$$
 and  $\vec{v}$  prove that  
 $\left(1 + |\vec{u}|^2\right)\left(1 + |\vec{v}|^2\right) = \left(1 - \vec{u} \cdot \vec{v}\right)^2 + |\vec{u} + \vec{v} + (\vec{u} \times \vec{v})|^2$ 

Watch Video Solution

**13.** Let  $\vec{u}$  and  $\vec{v}$  be unit vectors. If  $\vec{w}$  is a vector such that  $\vec{w} + \vec{w} \times \vec{u} = \vec{v}$ , then prove that  $|(\vec{u} \times \vec{v}), \vec{w}| \le \frac{1}{2}$  and that the equality holds if and only if  $\vec{u}$  is perpendicular to  $\vec{v}$ .



**16.**  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  are three nono-coplanar unit vectors and  $\alpha$ ,  $\beta$  and  $\gamma$  are the angles between  $\vec{u}$  and  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  and  $\vec{w}$  and  $\vec{u}$ , respectively and  $\vec{x}$ ,  $\vec{y}$  and  $\vec{z}$  are unit vectors along the bisectors of the angles  $\alpha$ ,  $\beta$  and  $\gamma$ . respectively, prove that  $\left[\vec{x} \times \vec{y}\vec{y} \times \vec{z}\vec{z} \times \vec{x}\right] = \frac{1}{16} \left[\vec{u}\vec{v}\vec{w}\right]^2 \frac{\sec^2\alpha}{2} \frac{\sec^2\beta}{2} \frac{\sec^2\gamma}{2}$ .

**17.** If  $\vec{a}, \vec{b}, \vec{c}$  and  $\vec{d}$  ar distinct vectors such that  $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$  and  $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ . Prove that  $(\vec{a} - \vec{d}). (\vec{c} - \vec{b}) \neq 0, i. e., \vec{a}. \vec{b} + \vec{d}. \vec{c} \neq \vec{d}. \vec{b} + \vec{a}. \vec{c}$ . Watch Video Solution

**18.**  $P_1ndP_2$  are planes passing through origin  $L_1andL_2$  are two lines on  $P_1andP_2$ , respectively, such that their intersection is the origin. Show that there exist points A, BandC, whose permutation A', B'andC', respectively, can be chosen such that A is on  $L_1$ ,  $BonP_1$  but not on  $L_1andC$  not on  $P_1$ ; A' is on  $L_2$ ,  $B'onP_2$  but not on  $L_2andC'$  not on  $P_2$ 

# Watch Video Solution

19. about to only mathematics

**1.** Let  $\vec{A}$ ,  $\vec{B}$  and  $\vec{C}$  be vectors of legth , 3,4and 5 respectively. Let  $\vec{A}$  be perpendicular to  $\vec{B} + \vec{C}$ ,  $\vec{B}$  to  $\vec{C} + \vec{A}$  and  $\vec{C}$  to $\vec{A} + \vec{B}$  then the length of vector  $\vec{A} + \vec{B} + \vec{C}$  is \_\_\_\_\_.

Watch Video Solution

**2.** The unit vector perendicular to the plane determined by P(1, -1, 2), Q(2, 0, -1) and R(0, 2, 1).

Watch Video Solution

3. The area of the triangle whose vertices are

A(1, -1, 2), B(2, 1 - 1)C(3, -1, 2) is .....

**4.** If  $\vec{A}$ ,  $\vec{B}$ ,  $\vec{C}$  are non-coplanar vectors then  $\frac{\vec{A} \cdot \vec{B} \times \vec{C}}{\vec{C} \times \vec{A} \cdot \vec{B}} + \frac{\vec{B} \cdot \vec{A} \times \vec{C}}{\vec{C} \cdot \vec{A} \times \vec{B}} =$ 



**5.** If  $\vec{A} = (1, 1, 1)$  and  $\vec{C} = (0, 1, -1)$  are given vectors then find a vector  $\vec{B}$  satisfying equations  $\vec{A} \times \vec{B} = \vec{C}$  and  $\vec{A}, \vec{B} = 3$ 

Watch Video Solution

**6.** Let  $\vec{b} = 4\hat{i} + 3\hat{j}$  and  $\vec{c}$  be two vectors perpendicular to each other in the xy-plane. Find all vetors in te same plane having projection 1 and 2 along  $\vec{b}$  and  $\vec{c}$  respectively.


**9.** A non vector  $\vec{a}$  is parallel to the line of intersection of the plane determined by the vectors  $\vec{i}$ ,  $\vec{i} + \vec{j}$  and thepane determined by the vectors  $\vec{i} - \vec{j}$ ,  $\vec{i} + \vec{k}$  then angle between  $\vec{a}$  and  $\vec{i} - 2\vec{j} + 2\vec{k}$  is = (A)  $\frac{\pi}{2}$  (B)  $\frac{\pi}{3}$  (C)  $\frac{\pi}{6}$  (D)  $\frac{\pi}{4}$ 

**10.** If  $\vec{b}$  and  $\vec{c}$  are any two mutually perpendicular unit vectors and  $\vec{a}$  is

any vector, then 
$$(\vec{a}.\vec{b})\vec{b} + (\vec{a}.\vec{c})\vec{c} + \frac{\vec{a}.(\vec{b}\times\vec{c})}{|\vec{b}\times\vec{c}|^2}(\vec{b}\times\vec{c}) = (A) \ O(B) \ \vec{a}(C)$$

veca /2(D)2veca`

Watch Video Solution

**11.** Let  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  be three vectors having magnitudes 1,1 and 2 resectively.

If  $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = \vec{0}$  then the acute angel between  $\vec{a}$  and  $\vec{c}$  is

# Watch Video Solution

12. A, B C and D are four points in a plane with position vectors,

$$\vec{a}, \vec{b}\vec{c}$$
 and  $\vec{d}$  respectively, such that  
 $\left(\vec{a}-\vec{d}\right), \left(\vec{b}-\vec{c}\right) = \left(\vec{b}-\vec{d}\right), \left(\vec{c}-\vec{a}\right) = 0$  then point D is the \_\_\_\_\_ of

triangle ABC.

