©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CBSE COMPLEMENTARY MATERIAL MATHS
 (HINGLISH)

THREE DIMENSIONAL GEOMETRY

One Mark Questions

1. The distance of the point $P(a, b, c)^{\prime}$ from the x-axis is

- Watch Video Solution

2. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is
3. Write the equation of a line passsing through $(2,-3,5)$ and parallel to line $\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+1}{-1}$

- Watch Video Solution

4. Write the equation of a line through $(1,2,3)$ and parallel to
$\vec{r} \cdot(\hat{i}-\hat{j}+3 \hat{k})=5$

- Watch Video Solution

5. What is the value of λ for which the lines $\frac{x-1}{2}=\frac{y-3}{5}=\frac{z-1}{\lambda}$ and $\frac{x-2}{3}=\frac{y+1}{-2}=\frac{z}{2}$ are prependicular to each other

- Watch Video Solution

6. Write line $\vec{r}=(\hat{i}-\hat{j})+\lambda(2 \hat{j}-\hat{k})$ in to cartesian form
7. If the direction ratio of a line is $1,-2,2$ Then what are the direction cosines of the line

- Watch Video Solution

8. Find the angle between the planes $2 x-3 y+6 z=9$ and xy plane

- Watch Video Solution

9. Equations of the passing through the point $(0,1,2)$ and equally inclined to the co - ordinates axes are ,

- Watch Video Solution

10. What is the perpendicular distance of plane $2 x-y+3 z=10$ from origin
11. What is the y intercept of the plane $x-5 y+7 z=10$

- Watch Video Solution

12. The distance between the planes $x+2 y-2 z+1=0$ and $2 x+4 y-4 z+5=0$, is

- Watch Video Solution

13. The equation of a plane which cuts equal intercepts of unit length on the axes is

- Watch Video Solution

14. Are the planes $x+y-2 z+4=0$ and $3 x+3 y-6 z+5=0$ intersecting

- Watch Video Solution

15. Find the equation of the plane through the point $(1,4,-2)$ and parallel to the plane $-2 x+y-3 z=7$.

- Watch Video Solution

16. The vector equation of he plane which is at a distance of 8 units from the origin which is normal to the vector $2 \hat{i}+\hat{j}+2 \hat{k}$ is

- Watch Video Solution

17. What is equation of the plane if the foot of perpendicular from origin to this plane is $(2,3,4)$?

- Watch Video Solution

18. Find the angles between the planes $\vec{r}(\hat{i}-2 \hat{j}-2 \hat{k})=1$ and $\vec{r}(3 \hat{i}-6 \hat{j}+2 \hat{k})=0$
19. If O is the origin, $O P=3$ with direction ratios proportional to $-1,2,-2$ then the coordinates of P are-

- Watch Video Solution

20. The distance between the line
$\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k}) \quad$ and the plane
$\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ is

- Watch Video Solution

21. Write the line $2 x=3 y=4 z$ in vector form

- Watch Video Solution

22. The line $\frac{x-4}{1}=\frac{2 y-4}{2}=\frac{k-z}{-2}$ lies exaclty in the plane $2 x$ $4 y+z=7$ find the value of k

- Watch Video Solution

Two Mark Questions

1. What is the anlge between the line $\frac{x+1}{2}=\frac{2 y-1}{4}=\frac{2-z}{4}$ and the plane $2 x+y-2 z+4=0$

- Watch Video Solution

2. Find the equation of a line passing though $(2,0,5)$ and which is parallel line $6 x-2=3 y+1=2 z-2$

- Watch Video Solution

3. Find the equation of the plane passes through the point $(2,3,-4)$ and $(1,-1,3)$ and parallel to x-axis.

- Watch Video Solution

4. Find the distane between the planes $2 x+3 y-4 z+5=0$ and $\vec{r}(4 \hat{i}+\hat{6} j-8 \hat{k})=11$

- Watch Video Solution

5. The equation of a line are $5 x-3=15 y+7=3-10 z$ write the direction cosines of the line

- Watch Video Solution

6. If a line makes angle α, β and γ with the axes respectively then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$
7. Find the equation of a line passing through the point $(2,0,1)$ and parallel to the line whose equation is $\vec{r}=(2 \lambda+3) \hat{i}+(7 \lambda-1) \hat{j}+(-3 \lambda+2) \hat{k}$

- Watch Video Solution

8. The plane $2 x-3 y+6 z-11=0$ makes an angle $\sin ^{-1}(\alpha)$ with X axis. The value of alpah is

- Watch Video Solution

9. If $4 x+4 y-c z=0$ is the equation of the plane passing through the origin that contains the line $\frac{x+5}{2}=\frac{y}{3}=\frac{z-7}{4}$ then find the value of C
10. Find the equation of the plane passing through the point $(-2,1,-3)$ and making equal intercept on the coordinate axes

- Watch Video Solution

11. Write the sum of intercepts cut off by the plane
$\vec{r}(2 \hat{i}+\hat{j}-\hat{k})-5=0$ on the three axis

- Watch Video Solution

Four Mark Questions

1. Find the equation of a plane containing the point ($0,-1,-1$),(-4,4,4) and
$(4,5,1)$ alos show that $(3,9,4)$ lies on the that plane

