©゙"doubtnut
 India's Number 1 Education App

MATHS

BOOKS - CBSE COMPLEMENTARY MATERIAL
 MATHS (HINGLISH)

RELATIONS AND FUNCTIONS

One Mark Questions

1. If A is the set of students of a school then write, which of following relations are Universal, Empty or neither of the two.
$R_{1}=\{(a, b): a, b$ are ages of students and $|a-b|>0\}$
$R_{2}=\{(a, b): a, b$ are weights of students, and $|a-b|<0\}$
$R_{3}=\{(a, b): a, b$ are students studying in same class $\}$
A.
B.
C.
D.

Answer: R_{1} : is universal relation.
R_{2} : is empty relation.
R_{3} : is neither universal nor empty

- View Text Solution

2. Is the relation R in the set $A=\{1,2,3,4,5\}$ defined as
$R=\{(a, b): b=a+1\}$ reflexive ?
A.
B.
C.
D.

Answer: No, R is not reflexive.
(D) Watch Video Solution
3. If R, is a relation in set N given by
$R=\{(a, b): a=b-3, b>5\}$,
then does element $(5,7) \in R$?
A.
B.
C.
D.

Answer: $(5,7) \not \subset R$
(D) Watch Video Solution
4. If $f:\{1,3\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,2,3,4\}$ be given by $f=\{(1,2),(3,5)\}, g=\{(1,3),(2,3),(5,1)\}$, write g of.
A.
B.
C.
D.

Answer: $g \circ f=\{(1,3),(3,1)\}$

- Watch Video Solution

5. Let $g, f: R \rightarrow R$ be defined by
$g(x)=\frac{x+2}{3}, f(x)=3 x-2$. Write fog (x)
A.
B.
C.
D.

Answer: $(f o g)(x)=x \forall x \in R$
6. If $f: R \rightarrow R$ defined by
$f(x)=\frac{2 x-1}{5}$
be an invertible function, write $f^{-1}(x)$.
A.
B.
C.
D.

Answer: $f^{-1}(x)=\frac{5 x+1}{2}$

- Watch Video Solution

7. If $f(x)=\log x$ and $g(x)=e^{x}$. Find fog and gof , $x>0$.
A.
B.
C.
D.

Answer: $\operatorname{gof}(x)=x, f o g,(x)=x$

(Watch Video Solution

8. If $n(A)=n(B)=3$, then how many bijective functions from A to B can be formed?
A.
B.
C.
D.

Answer: 6

- Watch Video Solution

9. Is $f: N \rightarrow N$ given by $f(x)=x^{2}$, one-one? Give reason.
A.
B.
C.
D.

Answer: Yes, \mathbf{f} is one-one $\because \forall x_{1}, x_{2} \in N \rightarrow x_{1}^{2}=x_{2}^{2}$.
10. If $f: R \rightarrow A$, given by
$f(x)=x^{2}-2 x+2$ is onto function, find set A .
A.
B.
C.
D.

Answer: $A=[1, \infty)$ because $R_{f}=[1, \infty)$

D Watch Video Solution
11. If $f: A \rightarrow B$ is bijective function such that $n(A)=10$,
then $n(B)=?$
A.
B.
C.
D.

Answer: $n(B)=10$
(D) Watch Video Solution
12. If $f: R \rightarrow R$ defined by $f(x)=\frac{x-1}{2}$, find $(f o f)(x)$
A.
B.
C.
D.

Answer: $(f o f)(x)=\frac{x-3}{4}$

- Watch Video Solution

13. $R=\{(a, b): a, b \in N, a \neq b$ and a divides b$\}$. Is R reflexive? Give reason
A.
B.
C.
D.

Answer: No, \mathbf{R} is not reflexive $\because(a, a) \not \subset R \forall a \in N$

- Watch Video Solution

14. Is $f: R \rightarrow R$, given by $f(x)=|x-1|$ one-one? Give reason
A.
B.
C.
D.

Answer: f is not one-one function
$\because f(3)=f(-1)=2$
$3 \neq-1$ i.e. distinct elements have same images.
15. $f: R \rightarrow B$ given by $f(x)=\sin x$ is onto function, then write set B.
A.
B.
C.
D.

Answer: $B=[-1,1]$

D Watch Video Solution

16. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$ show that $f\left(\frac{2 x}{1+x^{2}}\right)=2(f(x))$
A.
B.
C.
D.

Answer:

- Watch Video Solution

17. State the reason for the relation R on the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ not to be transitive.
A.
B.
C.
D.