**13.** If 
$$\vec{A} = \lambda (\vec{u} \times \vec{v}) + \mu (\vec{v} \times \vec{w}) + v (\vec{w} \times \vec{u})$$
 and  $[\vec{u}\vec{v}\vec{w}] = \frac{1}{5} then\lambda + \mu + v =$ 

(A) 5 (B) 10 (C) 15 (D) none of these

# Watch Video Solution

**1.** Let  $\vec{A}$ ,  $\vec{B}$  and  $\vec{C}$  be unit vectors such that  $\vec{A}$ .  $\vec{B} = \vec{A}$ .  $\vec{C} = 0$  and the angle between  $\vec{B}$  and  $\vec{C}$  be $\pi/3$ . Then  $\vec{A} = \pm 2(\vec{B} \times \vec{C})$ .

### Watch Video Solution

True And False



**2.** Show that  $|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$  is perpendicular to  $|\vec{a}|\vec{b} - |\vec{b}|\vec{a}$  for any two non zero vectors `veca and vecb.



**3.** If the vertices A,B,C of a triangle ABC are (1,2,3),(-1,0,0),(0,1,2), respectively, then find  $\angle ABC$ .

Watch Video Solution

**4.** If  $|\vec{a}| = 3$ ,  $|\vec{b}| = 4$  and the angle between  $\vec{a}$  and  $\vec{b}is120^\circ$ . Then find the value of  $|4\vec{a} + 3\vec{b}|$ 

### Watch Video Solution

5. If vectors  $\hat{i} - 2x\hat{j} - 3y\hat{k}$  and  $\hat{i} + 3x\hat{j} + 2y\hat{k}$  are orthogonal to each other,

then find the locus of th point (x,y).

**6.** Let  $\vec{a}\vec{b}$  and  $\vec{c}$  be pairwise mutually perpendicular vectors, such that

$$\left|\vec{a}\right| = 1, \left|\vec{b}\right| = 2, \left|\vec{c}\right| = 2, \text{ the find the length of } \vec{a} + \vec{b} + \vec{c}$$

Watch Video Solution

**7.** If 
$$\vec{a} + \vec{b} + \vec{c} = 0$$
,  $|\vec{a}| = 3$ ,  $|\vec{b}| = 5$ ,  $|\vec{c}| = 7$ , then find the angle between

 $\vec{a}$  and  $\vec{b}$ .

# Watch Video Solution

**8.** If the angle between unit vectors  $\vec{a}$  and  $\vec{b}is60^\circ$  . Then find the value of

$$\left| \vec{a} - \vec{b} \right|.$$

**9.** Let  $\vec{u} = \hat{i} + \hat{j}$ ,  $\vec{v} = \hat{i} - \hat{j}$  and  $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$ . If  $\hat{n}$  is a unit vector such that  $\vec{u} \cdot \hat{n} = 0$  and  $\vec{v} \cdot \hat{n} = 0$ ,  $|\vec{w} \cdot \hat{n}|$  is equal to (A) 0 (B) 1 (C) 2 (D) 3

## Watch Video Solution



Watch Video Solution

**11.** P(1, 0, -1), Q(2, 0, -3), R(-1, 2, 0) and S(3, -2, -1), then find the

projection length of  $\vec{P}Q$  and  $\vec{R}S$ 

## Watch Video Solution

**12.** If the vectors  $3\vec{P} + \vec{q}$ ,  $5\vec{P} - 3\vec{q}$  and  $2\vec{p} + \vec{q}$ ,  $4\vec{p} - 2\vec{q}$  are pairs of mutually

perpendicular vectors, the find the angle between vectors  $\vec{p}$  and  $\vec{q}$ .

**13.** Let  $\vec{A}$  and  $\vec{B}$  be two non-parallel unit vectors in a plane. If  $\left(\alpha \vec{A} + \vec{B}\right)$  bisets the internal angle between  $\vec{A}$  and  $\vec{B}$  then find the value of  $\alpha$ .

Watch Video Solution

**14.** Let  $\vec{a}, \vec{b}$  and  $\vec{c}$  be unit vectors such that  $\vec{a} + \vec{b} + \vec{c} = \vec{x}, \vec{a}. \vec{x} = 1, \vec{b}. \vec{x} = \frac{3}{2}, |\vec{x}| = 2$  then find theh angle between  $\vec{c}$  and  $\vec{x}$ .

Watch Video Solution

**15.** If  $\vec{a}$  and  $\vec{b}$  are unit vectors, then find the greatest value of  $\left|\vec{a} + \vec{b}\right| + \left|\vec{a} - \vec{b}\right|$ .

**16.** Constant forces  $P_1 = \hat{i} - \hat{j} + \hat{k}$ ,  $P_2 = -\hat{i} + 2\hat{j} - \hat{i}k$  and  $P_3 = \hat{j} - \hat{k}$  act on a particle at a point A. Determine the work done when particle is displaced from position  $A(4\hat{i} - 3\hat{j} - 2\hat{k})$  to  $B(6\hat{i} + \hat{j} - 3\hat{k})$ 

Watch Video Solution

**17.** If 
$$\left| \vec{a} \right| = 5$$
,  $\left| \vec{a} - \vec{b} \right| = 8$  and  $\left| \vec{a} + \vec{b} \right| = 10$  then find  $\left| \vec{b} \right|$ 

Watch Video Solution

**18.** If *A*, *B*, *C*, *D* are four distinct point in space such that *AB* is not perpendicular to *CD* and satisfies .  $\vec{ABCD} = k \left( \left| \vec{AD} \right|^2 + \left| \vec{BC} \right|^2 - \left| \vec{AC} \right|^2 = \left| \vec{BD} \right|^2 \right)$ , then find the value of *k* 

Watch Video Solution

Exercise 2 2

**1.** If 
$$\vec{a} = 2\hat{i} + 3\hat{j} - 5\hat{k}$$
,  $\vec{b} = m\hat{i} + n\hat{j} + 12\hat{k}$  and  $\vec{a} \times \vec{b} = \vec{0}$  then find (m,n)

### Watch Video Solution

**2.** If  $|\vec{a}| = 2$ ,  $|\vec{b}| = 5$  and  $|\vec{a} \times \vec{b}| = 8$  then find the value of  $\vec{a} \cdot \vec{b}$ 

Watch Video Solution

**3.** If  $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0$  where  $\vec{a}, \vec{b}$  and  $\vec{c}$  are coplanar vectors, then for

some scalar k prove that  $\vec{a} + \vec{c} = k\vec{b}$ .

