

MATHS

BOOKS - CBSE COMPLEMENTARY MATERIAL MATHS (HINGLISH)

RELATIONS AND FUNCTIONS

One Mark Questions

1. If A is the set of students of a school then write, which of following relations are Universal, Empty or neither of the two.

 $R_1=\{(a,b)\!:\!a,b\;\; ext{are ages of students and}|a-b|>0\}$

 $egin{aligned} R_2 &= \{(a,b)\!:\!a,b \;\; ext{are weights of students, and}\;\; |a-b| < 0 \} \ R_3 &= \{(a,b)\!:\!a,b \;\; ext{are students studying in same class} \} \end{aligned}$

A.			
В.			
C.			
D.			

Answer: R_1 : is universal relation.

 R_2 : is empty relation.

 R_3 : is neither universal nor empty

2. Is the relation R in the set $A=\{1,2,3,4,5\}$ defined as

$$R=\{(a,b)\!:\!b=a+1\}$$
 reflexive ?

В.		
C.		

D.

A.

Answer: No, R is not reflexive.

Watch Video Solution

3. If R, is a relation in set N given by

 $R = \{(a, b) : a = b - 3, b > 5\},$

then does element $(5,7) \in R$?

A.

Β.

Answer: $(5,7) \swarrow R$

Watch Video Solution

4. If $f: \{1, 3\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 2, 3, 4\}$ be given by $f = \{(1, 2), (3, 5)\}, g = \{(1, 3), (2, 3), (5, 1)\},$ write g of.

A.

Β.

С.

D.

Answer: $gof = \{(1, 3), (3, 1)\}$

Watch Video Solution

5. Let
$$g,\,f\!:\!R o R$$
 be defined by $g(x)=rac{x+2}{3},\,f(x)=3x-2.$ Write fog (x) A.

Β.

C.

D.

Answer: $(fog)(x) = x \, orall x \in R$

Watch Video Solution

6. If $f\!:\!R o R$ defined by

 $f(x)=rac{2x-1}{5}$

be an invertible function, write $f^{-1}(x)$.

Answer:
$$f^{-1}(x)=rac{5x+1}{2}$$

Watch Video Solution

7. If $f(x) = \log x$ and $g(x) = e^x$. Find fog and gof , x > 0.

В.

A.

C.

D.

Answer: gof(x) = x, fog, (x) = x

Watch Video Solution

8. If n(A) = n(B) = 3, then how many bijective functions

from A to B can be formed?

A.

Β.

C.

Answer: 6

9. Is
$$f\colon N o N$$
 given by $f(x)=x^2$, one-one? Give reason.

Answer: Yes, f is one-one $\because orall x_1, x_2 \in N o x_1^2 = x_2^2.$

Watch Video Solution

10. If $f: R \to A$, given by $f(x) = x^2 - 2x + 2$ is onto function, find set A. A. B. C. D.

Answer: $A=[1,\infty)$ because $R_f=[1,\infty)$

Watch Video Solution

11. If $f\colon A o B$ is bijective function such that n(A)=10, then n(B)= ?

A.

В.

C.

D.

Answer: n(B) = 10

Watch Video Solution

12. If $f\!:\!R o R$ defined by $f(x)=rac{x-1}{2}$, find (fof)(x)

A.

Β.

C.

D.

Answer:
$$(fof)(x) = rac{x-3}{4}$$

Watch Video Solution

13.
$$R = \{(a, b) : a, b \in N, a
eq b ext{ and a divides b}\}$$
. Is R

reflexive ? Give reason

Α.

Β.

C.

D.

Answer: No, R is not reflexive $\because (a,a) \not\prec R \, orall a \in N$

14. Is $f \colon R o R$, given by f(x) = |x-1| one-one? Give

reason

A. B. C.

D.

Answer: f is not one-one function

$$\because f(3)=f(-1)=2$$

 $3 \neq -1$ i.e. distinct elements have same images.

Watch Video Solution

15. $f\!:\!R o B$ given by $f(x)=\sin x$ is onto function, then write set B.

A. B. C.

D.

Answer: B = [-1, 1]

Watch Video Solution

16. If
$$f(x) = \log \left(\frac{1+x}{1-x} \right)$$
 show that $f\left(\frac{2x}{1+x^2} \right) = 2(f(x))$

A.			
B.			

- С.
- D.