Answer: $(1,2) \in R$ and $(2,1) \in R$ but $(1,1) \not \subset R$

- Watch Video Solution

18. If $R=\{(x, y): x+2 y=8\}$ is a relation on N, then write the range of R.
A.
B.
C.
D.

Answer: Range $=\{1,2,3\}$
19. Let $A=\{(0,1,2,3\}$ and define a relation R on A as
follows:
$R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}$
, Is R reflexive? Symmetive? Transitive?
A.
B.
C.
D.

Answer: Reflexive and symmetric but not transitive.
20. Write the smallest equivalence relation on the set $A=\{1,2,3\}$.
A.
B.
C.
D.

Answer: $\{(1,1),(2,2),(3,3)\}$

Watch Video Solution
21. Let the relation R be defined in N by $a R b$, if $2 a+3 b=30$.

Then $\mathrm{R}=.$. .
A.
B.
C.
D.

Answer: $\{(3,8),(6,6),(9,4),\{12,2\}$

- Watch Video Solution

22. If $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{\sqrt{1+x^{2}}}$, then $($ fofof $)(x)=\ldots \ldots \ldots \ldots$.
A.
B.
C.
D.

Answer: $($ fofof $)(x)=\frac{x}{\sqrt{3 x^{2}+1}}$

D Watch Video Solution

23. If $f(x)=\left[4-(x-7)^{3}\right], \quad$ then
$f^{-1}(x)=\ldots \ldots \ldots \ldots$.
A.
B.
C.
D.

Answer: $f^{-1}(x)=7+(4-x)^{1 / 3}$
24. Let $A=\{1,2,3\}, \quad B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one-one.
A.
B.
C.
D.

Answer: Yes

25. If $A=\{1,2,3,4\}$ and $B=\{-1,3\}$, then what is the number of onto functions from A to B ?
A.
B.
C.
D.

Answer: 14

- Watch Video Solution

26. If $A=\{-1,2,3\}$ and $B=\{0,3,5\}$ then what is the number of bijections from A to B ?
A.
B.
C.
D.

Answer: 6

(Watch Video Solution

27. If $A=\{-1,2,3\}$ and $B=\{0,3,5,7\}$ then what is the number of bijections from A to B ?
A.
B.
C.
D.

Answer: 24

(D) Watch Video Solution

Two Mark Questions

1. Check the following functions for one-one and onto
(a) $f: R \rightarrow R, f(x)=\frac{2 x-3}{7}$
(b) $f: R \rightarrow R, f(x)=|x+1|$
(c) $f: R-\{2\} \rightarrow R, f(x)=\frac{3 x-1}{x-2}$
(d) $f: R-\{-1,1\}, f(x)=\sin ^{2} x$.
A.
B.
C.
D.

Answer: (a) Bijective (one-one, onto)
(b) Neither one-one nor onto
(c) One-one but not onto
(d) Neither one-one nor onto

- Watch Video Solution

2. Let $f, g: R \vec{R}$ be two functions defined as $f(x)=|x|+x$ and $g(x)=|x|-x$, for all $x R$. Then find fog and gof.
A.
B.
C.
D.

Answer: $\operatorname{gof}(x)=0 \forall x \in R$
$f o g(x)=\left\{\begin{array}{l}0, \quad x \geq 0 \\ -4 x, \quad x>0\end{array}\right.$
(D) Watch Video Solution
3. If $f:[1, \infty) \rightarrow[2, \infty)$ is defined by $f(x)=x+\frac{1}{x}$, find $f^{-1}(x)$
A.
B.
C.
D.

Answer: $f^{-1}(x)=\frac{x+\sqrt{x^{2}-4}}{2}$

- Watch Video Solution

4. Let $A=\{1,2,3\}$ and define $R=\{(a, b): a-b=12\}$.

Show that R is empty relation on Set A .
A.
B.
C.
D.

Answer:

5. Let $A=\{1,2,3\}$ and define $R=\{(a, b): a+b>0\}$. Show that R is a universal relation on Set A.
A.
B.
C.
D.

Answer:

- Watch Video Solution

6. Let $A=\{a, b, c\}$. How may relation can be defined in the set ? How may of these are reflexive ?
A.
B.
C.
D.

Answer: 512, 64

- Watch Video Solution

7. Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}+1$, find the pre image of 17 and -3 , respectively, are
A.
B.
C.
D.

Answer: ± 4, pre image of -3 does not exist.