Watch Video Solution

**4.** If  $\vec{a} = 2\vec{j} + 3\vec{j} - \vec{k}$ ,  $\vec{b} = -\vec{i} + 2\vec{j} - 4\vec{k}$  and  $\vec{c} = \vec{i} + \vec{j} + \vec{k}$ , then find the value of  $(\vec{a} \times \vec{b})$ .  $(\vec{a} \times \vec{c})$ 

**5.** find the vector  $\vec{c}$ ,  $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$  and  $\vec{b} = \hat{j}$  are such that  $\vec{a}$ ,  $\vec{c}$  and  $\vec{b}$ 

form a right -handed system, then find  $\vec{c}$ .



**6.** given that  $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ ,  $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$  and  $\vec{a}$  is not a zero vector. Show

that  $\vec{b} = \vec{c}$ .

Watch Video Solution

7. Show that 
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2\vec{a} \times \vec{b}$$
 and give a geometrical

interpretation of it.

## Watch Video Solution

**8.** If  $\vec{x}$  and  $\vec{y}$  are unit vectors and  $|\vec{z}| = \frac{2}{\sqrt{7}}$  such that  $\vec{z} + \vec{z} \times \vec{x} = \vec{y}$  then

find the angle  $\theta$  between  $\vec{x}$  and  $\vec{z}$ 

**9.** Prove that 
$$(\vec{a}, \hat{i})(\vec{a} \times \hat{i}) + (\vec{a}, \hat{j})(\vec{a} \times \hat{j}) + (\vec{a}, \hat{k})(\vec{a} \times \hat{k}) = \vec{0}$$

Watch Video Solution

**10.** Let a,b,c be three non-zero vectors such that a + b + c = 0, then  $\lambda b \times a + b \times c + c \times a = 0$ , where  $\lambda$  is

Watch Video Solution

**11.** A particle has an angular speed of 3 rad/s and the axis of rotation passes through the points (1, 1, 2) and (1, 2, -2) Find the velocity of the particle at point P(3, 6, 4)

**12.** Let  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  be unit vectors such that  $\vec{a}$ .  $\vec{b} = 0 = \vec{a}$ .  $\vec{c}$ . It the angle between  $\vec{b}$  and  $\vec{c}is\frac{\pi}{6}$  then find  $\vec{a}$ .

## Watch Video Solution

**13.** if 
$$(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 144$$
 and  $|\vec{a}| = 4$  the find the value of  $|\vec{b}|$ 

Watch Video Solution

**14.** Given 
$$|\vec{a}| = |\vec{b}| = 1$$
 and  $|\vec{a} + \vec{b}| = \sqrt{3}$  if  $\vec{c}$  is a vector such that  $\vec{c} - \vec{a} - 2\vec{b} = 3(\vec{a} \times \vec{b})$  then find the value of  $\vec{c} \cdot \vec{b}$ .

## Watch Video Solution

**15.** Find the moment of  $\vec{F}$  about point (2, -1, 3), where force  $\vec{F} = 3\hat{i} + 2\hat{j} - 4\hat{k}$ 

is acting on point (1, -1, 2).

**1.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  and  $\vec{d}$  are four non-coplanar unit vectors such that  $\vec{d}$  makes equal angles with all the three vectors  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  then prove that  $\left[\vec{d}\vec{a}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{a}\right]$ 

Watch Video Solution

2. If  $\vec{l}, \vec{m}, \vec{n}$  are three non coplanar vectors prove that  $\left[ \overrightarrow{} \text{ vecm vecn} \right]$ (vecaxxvecb) =|(vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm), (vecn.veca, vecn.vecb, vecn)]` Watch Video Solution **3.** if the volume of a parallelpiped whose adjacent egges are  $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \vec{b} = \hat{i} + \alpha\hat{j} + 2\hat{k}, \vec{c} = \vec{i} + 2\hat{j} + \alpha\hat{k}$  is 15 then find of  $\alpha$  if ( $\alpha > 0$ )

## Watch Video Solution

**4.** If 
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
 and  $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$  then find the vector  $\vec{c}$  such that

$$\vec{a}$$
.  $\vec{c} = 2$  and  $\vec{a} \times \vec{c} = \vec{b}$ .

Watch Video Solution

**5.** If  $\vec{x}$ . Veca = 0,  $\vec{x}$ . Vecb = 0 and  $\vec{x}$ .  $\vec{c}$  = 0 for some non-zero vector  $\vec{x}$ .

Then prove that  $\left[\vec{a}\vec{b}\vec{c}\right] = 0$ 

**6.** If  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$  and  $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$  then find the vector  $\vec{c}$  such that  $\vec{a} \cdot \vec{c} = 2$  and  $\vec{a} \times \vec{c} = \vec{b}$ .

## Watch Video Solution

**7.** If  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are three vectors such that  $\vec{a} \times \vec{b} = \vec{c}$ ,  $\vec{b} \times \vec{c} = \vec{a}$ ,  $\vec{c} \times \vec{a} = \vec{b}$ 

then prove that  $\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right|$ 

Watch Video Solution

**8.** If 
$$\vec{a} = \vec{P} + \vec{q}$$
,  $\vec{P} \times \vec{b} = \vec{0}$  and  $\vec{q}$ .  $\vec{b} = 0$  then prove that  $\frac{\vec{b} \times (\vec{a} \times \vec{b})}{\vec{b}} = \vec{q}$ 

### Watch Video Solution

**9.** Prove that  $(\vec{a}.(\vec{b}\times\hat{i}))\hat{i}+(\vec{a}.(\vec{b}\times\hat{j}))\hat{j}+(\vec{a}.(\vec{b}\times\hat{k}))\hat{k}=\vec{a}\times\vec{b}$ 

**10.** for any four vectors  $\vec{a}, \vec{b}, \vec{c}$  and  $\vec{d}$  prove that  $\vec{d}. (\vec{a} \times (\vec{b} \times (\vec{c} \times \vec{d}))) = (\vec{b}. \vec{d}) [\vec{a} \vec{c} \vec{d}]$ 

## Watch Video Solution

**11.** If 
$$\vec{a}$$
 and  $\vec{b}$  be two non-collinear unit vectors such that  $\vec{a} \times (\vec{a} \times \vec{b}) = \frac{1}{2}\vec{b}$ , then find the angle between  $\vec{a}$  and  $\vec{b}$ .