Answer:

Watch Video Solution

17. State the reason for the relation R on the set {1, 2, 3} given by $R = \{(1, 2), (2, 1)\}$ not to be transitive.

A.

Β.

C.

D.

Answer: $(1,2)\in R$ and $(2,1)\in R$ but (1,1) if R

18. If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N , then write the range of R .

A.

Β.

С.

D.

Answer: Range $= \{1, 2, 3\}$

19. Let $A = \{(0, 1, 2, 3)\}$ and define a relation R on A as follows:

 $R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$

, Is R reflexive? Symmetive? Transitive?

A. B. C. D.

Answer: Reflexive and symmetric but not transitive.

Watch Video Solution

20. Write the smallest equivalence relation on the set $A = \{1, 2, 3\}$.

A. B. C.

D.

Answer: $\{(1, 1), (2, 2), (3, 3)\}$

Watch Video Solution

21. Let the relation R be defined in N by aRb, if 2a + 3b = 30.

Then R =

В. С.

D.

A.

Answer: $\{(3, 8), (6, 6), (9, 4), \{12, 2\}$

Watch Video Solution

22. If $f \colon R o R$ be defined by $f(x) = rac{x}{\sqrt{1+x^2}},$ then $(fofof)(x) = \dots \dots$

A.

Β.

C.

D.

Answer:
$$(fofof)(x) = rac{x}{\sqrt{3x^2+1}}$$

Watch Video Solution

23. If
$$f(x) = \left[4 - \left(x - 7\right)^3\right],$$
 then $f^{-1}(x) = \dots \dots$

Α.

Β.

C.

D.

Answer:
$$f^{\,-1}(x) = 7 + \left(4 - x
ight)^{1\,/\,3}$$
 .

24. Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show

that f is one-one.

A.

Β.

C.

D.

Answer: Yes

Watch Video Solution

25. If $A = \{1, 2, 3, 4\}$ and $B = \{-1, 3\}$, then what is the

number of onto functions from A to B?

Answer: 14

26. If $A = \{ -1, 2, 3 \}$ and $B = \{ 0, 3, 5 \}$ then what is the

number of bijections from A to B?

A.	
B.	

С.

D.

Answer: 6

Watch Video Solution

27. If $A=\{-1,2,3\}$ and $B=\{0,3,5,7\}$ then what is the

number of bijections from A to B?

A.

Β.

C.

Answer: 24

Two Mark Questions

1. Check the following functions for one-one and onto

(a)
$$f \colon R o R, f(x) = rac{2x-3}{7}$$

(b) $f \colon R o R, f(x) = |x+1|$
(c) $f \colon R - \{2\} o R, f(x) = rac{3x-1}{x-2}$
(d) $f \colon R - \{-1,1\}, f(x) = \sin^2 x.$

A.

	•	
	,	
_	٤.	
ι.	,	
	F	B

C.

D.

Answer: (a) Bijective (one-one, onto)

- (b) Neither one-one nor onto
- (c) One-one but not onto
- (d) Neither one-one nor onto

Watch Video Solution

2. Let $f, g: R \overset{\longrightarrow}{R}$ be two functions defined as f(x) = |x| + xand g(x) = |x| - x , for all x R. Then find fog and gof.

A.

C.

D.

Answer:
$$gof(x)=0\,orall\,x\in R$$
 $fog(x)=egin{cases} 0, \ x\geq 0\ -4x, \ x>0 \end{cases}$

Watch Video Solution

3. If
$$f\colon [1,\infty) o [2,\infty)$$
 is defined by $f(x)=x+rac{1}{x},$ find $f^{-1}(x)$

A.

Β.

C.

D.

Answer:
$$f^{-1}(x)=rac{x+\sqrt{x^2-4}}{2}$$

Watch Video Solution

4. Let $A = \{1, 2, 3\}$ and define $R = \{(a, b): a - b = 12\}.$

Show that R is empty relation on Set A.

A.

Β.

C.

D.

Answer:

5. Let $A = \{1, 2, 3\}$ and define $R = \{(a, b) : a + b > 0\}.$

Show that R is a universal relation on Set A.

Answer:

6. Let $A = \{a, b, c\}$. How may relation can be defined in the

set ? How may of these are reflexive ?

- A. B.
- C.
- D.

Answer: 512, 64

Watch Video Solution

7. Let $f\!:\!R o R$ be defined by $f(x)=x^2+1$, find the pre

image of 17 and -3, respectively, are

A.

Β.

C.