- Watch Video Solution

8. If $f: R \rightarrow R, g: R \rightarrow R$, given by $f(x)=[x], g(x)=[x]$
, then find fog $\left(-\frac{2}{3}\right)$ and gof $\left(-\frac{2}{3}\right)$.
A.
B.
C.
D.
9. Let Q be the set of rational number and R be the relation on Q defined by $R=\left\{(x, y): x, y \in Q, x^{2}+3 y^{2}=4 x y\right\}$ check whether R is reflexive, symmetric and transitive.
A.
B.
C.
D.

Answer: R is reflexive, not symmetric, not transitive.
10. Let $A=\{2,4,6,8\}$ and R be the relation "is greater than" on the set A. Write R as a set of order pairs. Is this relation
(i) reflexive? (ii) symmetic? (iii) equivalance relation?

Justify your answer.
A.
B.
C.
D.

Answer: $R=\{(8,6),(8,4),(8,2),(6,4),(6,2),(4,2)\}$
(i) Not reflexive (ii) Not symmetric (iii) Not equivalence relation
11. Let N be the set of natural numbers and relation R on N be defined by $R=\{(x, y): x, y \in N, x+4 y=10\}$ check whether R is reflexive, symmetric and transitive.
A.
B.
C.
D.

Answer:

- View Text Solution

1. Let $f: R-\left\{\frac{-4}{3}\right\} \rightarrow R-\left\{\frac{4}{3}\right\}$ be a function given by $f(x)=\frac{4 x}{3 x+4}$
Show that f is invertible with $f^{-1}(x)=\frac{4 x}{4-3 x}$
A.
B.
C.
D.

Answer:

- Watch Video Solution

2. Let R be the relation on set $A=\{x: x \in Z, 0 \leq x \leq 10\}$ given by $R=\{(a, b):(a-b)$ is divisible by 4$\}$. Show that
R is an equivalence relation.
Also, write all elements related to 4.
A.
B.
C.
D.

Answer: Elements related to 4 are 0,4, 8 .

D Watch Video Solution

3. Show that function $f: A \rightarrow B$ defined as
$f(x)=\frac{3 x+4}{5 x-7}$ where $A=R-\left\{\frac{7}{5}\right\}, B=R-\left\{\frac{3}{5}\right\}$ is invertible and hence find f^{-1}.
A.
B.
C.
D.

Answer: $f^{-1}(x)=\frac{7 x+4}{5 x-3}$

(Watch Video Solution

4. Prove that the relation R on the set $N \times N$ defined by
$(a, b) R(c, d) a+d=b+c \quad$ for all
$(a, b),(c, d) \in N \times N$ is an equivalence relation. Also, find the equivalence classes $[(2,3)]$ and $[(1,3)]$.
A.
B.
C.
D.

Answer:

(Watch Video Solution

5. Show that $f: R_{+} \rightarrow R_{+}$defined by $f(x)=\frac{1}{2 x}$ is bijective, where R_{+}is the set of all non-zero positive real numbers.
A.
B.
C.
D.

Answer:

- Watch Video Solution

6. Let $A=\{1,2,3, \ldots \ldots, 12\}$ and R be a relation in $A \times A$ defined by $(a, b) R(c, d)$ if $a d=b c \forall(a, b),(c, d) \in A \times A$. Prove that R is an equivalence relation. Also obtain the equivalence class $\left[\begin{array}{ll}3 & 4\end{array}\right]$.
A.
B.
C.
D.

Answer: $\left[\begin{array}{ll}3 & 4\end{array}\right]=\{(3,4),(6,8),(9,12)\}$

- Watch Video Solution

7. Let $A=\{1,2,3,, 9\}$ and R be the relation on $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for all $(a, b),(c, d) \in A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class [(2,5)].
A.
B.
C.
D.
$\left[\begin{array}{ll}2 & 5\end{array}\right]=\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\}$.

- Watch Video Solution

8. Show that $f: N \rightarrow N$ given by
$f(x)=\left\{\begin{array}{l}x+1, \text { if } \mathrm{x} \text { is odd } \\ x-1, \text { if } \mathrm{x} \text { is even }\end{array}\right.$
is both one-one and onto.
A.
B.
C.
D.

Answer:
9. Consider $f: R_{+} \overrightarrow{4, \infty}$ given by $f(x)=x^{2}+4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y)=\sqrt{y-4}$, where R_{+}is the set of all nonnegative real numbers.
A.
B.
C.
D.

Answer:

10. Let $A=R-\{2\}$ and $B=R-\{1\}$ if $f: A \rightarrow B$ is a function defined by $f(x)=\frac{x-1}{x-2}$ show that f is one-one and onto. Hence find f^{-1}.
A.
B.
C.
D.