## Watch Video Solution

**12.** show that  $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$  if and only if  $\vec{a}$  and  $\vec{c}$  are collinear or  $(\vec{a} \times \vec{c}) \times \vec{b} = \vec{0}$ 

**13.** Let  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  be non-zero vectors such that no two are collinear and  $\left(\vec{a} \times \vec{b}\right) \times \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a}$  if  $\theta$  is the acute angle between vectors  $\vec{b}$  and  $\vec{c}$  then find value of  $\sin\theta$ .



**14.** If  $\vec{p}$ ,  $\vec{q}$ ,  $\vec{r}$  denote vectors  $\vec{b} \times \vec{c}$ ,  $\vec{c} \times \vec{c} \times \vec{a}$ ,  $\vec{a} \times \vec{b}$ . Respectively, show

that  $\vec{a}$  is parallel to  $\vec{q} \times \vec{r}$ ,  $\vec{b}$  is parallel to  $\vec{r} \times \vec{p}$ ,  $\vec{c}$  is parallel to  $\vec{p} \times \vec{q}$ .

Watch Video Solution

**15.** Let  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  be non -coplanar vectors and let equations  $\vec{a}'$ ,  $\vec{b}'$ ,  $\vec{c}'$  are reciprocal system of vector  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  then prove that  $\vec{a} \times \vec{a}' + \vec{b} \times \vec{b}' + \vec{c} \times \vec{c}'$  is a null vector.



**16.** Given unit vectors  $\hat{m}\hat{n}$  and  $\hat{p}$  such that angle between  $\hat{m}$  and  $\hat{n}is\alpha$  and angle between  $\hat{p}$  and  $\hat{m}X\hat{n}is\alpha$  if [n p m] = 1/4 find alpha



**17.**  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  are three unit vectors and every two are inclined to each other at an angel  $\cos^{-1}(3/5)$ . If  $\vec{a} \times \vec{b} = p\vec{a} + q\vec{b} + r\vec{c}$ , wherep, q, r are scalars, then find the value of q

Watch Video Solution

**18.** Let  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ ,  $\vec{b} = b_2\hat{j} + b_3\hat{k}$  and  $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$  give three non-zero vectors such that  $\vec{c}$  is a unit vector perpendicular to both  $\vec{a}$  and  $\vec{b}$ . If the angle between  $\vec{a}$  and  $\vec{b}is\frac{\pi}{6}$ , then prove that  $\begin{vmatrix}a_1 & a_2 & a_3\end{vmatrix}$ 

$$\begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} p = \frac{1}{4} \left( a_1^2 + a_2^2 + a_3^2 \right) \left( b_1^2 + b_2^2 + b_3^2 \right)$$

Single Correct Answer Type

**1.** The scalar 
$$\vec{A}$$
.  $(\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C})$  equals (A) 0 (B)  $[\vec{A}\vec{B}\vec{C}] + [\vec{B}\vec{C}\vec{A}]$   
(C)  $[\vec{A}\vec{B}\vec{C}]$  (D) none of these

A. 0

B. 
$$\left[\vec{A}\vec{B}\vec{C}\right] + \left[\vec{B}\vec{C}\vec{A}\right]$$
  
C.  $\left[\vec{A}\vec{B}\vec{C}\right]$ 

D. none of these

Answer: a



**2.** For non-zero vectors  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$ ,  $\left|\left(\vec{a} \times \vec{b}\right), \vec{c} = \left|\vec{a}\right| \left|\vec{b}\right| \left|\vec{c}\right|$  holds if and

only if

A. 
$$\vec{a}$$
.  $\vec{b} = 0$ ,  $\vec{b}$ .  $\vec{c} = 0$   
B.  $\vec{b}$ .  $\vec{c} = 0$ ,  $\vec{c}$ ,  $\vec{a} = 0$   
C.  $\vec{c}$ .  $\vec{a} = 0$ ,  $\vec{a}$ ,  $\vec{b} = 0$   
D.  $\vec{a}$ .  $\vec{b} = \vec{b}$ .  $\vec{c} = \vec{c}$ .  $\vec{a} = 0$ 

### Answer: d

Watch Video Solution

**3.** The volume of he parallelepiped whose sides are given by  $\vec{O}A = 2i - 2, j, \vec{O}B = i + j - kand\vec{O}C = 3i - k$  is a. 4/13 b. 4 c. 2/7 d. 2

A. 4/13

B. 4

**C.** 2/7

D. 2

### Answer: d

**4.** Let  $\vec{a}, \vec{b}, \vec{c}$  be three noncolanar vectors and  $\vec{p}, \vec{q}, \vec{r}$  are vectors defined

by the relations 
$$\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}, \vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}, \vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$$
 then the value of  
the expression  $\left(\vec{a} + \vec{b}\right), \vec{p} + \left(\vec{b} + \vec{c}\right), \vec{q} + \left(\vec{c} + \vec{a}\right), \vec{r}$  is equal to (A) 0 (B) 1  
(C) 2 (D) 3

A. 0

B. 1

C. 2

D. 3

### Answer: d

5. Let  $\vec{a} = \hat{i} - \hat{j}$ ,  $\vec{b} = \hat{j} - \hat{k}$ ,  $\vec{c} = \hat{k} - \hat{i}$ . If  $\hat{d}$  is a unit vector such that  $\vec{a} \cdot \hat{d} = 0 = \begin{bmatrix} \vec{b} \cdot \vec{c} \cdot \vec{d} \end{bmatrix}$  then  $\hat{d}$  equals