D.

Answer: ± 4 , pre image of -3 does not exist.

Watch Video Solution
8. If
$$f: R o R, g: R o R$$
, given by $f(x) = [x], g(x) = [x]$

, then find fog
$$\left(-\frac{2}{3}\right)$$
 and gof $\left(-\frac{2}{3}\right)$.

A.

Β.

C.

D.

Answer:

9. Let Q be the set of rational number and R be the relation on Q defined by $R = \{(x, y) : x, y \in Q, x^2 + 3y^2 = 4xy\}$ check whether R is reflexive, symmetric and transitive.

A. B. C. D.

Answer: R is reflexive, not symmetric, not transitive.

Watch Video Solution

10. Let $A = \{2, 4, 6, 8\}$ and R be the relation "is greater than" on the set A. Write R as a set of order pairs. Is this relation

(i) reflexive? (ii) symmetic? (iii) equivalance relation?

Justify your answer.

A.

Β.

C.

D.

Answer: $R = \{(8, 6), (8, 4), (8, 2), (6, 4), (6, 2), (4, 2)\}$

(i) Not reflexive (ii) Not symmetric (iii) Not equivalence relation

11. Let N be the set of natural numbers and relation R on N be defined by $R = \{(x, y) : x, y \in N, x + 4y = 10\}$ check whether R is reflexive , symmetric and transitive.

Answer:

A.

Β.

C

D.

Four Mark Questions

1. Let
$$f\colon R-\left\{rac{-4}{3}
ight\} o R-\left\{rac{4}{3}
ight\}$$
 be a function given by $f(x)=rac{4x}{3x+4}$

Show that f is invertible with $f^{-1}(x) = rac{4x}{4-3x}$

Answer:

2. Let R be the relation on set $A=\{x\!:\!x\in Z, 0\leq x\leq 10\}$ given by $R=\{(a,b)\!:\!(a-b) ext{is divisible by }4\}$. Show that

R is an equivalence relation.

Also, write all elements related to 4.

A. B. C.

Answer: Elements related to 4 are 0, 4, 8.

3. Show that function
$$f: A \to B$$
 defined as $f(x) = \frac{3x+4}{5x-7}$ where $A = R - \left\{\frac{7}{5}\right\}, B = R - \left\{\frac{3}{5}\right\}$ is invertible and hence find f^{-1} .

C.

A.

D.

Answer:
$$f^{-1}(x)=rac{7x+4}{5x-3}$$

Watch Video Solution

4. Prove that the relation R on the set $N \times N$ defined by (a, b)R(c, d)a + d = b + c for all $(a, b), (c, d) \in N \times N$ is an equivalence relation. Also, find the equivalence classes [(2, 3)] and [(1, 3)].

_	
D	
n	
~	٠

C.

D.

Answer:

5. Show that $f: R_+ \to R_+$ defined by $f(x) = \frac{1}{2x}$ is bijective, where R_+ is the set of all non-zero positive real numbers.

A.

Β.

C.

Answer:

Watch Video Solution

6. Let $A = \{1, 2, 3, ..., 12\}$ and R be a relation in $A \times A$ defined by (a, b)R(c, d) if $ad = bc \forall (a, b), (c, d) \in A \times A$. Prove that R is an equivalence relation. Also obtain the equivalence class $[3 \ 4]$.

A.

Β.

C.

D.

Answer: $[\begin{array}{cc} 3 & 4 \end{array}] = \{(3,4), (6,8), (9,12)\}$

Watch Video Solution

7. Let $A = \{1, 2, 3, 9\}$ and R be the relation on $A \times A$ defined by (a, b)R(c, d) if a + d = b + c for all $(a, b), (c, d) \in A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class [(2, 5)].

A.

Β.

C.

D.

$[\begin{array}{ccc} 2 & 5 \end{array}] = \{(1,4), (2,5), (3,6), (4,7), (5,8), (6,9) \}.$

Watch Video Solution

8. Show that
$$f\colon N o N$$
 given by $f(x)=egin{cases} x+1, ext{ if } ext{x is odd} \ x-1, ext{ if } ext{x is even} \end{cases}$

is both one-one and onto.

A. B. C. D.

Answer:

9. Consider $f: R_+ \overrightarrow{4, \infty}$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real numbers.

Answer:

A.

Β.

C.

D.

10. Let $A = R - \{2\}$ and $B = R - \{1\}$ if $f: A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$ show that f is one-one and onto. Hence find f^{-1} .