Answer: $f^{-1}(x)=\frac{2 x-1}{x-1}$

- Watch Video Solution

11. Let $f: R \vec{R}$ be a function given by $f(x)=a x+b$ for all $x \in R$. Find the constants $a a n d b$ such that fof $=I_{R}$.
A.
B.
C.
D.

Answer: $a=1$ and $b=0$ or $a=-1$ and \mathbf{b} can be any real number.

(D) Watch Video Solution

12. Prove that the relation R in the set $A=\{5,6,7,8,9\}$
given by $R=\{(a, b):|a-b|$, is divisible by 2$\}$, is an
equivalence relation. Find all elements related to the element 6.
A.
B.
C.
D.

Answer: $\{6,8\}$

(Watch Video Solution

13. Let $f: W \rightarrow W$ be defined as $f(n)=n-1$, if is odd and $f(n)=n+1$, if n is even. Show that f is invertible. Find the inverse of f . Here, W is the set of all whole numbers.
A.
B.
C.
D.

Answer: $f^{-1}(y)=\left\{\begin{array}{l}y+1, \text { if } \mathrm{y} \text { is even } \\ y-1, \text { if } \mathrm{y} \text { is odd }\end{array}\right.$

- Watch Video Solution

Six Mark Questions

1. Let N denote the set of all natural numbers and R be the
$(a, b) R(c, d) a d(b+c)=b c(a+d)$. Check whether R is an equivalence relation on $N x N$.
A.
B.
C.
D.

Answer:

(Watch Video Solution

2. Let $f: N \rightarrow R$ be a function defined as
$f(x)=4 x^{2}+12 x+15$.

Show that $f: N \rightarrow S$, where S is the range of f , is invertible.
Also find the inverse of f . Hence find $f^{-1}(31)$.
A.
B.
C.
D.

Answer: $f^{-1}(y)=\frac{\sqrt{y-6}-3}{2}, f^{-1}(31)=1$

- Watch Video Solution

3. If the function $f: R \rightarrow R$ be defined by $f(x)=2 x-3$ and $g: R \rightarrow R$ by $g(x)=x^{3}+5$, then show that fog is invertible. Also find $(f o g)^{-1}(x)$, hence find $(f o g)^{-1}(9)$.
A.
B.
C.
D.

Answer: $(f \circ g)^{-1}(x)=\left(\frac{x+7}{2}\right)^{1 / 3},(f \circ g)^{-1}(9)=2$
4. Test whether, R_{3} on R defined by
$(a, b) \in R_{3} a^{2}-4 a b+3 b^{2}=0$.
A.
B.
C.
D.

Answer: Reflexive, not symmetric, not transitive

D Watch Video Solution

5. Let $A=\{(1,2,3,4\}, B=(3,5,7,9\} \quad$ and
$C=(7,23,47,79\}$ and $f=A \rightarrow B, g: B \rightarrow C$ be defined by $f(x)=2 x+1 \forall x \in A$ and $g(x)=x^{2}-2 \forall x \in B$..

Find $(g \circ f)^{-1}$ and $f^{-1} o g^{-1}$ at sets of ordered pairs. Is

$$
(g \circ f)^{-1}=f^{-1} o g^{-1} ?
$$

A.
B.
C.
D.

Answer: $\left.(g \circ f)^{-1}=\{7,1\},(23,2),(47,3),(79,4)\right\}$
$f^{-1} o f^{-1}=\{(7,1),(23,2),(47,3),(79,4)$,
$(g \circ f)^{-1}=f^{-1} o g^{-1}$.

D Watch Video Solution

$f, g: A \rightarrow B$ be functions defined by $f(x)=x^{2}-x, x \in A$ and
$g(x)=2\left|x-\left(\frac{1}{2}\right)\right|-1, x \in A$. Are f and g equal? Justify your answer. (Hint: One may note that two functio
A.
B.
C.
D.

Answer: $(g \circ f)(x)=2\left|x^{2}-x-\frac{1}{2}\right|-1$

D Watch Video Solution

7. Consider $f: R_{+} \rightarrow[-9, \infty)$ given by
$f(x)=5 x^{2}+6 x-9$, where R_{+}is the set of all nonnegative real numbers. Prove that f is invertible. Also find the inverse of f . Hence find $f^{-1}(2)$ and $f^{-1}(18)$.
B.
C.
D.

Answer:
$f^{-1}(x)=\frac{\sqrt{54-5 y}-3}{5} f^{-1}(2)=1, f^{-1}(18)=\frac{9}{5}$

- Watch Video Solution