A. 
$$\pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$$
  
B. 
$$\pm \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$$
  
C. 
$$\pm \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$$

D. 
$$\pm \hat{k}$$

### Answer: a

Watch Video Solution

**6.** If 
$$\vec{a}, \vec{b}$$
 and  $\vec{c}$  are non coplanar and unit vectors such that  
 $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$  then the angle between *vea* and  $\vec{b}$  is (A)  $\frac{3\pi}{4}$  (B)  $\frac{\pi}{4}$   
(C)  $\frac{\pi}{2}$  (D)  $\pi$ 

**A.** 3π/4

**B**. *π*/4

**C**. *π*/2

**D**. *π* 

#### Answer: a

Watch Video Solution

7. Let  $\vec{u}, \vec{v}$  and  $\vec{w}$  be vectors such that  $\vec{u} + \vec{v} + \vec{w} = 0$  if  $|\vec{u}| = 3$ ,  $|\vec{v}| = 4$  and  $|\vec{w}| = 5$  then  $\vec{u}.\vec{v} + \vec{v}.\vec{w} + \vec{w}.\vec{u}$  is (a) 47 (b) -25 (c) 0 (d) 25

A. 47

**B.** - 25

C. 0

D. 25

### Answer: b



8. If 
$$\vec{a}, \vec{b}$$
 and  $\vec{c}$  are three non-coplanar vectors, then  
 $\left(\vec{a} + \vec{b} + \vec{c}\right)$ .  $\left[\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} + \vec{c}\right)\right]$  equals  
A. 0  
B.  $\left[\vec{a}\vec{b}\vec{c}\right]$   
C. 2 $\left[\vec{a}\vec{b}\vec{c}\right]$   
D. -  $\left[\vec{a}\vec{b}\vec{c}\right]$ 

### Answer: d

Watch Video Solution

**9.** Let  $\vec{p}, \vec{q}, \vec{r}$  be three mutually perpendicular vectors of the same magnitude. If a vector  $\vec{x}$  satisfies the equation

$$\vec{p} \times \left\{ \vec{x} - \vec{q} \right\} \times \vec{p} \right\} + \vec{q} \times \left\{ \vec{x} - \vec{r} \right\} \times \vec{q} \right\} + \vec{r} \times \left\{ \vec{x} - \vec{p} \right\} \times \vec{r} \right\} = \vec{0},$$

then  $\vec{x}$  is given by

A. (a) 
$$\frac{1}{2} \left( \vec{p} + \vec{q} - 2\vec{r} \right)$$
  
B. (b)  $\frac{1}{2} \left( \vec{p} + \vec{q} + \vec{r} \right)$   
C. (c)  $\frac{1}{3} \left( \vec{p} + \vec{q} + \vec{r} \right)$   
D. (d)  $\frac{1}{3} \left( 2\vec{p} + \vec{q} - \vec{r} \right)$ 

### Answer: b

Watch Video Solution

**10.** Let  $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$ , and  $\vec{b} = \hat{i} + \hat{j}$  if c is a vector such that  $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$  and the angle between  $\vec{a} \times \vec{b}$  and  $\vec{i} \cdot s30^\circ$ , then  $|(\vec{a} \times \vec{b})| \times \vec{c}|$  is equal to

A. 2/3

**B.** 3/2

C. 2

D. 3

### Answer: b



**11.** Let  $\vec{a} = 2i + j + k$ ,  $\vec{b} = i + 2j - k$  and a unit vector  $\vec{c}$  be coplanar. If  $\vec{c}$  is

pependicular to  $\vec{a}$ . Then  $\vec{c}$  is

A. 
$$\frac{1}{\sqrt{2}}(-j+k)$$
  
B.  $\frac{1}{\sqrt{3}}(i-j-k)$   
C.  $\frac{1}{\sqrt{5}}(i-2j)$   
D.  $\frac{1}{\sqrt{3}}(i-j-k)$ 

#### Answer: a



12. If the vectors  $\vec{a}, \vec{b}, \vec{c}$  form the sides BC,CA and AB respectively of a

triangle ABC then (A) 
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{0}$$
 (B)  $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{0}$  (C)

 $\vec{a}$ .  $\vec{b} = \vec{c} = \vec{c} = \vec{a}$ .  $a \neq 0$  (D)  $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\vec{0}$ 

A.  $\vec{a}$ .  $\vec{b}$  +  $\vec{b}$ .  $\vec{c}$  +  $\vec{c}$ .  $\vec{a}$  = 0

B.  $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ 

 $\mathsf{C}.\,\vec{a}.\,\vec{b}=\vec{b}.\,\vec{c}=\vec{c}.\,\vec{a}$ 

 $\mathsf{D}.\,\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a}=\vec{0}$ 

Answer: b

Watch Video Solution

**13.** Let the vectors  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  and  $\vec{d}$  be such that  $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$ . Let  $P_1$  and  $P_2$  be planes determined by pairs of vectors  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$ ,  $\vec{d}$  respectively. Then the  $\angle$  between P\_1 and P\_2 is(A)0(B)pi/4(C)pi/3 (D)pi/2`

A. 0

**B**. *π*/4

**C**. *π*/3

**D**. *π*/2

#### Answer: a

Watch Video Solution

**14.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are unit coplanar vectors then the scalar triple product  $\left[2\vec{a} - \vec{b}, 2\vec{b} - c, \vec{2}c - \vec{a}\right]$  is equal to (A) 0 (B) 1 (C)  $-\sqrt{3}$  (D)  $\sqrt{3}$ 