A.

Answer:
$$f^{-1}(x)=rac{2x-1}{x-1}$$

Watch Video Solution

11. Let $f \colon R \overset{
ightarrow}{R}$ be a function given by f(x) = ax + b for all $x \in R$. Find the constants aandb such that $fof = I_R$.

A.
B.
C.
D.

Answer: a = 1 and b = 0 or a = -1 and b can be any real number.

12. Prove that the relation R in the set $A=\{5,6,7,8,9\}$ given by $R=\{(a,b):|a-b|,$ is divisible by 2}, is an

equivalence relation. Find all elements related to the element 6.

A. B. C.

Answer: {6,8}

D.

13. Let $f\colon W o W$ be defined as f(n)=n-1, if is odd and f(n)=n+1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

Β.

A.

C.

D.

Answer:
$$f^{-1}(y) = \begin{cases} y+1, \text{ if y is even} \\ y-1, \text{ if y is odd} \end{cases}$$

Watch Video Solution

Six Mark Questions

1. Let N denote the set of all natural numbers and ${\bf R}$ be the

by

relation on NxN defined

 $(a,b)R(c,d)ad(b+c)=bc(a+d)\cdot$ Check whether R is an

equivalence relation on NxN.

Answer:

2. Let
$$f\!:\!N o R$$
 be a function defined as $f(x)=4x^2+12x+15.$

Show that $f\colon N o S$, where S is the range of f, is invertible. Also find the inverse of f. Hence find $f^{-1}(31)$.

A. B. C.

Answer:
$$f^{-1}(y) = rac{\sqrt{y-6}-3}{2}, f^{-1}(31) = 1$$

D.

3. If the function $f: R \to R$ be defined by f(x) = 2x - 3and $g: R \to R$ by $g(x) = x^3 + 5$, then show that fog is invertible. Also find $(fog)^{-1}(x)$, hence find $(fog)^{-1}(9)$. Β.

A.

C.

D.

Answer:
$$(fog)^{-1}(x) = \left(rac{x+7}{2}
ight)^{1/3}, (fog)^{-1}(9) = 2$$

Watch Video Solution

4. Test whether,
$$R_3$$
 on R defined by $(a,\ b)\in R_3a^2-4\ ab+3b^2=0$.

A.

Β.

Answer: Reflexive, not symmetric, not transitive

Watch Video Solution

5. Let
$$A = \{(1, 2, 3, 4\}, B = (3, 5, 7, 9\}$$
 and
 $C = (7, 23, 47, 79)$ and $f = A \to B, g: B \to C$ be defined
by $f(x) = 2x + 1 \,\forall x \in A$ and $g(x) = x^2 - 2 \,\forall x \in B$..
Find $(gof)^{-1}$ and $f^{-1}og^{-1}$ at sets of ordered pairs. Is
 $(gof)^{-1} = f^{-1}og^{-1}$?

A.

Β.

C.

D.

Answer:
$$(gof)^{-1} = \{7, 1\}, (23, 2), (47, 3), (79, 4)\}$$

 $f^{-1}of^{-1} = \{(7, 1), (23, 2), (47, 3), (79, 4),$ Yes
 $(gof)^{-1} = f^{-1}og^{-1}.$

Watch Video Solution

6. Let
$$A = \{-1, 0, 1, 2\}$$
,
 $B = \{-4, -2, 0, 2\}$ and
 $f, g: A \rightarrow B$ be functions defined by
 $f(x) = x^2 - x, x \in A$ and
 $g(x) = 2 \left| x - \left(\frac{1}{2}\right) \right| - 1, x \in A$. Are f and g equal? Justify
your answer. (Hint: One may note that two functio

В.

A.

C.

D.

Answer:
$$(gof)(x)=2\Big|x^2-x-rac{1}{2}\Big|-1$$

Watch Video Solution

7. Consider $f: R_+ \to [-9, \infty)$ given by $f(x) = 5x^2 + 6x - 9$, where R_+ is the set of all nonnegative real numbers. Prove that f is invertible. Also find the inverse of f. Hence find $f^{-1}(2)$ and $f^{-1}(18)$.

A.

E	3	•

C.

D.

Answer:

$$f^{-1}(x) = rac{\sqrt{54-5y}-3}{5} f^{-1}(2) = 1, f^{-1}(18) = rac{9}{5}$$

Watch Video Solution