A. 0

B. 1

D.  $\sqrt{3}$ 

#### Answer: a

**15.** if  $\hat{a}$ ,  $\hat{b}$  and  $\hat{c}$  are unit vectors. Then  $|\hat{a} - \hat{b}|^2 + |\hat{b} - \hat{c}|^2 + |\vec{c} - \vec{a}|^2$  does not

exceed

A. 4 B. 9 C. 8

### Answer: b

D. 6

Watch Video Solution

**16.** If  $\vec{a}$  and  $\vec{b}$  are two unit vectors such that  $\vec{a} + 2\vec{b}$  and  $5\vec{a} - 4\vec{b}$  are perpendicular to each other then the angle between  $\vec{a}$  and  $\vec{b}$  is (A)  $45^{0}$  (B)  $60^{0}$  (C)  $\cos^{-1}\left(\frac{1}{3}\right)$  (D)  $\cos^{-1}\left(\frac{2}{7}\right)$ 

**A.** 45 °

B. 60°

C.  $\cos^{-1}(1/3)$ 

D.  $\cos^{-1}(2/7)$ 

Answer: b

Watch Video Solution

**17.** Let 
$$\vec{V} = 2\hat{i} + \hat{j} - \hat{k}$$
 and  $\vec{W} = \hat{i} + 3\hat{k}$ . if  $\vec{U}$  is a unit vector, then the maximum value of the scalar triple product  $\begin{bmatrix} \vec{U}\vec{V}\vec{W} \end{bmatrix}$  is

A. - 1  
B. 
$$\sqrt{10} + \sqrt{6}$$
  
C.  $\sqrt{59}$ 

D.  $\sqrt{60}$ 

### Answer: c

**18.** Find the value of a so that the volume of the parallelopiped formed by vectors  $\hat{i} + a\hat{j} + \hat{k}$ ,  $\hat{j} + a\hat{k}$  and  $a\hat{i} + \hat{k}$  becomes minimum.

A. - 3 B. 3 C. 1/√3

D.  $\sqrt{3}$ 

### Answer: c

Watch Video Solution

**19.** If  $\vec{a} = (\hat{i} + \hat{j} + \hat{k})$ ,  $\vec{a} \cdot \vec{b} = 1$  and  $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$ , then  $\vec{b}$  is  $(a)\hat{i} - \hat{j} + \hat{k}$  (b)  $2\hat{i} - \hat{k}$  (c)  $\hat{i}$  (d)  $2\hat{i}$ 

A.  $\hat{i} - \hat{j} + \hat{k}$ B.  $2\hat{i} - \hat{k}$ 

**C**. î

### Answer: c

# Watch Video Solution

20. The unit vector which is orthogonal to the vector  $5\hat{i} + 2\hat{j} + 6\hat{k}$  and is coplanar with vectors  $2\hat{i} + \hat{j} + \hat{k}$  and  $\hat{i} - \hat{j} + \hat{k}$  is (a)  $\frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}$  (b)  $\frac{2\hat{i} - 3\hat{j}}{\sqrt{13}}$  (c)  $\frac{3\hat{j} - \hat{k}}{\sqrt{10}}$  (d)  $\frac{4\hat{i} + 3\hat{j} - 3\hat{k}}{\sqrt{34}}$ A.  $\frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}$ B.  $\frac{2\hat{i} - 3\hat{j}}{\sqrt{13}}$ C.  $\frac{3\hat{j} - \hat{k}}{\sqrt{10}}$ D.  $\frac{4\hat{i} + 3\hat{j} - 3\hat{k}}{\sqrt{34}}$ 

v

### Answer: c

**21.** if  $\vec{a}, \vec{b}$  and  $\vec{c}$  are three non-zero, non- coplanar vectors and

$$\vec{b}_1 = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}, \vec{b}_2 = \vec{b} + \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}, \vec{c}_1 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{c} - \vec{$$

, then the set of orthogonal vectors is

A. 
$$\left(\vec{a}, \vec{b}_{1}, \vec{c}_{3}\right)$$
  
B.  $\left(\vec{c}a, \vec{b}_{1}, \vec{c}_{2}\right)$   
C.  $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{1}\right)$   
D.  $\left(\vec{a}, \vec{b}_{2}, \vec{c}_{2}\right)$ 

#### Answer: c

## Watch Video Solution

**22.** Let  $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ ,  $\vec{=} \hat{i} - \hat{j} + \hat{k}$  and  $\vec{c} = \hat{i} + \hat{j} - \hat{k}$ . A vector in the plane of  $\vec{a}$  and  $\vec{b}$  whose projection on  $\vec{c}is\frac{1}{\sqrt{3}}$  is (A)  $4\hat{i} - \hat{j} + 4\hat{k}$  (B)  $\hat{i} + \hat{j} - 3\hat{k}$  (C)  $2\hat{i} + \hat{j} - 2\hat{k}$  (D)  $4\hat{i} + \hat{j} - 4\hat{k}$ 

A.  $4\hat{i} - \hat{j} + 4\hat{k}$ B.  $3\hat{i} + \hat{j} - 3\hat{k}$ C.  $2\hat{i} + \hat{j} - 2\hat{k}$ D.  $4\hat{i} + \hat{j} - 4\hat{k}$ 

#### Answer: a

## Watch Video Solution

**23.** Lelt two non collinear unit vectors  $\hat{a}$  and  $\hat{b}$  form and acute angle. A point P moves so that at any time t the position vector  $\overrightarrow{OP}$  (where O is the origin) is given by  $\hat{a}\cos t + \hat{b}\sin t$ . When P is farthest from origin O, let

M be the length of OP and  $\hat{u}$  be the unit vector along OP Then (A)

$$\hat{u} = \frac{\hat{a} + \hat{b}}{\left|\hat{a} + \hat{b}\right|} \text{ and } M = \left(1 + \hat{a} \cdot \hat{b}\right)^{\frac{1}{2}} \text{ (B) } \hat{u} = \frac{\hat{a} - \hat{b}}{\left|\hat{a} - \hat{b}\right|} \text{ and } M = \left(1 + \hat{a} \cdot \hat{b}\right)^{\frac{1}{2}} \text{ (C)}$$
$$\hat{u} = \frac{\hat{a} + \hat{b}}{\left|\hat{a} + \hat{b}\right|} \text{ and } M = \left(1 + 2\hat{a} \cdot \hat{b}\right)^{\frac{1}{2}} \text{ (D) } \hat{u} = \frac{\hat{a} - \hat{b}}{\left|\hat{a} - \hat{b}\right|} \text{ and } M = \left(1 + 2\hat{a} \cdot \hat{b}\right)^{\frac{1}{2}}$$

A., 
$$\hat{u} = \frac{\hat{a} + \hat{b}}{\left|\hat{a} + \hat{b}\right|}$$
 and  $M = \left(1 + \hat{a} \cdot \hat{b}\right)^{1/2}$   
B.,  $\hat{u} = \frac{\hat{a} - \hat{b}}{\left|\hat{a} - \hat{b}\right|}$  and  $M = \left(1 + \hat{a} \cdot \hat{b}\right)^{1/2}$   
C.  $\hat{u} = \frac{\hat{a} + \hat{b}}{\left|\hat{a} + \hat{b}\right|}$  and  $M = \left(1 + 2\hat{a} \cdot \hat{b}\right)^{1/2}$   
D.,  $\hat{u} = \frac{\hat{a} - \hat{b}}{\left|\hat{a} - \hat{b}\right|}$  and  $M = \left(1 + 2\hat{a} \cdot \hat{b}\right)^{1/2}$ 

#### Answer: a

Watch Video Solution

**24.** If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  and  $\vec{d}$  are unit vectors such that  $(\vec{a} \times \vec{b})$ .  $(\vec{c} \times \vec{d}) = 1$  and  $\vec{a}$ .  $\vec{c} = \frac{1}{2}$  then (A)  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are non coplanar (B)  $\vec{b}$ ,  $\vec{c}$ ,  $\vec{d}$  are non coplanar (C)  $\vec{b}$ ,  $\vec{d}$  are non paralel (D)  $\vec{a}$ ,  $\vec{d}$  are paralel and  $\vec{b}$ ,  $\vec{c}$  are parallel

A.  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are non-coplanar

B.  $\vec{b}$ ,  $\vec{c}$  and  $\vec{d}$  are non-coplanar
C.  $\vec{b}$  and  $\vec{d}$  are non-parallel

D.  $\vec{a}$  and  $\vec{d}$  are parallel and  $\vec{b}$  and  $\vec{c}$  are parallel

#### Answer: c

Watch Video Solution

25. Two adjacent sides of a parallelogram ABCD are given by  $\vec{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}and\vec{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$  The side AD is rotated by an acute angle  $\alpha$  in the plane of the parallelogram so that AD becomes AD'If AD' makes a right angle with the side AB, then the cosine of the angel  $\alpha$  is given by a.  $\frac{8}{9}$  b.  $\frac{\sqrt{17}}{9}$  c.  $\frac{1}{9}$  d.  $\frac{4\sqrt{5}}{9}$ A.  $\frac{8}{9}$ B.  $\frac{\sqrt{17}}{9}$ C.  $\frac{1}{9}$ D.  $\frac{4\sqrt{5}}{9}$ 

# Answer: b



**26.** Let P, Q, R and S be the points on the plane with position vectors  $-2\hat{i} - \hat{j}$ ,  $4\hat{i}$ ,  $3\hat{i} + 3\hat{j}$  and  $-3\hat{i} + 2\hat{j}$  respectively. The quadrilateral PQRS must be a

A. Parallelogram, which is neither a rhombus nor a rectangle

B. square

C. rectangle, but not a square

D. rhombus, but not a square.

#### Answer: a



**27.** Let  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ ,  $\vec{b} = \hat{i} - \hat{j} + \hat{k}$  and  $\vec{c} = \hat{i} - \hat{j} - \hat{k}$  be three vectors. A vectors  $\vec{v}$  in the plane of  $\vec{a}$  and  $\vec{b}$ , whose projection on  $\vec{c}$  is  $\frac{1}{\sqrt{3}}$  is given by

A.  $\hat{i} - 3\hat{j} + 3\hat{k}$ B.  $-3\hat{i} - 3\hat{j} + \hat{k}$ C.  $3\hat{i} - \hat{j} + 3\hat{k}$ D.  $\hat{i} + 3\hat{j} - 3\hat{k}$ 

#### Answer: c

Watch Video Solution

**28.** Let  $PR = 3\hat{i} + \hat{j} - 2\hat{k}$  and  $SQ = \hat{i} - 3\hat{j} - 4\hat{k}$  determine diagonals of a parallelogram PQRS and  $PT = \hat{i} + 2\hat{j} + 3\hat{k}$  be another vector. Then the volume of the parallelepiped determined by the vectors PT, PQ and PS is B. 20

C. 10

D. 30

### Answer: c

Watch Video Solution

# Multiple Correct Answers Type

1.  

$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \quad \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \text{ and } \quad \vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k} \text{ be}$$
  
three non-zero vectors such that  $\vec{c}$  is a unit vectors perpendicular to  
both the vectors  $\vec{a}$  and  $\vec{b}$ . If the angle between  $\vec{a}$  and  $\vec{b}$  is  $\frac{\pi}{6}$   
then

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 is equal to

A. (a) 0

B. (b) 1 C. (c)  $\frac{1}{4} \left( a_1^2 + a_2^2 + a_2^2 \right) \left( b_1^2 + b_2^2 + b_2^2 \right)$ D. (d)  $\frac{3}{4} \left( a_1^2 + a_2^2 + a_2^2 \right) \left( b_1^2 + b_2^2 + b_2^2 \right) \left( c_1^2 + c_2^2 + c_2^2 \right)$ 

#### Answer: c



**2.** The number of vectors of unit length perpendicular to vectors  $\vec{a} = (1, 1, 0) and \vec{b} = (0, 1, 1)$  is a. one b. two c. three d. infinite

A. one

B. two

C. three

D. infinite

#### Answer: b

**3.** Let  $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$ ,  $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$  and  $\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$  be three vectors . A vector in the plane of  $\vec{b}$  and  $\vec{c}$  whose projection on  $\vec{a}$  is of magnitude  $\sqrt{\left(\frac{2}{3}\right)}$  is (A)  $2\hat{i} + 3\hat{j} + 3\hat{k}$  (B)  $2\hat{i} + 3\hat{j} - 3\hat{k}$  (C)  $-2\hat{i} - \hat{j} + 5\hat{k}$  (D)  $2\hat{i} + \hat{j} + 5\hat{k}$ A.  $2\hat{i} + 3\hat{j} - 3\hat{k}$ B.  $2\hat{i} + 3\hat{j} + 3\hat{k}$ C.  $-2\hat{i} - \hat{j} + 5\hat{k}$ D.  $2\hat{i} + \hat{i} + 5\hat{k}$ 

Answer: a,c

Watch Video Solution

**4.** For three vectors,  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  which of the following expressions is not

equal to any of the remaining three ?

A. (a) 
$$\vec{u}$$
.  $(\vec{v} \times \vec{w})$   
B. (b)  $(\vec{v} \times \vec{w})$ .  $\vec{u}$   
C. (c)  $\vec{v}$ .  $(\vec{u} \times \vec{w})$   
D. (d)  $(\vec{u} \times \vec{v})$ .  $\vec{w}$ 

### Answer: c



5. Which of the following expressions are meaningful?  $\vec{u} \cdot (\vec{v} \times \vec{w})$  b.  $(\vec{u} \cdot \vec{v}) \cdot \vec{w} c \cdot (\vec{u} \cdot \vec{v}) \cdot \vec{w} d \cdot \vec{u} \times (\vec{v} \cdot \vec{w})$ 

A.  $\vec{u}$ .  $(\vec{v} \times \vec{w})$ B.  $(\vec{u} \cdot \vec{v})$ .  $\vec{w}$ C.  $(\vec{u} \cdot \vec{v})\vec{w}$ D.  $\vec{u} \times (\vec{v} \cdot Vecw)$ 

Answer: a,c

6. If  $\vec{a}$  and  $\vec{b}$  are two non collinear vectors and  $\vec{u} = \vec{a} - (\vec{a}, \vec{b}), \vec{b}$  and  $\vec{v} = \vec{a}x\vec{b}$  then  $\vec{v}$  is A.  $|\vec{u}|$ B.  $|\vec{u}| + |\vec{u}. Veca|$ C.  $|\vec{u}| + |\vec{u}. \vec{b}|$ D.  $|\vec{u}| + \vec{u}. (\vec{a} + \vec{b})$ 

## Answer: a,c

Watch Video Solution

**7.**  $\vec{P} = \left(2\hat{i} - 2\hat{j} + \hat{k}\right)$ , then find  $\left|\vec{P}\right|$ 

A. a unit vector

B. makes an angle  $\pi/3$  with vector  $(2\hat{i} - 4\hat{j} + 3\hat{k})$ 

C. parallel to vector  $\left(-\hat{i}+\hat{j}-\frac{1}{2}\hat{k}\right)$ 

D. perpendicular to vector  $3\hat{i} + 2\hat{j} - 2\hat{k}$ 

Answer: a,c,d

Watch Video Solution

**8.** Let  $\vec{a}$  be vector parallel to line of intersection of planes  $P_1$  and  $P_2$ through origin. If  $P_1$  is parallel to the vectors  $2\bar{j} + 3\bar{k}$  and  $4\bar{j} - 3\bar{k}$  and  $P_2$  is parallel to  $\bar{j} - \bar{k}$  and  $3\bar{l} + 3\bar{j}$ , then the angle between  $\vec{a}$  and  $2\bar{i} + \bar{j} - 2\bar{k}$  is :

**Α.** *π*/2

B.  $\pi/4$ 

 $C. \pi/6$ 

**D.** 3π/4

Answer: b,d

**9.** The vectors which is/are coplanar with vectors  $\hat{i} + \hat{j} + 2\hat{k}$  and  $\hat{i} + 2\hat{j} + \hat{k}$ and perpendicular to the vector  $\hat{i} + \hat{j} + \hat{k}$  is /are (A)  $\hat{j} - \hat{k}$  (B)  $-\hat{i} + \hat{j}$  (C)  $\hat{i} - \hat{j}$ (D)  $-\hat{j} + \hat{k}$ 

A.  $\hat{j} - \hat{k}$ B.  $-\hat{i} + \hat{j}$ C.  $\hat{i} - \hat{j}$ D.  $-\hat{j} + \hat{k}$ 

### Answer: a,d

Watch Video Solution

**10.** Let  $\vec{x}$ ,  $\vec{y}$  and  $\vec{z}$  be three vectors each of magnitude  $\sqrt{2}$  and the angle between each pair of them is  $\frac{\pi}{3}$  if  $\vec{a}$  is a non-zero vector perpendicular to  $\vec{x}$  and  $\vec{y} \times \vec{z}$  and  $\vec{b}$  is a non-zero vector perpendicular to  $\vec{y}$  and  $\vec{z} \times \vec{x}$ , then

A. (a) 
$$\vec{b} = (\vec{b}. \vec{z})(\vec{z} - \vec{x})$$
  
B. (b)  $\vec{a} = (\vec{a}. \vec{y})(\vec{y} - \vec{z})$   
C. (c)  $\vec{a}. \vec{b} = -(\vec{a}. \vec{y})(\vec{b}. \vec{z})$   
D. (d)  $\vec{a} = (\vec{a}. \vec{y})(\vec{z} - \vec{y})$ 

# Answer: a,b,c

**O** Watch Video Solution

**11.** Let 
$$PQR$$
 be a triangle . Let  $\vec{a} = QR, \vec{b} = RP$  and  $\vec{c} = PQ$ . if  $|\vec{a}| = 12, |\vec{b}| = 4\sqrt{3}$  and  $\vec{b} \cdot \vec{c} = 24$  then which of the following is (are) true ?

A. (a) 
$$\frac{|\vec{c}|^2}{2} - |\vec{a}| = 12$$
  
B. (b)  $\frac{|\vec{c}|^2}{2} - |\vec{a}| = 30$   
C. (c)  $|\vec{a} \times \vec{b} + \vec{c} \times \vec{a}| = 48\sqrt{3}$   
D. (d)  $\vec{a} \cdot \vec{b} = -72$ 

# Answer: a,c,d