- Watch Video Solution

2. Find the equation of the plane which is perpendicualr to the plane $\vec{r}(5 \hat{i}+2 \hat{j}+6 \hat{k})+8=0$ and which is containg the line of intersection of the planes $\vec{r}(\hat{i}+2 \hat{j}+3 \hat{k})=4$ and $\vec{r}(2 \hat{i}+\hat{j}-\hat{k})+5=0$

- Watch Video Solution

3. Find the distance of the point $(3,4,5)$ from the plane $x+y+z=2$ measured parallel to the line $2 x=y=z$

- Watch Video Solution

4. Find the equation of the plane passing through the lineof intersection of the planes $x+2 y+3 z-5=0$ and $3 x-2 y-z+1=0$ and cutting off equal intercepts on the x-axis and z-axis.

- Watch Video Solution

5. Find the vector equation of the line passing through the point with position vector $2 \hat{i}-\hat{j}+\hat{k}$ and parallel to the line joining the points with position vectors $-\hat{i}+4 \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+2 \hat{k}$. Also, find the cartesian equation of the line.

- Watch Video Solution

6. Find the equation of the plane through the points $A(3,4,2)$ and $B(7,0,6)$ and perpendicular to the plane $2 x-5 y=15$.

Hint: The given plane is $2 x-5 y+0 z=15$.

- Watch Video Solution

7. The equation of the plane through the intersection of the planes
$\vec{r} \cdot(2 \hat{i}+6 \hat{j})+12=0$ and $\vec{r} \cdot(3 \hat{i}-\hat{j}+4 \hat{k})=0$ and at a unit distance from the origin, is
8. Find the image of point $(3,-2,1)$ in the plane $3 x-y+4 z=2$.

- Watch Video Solution

9. Find image (reflection) of the point ($7,4,-3$) in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$

- Watch Video Solution

10. find the equation of a plane passing through the points $(2,-1,0)$ and $(3,-4,5)$ and parallel to the line $2 x=3 y=4 z$

- Watch Video Solution

11. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$ and the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$
12. Find the equation of the plane passing through the points $(2,-1,0)$ and $(3,-4,5)$ and parallel to the line $2 x=3 y=4 z$.

- Watch Video Solution

13.

Show
that
the
lines
$\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$
intersect. Also find their point of intersection.

- Watch Video Solution

14. Find the shortest distacne between the lines

$$
\begin{aligned}
& \vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+4 \hat{k}) \\
& \vec{r}=(2 \hat{i}+4 \hat{j}+5 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+5 \hat{k})
\end{aligned}
$$

and
15. Find the distacne of the point $(2,3,-4)$ from the line $\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}$ measured paralle to the plane $4 \mathrm{x}+12 \mathrm{y}$ $3 z+1=0$

- Watch Video Solution

16. Find the equation of plane passing through the point $(-1,-1,2)$ and perpendicular to each of the plane
$\vec{r}(2 \hat{j}-3 \hat{k})=2$ and $\vec{r} \cdot(5 \hat{i}-4 \hat{j}+\hat{k})=6$

- Watch Video Solution

17. Find the equation of a plane passing through ($-1,3,2$) and parallel to each of the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z+1}{5}$

- Watch Video Solution

18. Show that the plane $\vec{r} \cdot(\hat{i}-3 \hat{j}+5 \hat{k})=7$ contains the line $\vec{r}=(\hat{i}+3 \hat{j}+3 \hat{k})+\lambda(3 \hat{i}+\hat{j})$

- Watch Video Solution

19. Check the co planarity of lines
$\vec{r}=(-3 \hat{i}+\hat{j}+5 \hat{k})+\lambda(-3 \hat{i}+\hat{j}+5 \hat{k}) \cdot \vec{r}=(-\hat{i}+2 \hat{j}+5 \hat{k})+\mu$

- Watch Video Solution

Six Mark Questions

1. Find the shortest distance between the lines $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$

- Watch Video Solution

2. Find the shortest distance between the lines
$\vec{r}=(1-\lambda) \hat{i}+(\lambda-2) \hat{j}+(3-2 \lambda) \hat{k}, \vec{r}=(\mu+1)+(2 \mu-1) \hat{j}-(2 \mu$

- Watch Video Solution

3. A variable plane is at a constant distance 3 p from the origin and meets the coordinates axes in A, B and C if the centroid of $\triangle A B C$ is (α, β, γ) then show that $\alpha^{-2}+\beta^{-2}+\gamma^{-2}=p^{-2}$

- Watch Video Solution

4. A vector \vec{n} f magnitude 8 units is inclined to x-axis at $45^{0}, y$-axis at 60^{0} and an acute angle with z-axis. If a plane passes through a point $(\sqrt{2},-1,1)$ and is normal to \vec{n}, find its equation in vector form.

- Watch Video Solution

5. Find the foot of the perpendicular from the point $2 \hat{i}-\hat{j}+5 \hat{k}$ on the line $\vec{r}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k})$ also find the length of the perpendicular

- Watch Video Solution

6. A line makes angles α, β, γ and δ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

- Watch Video Solution

7. Find the equation of the plane passing through the intersection of the planes $2 x+3 y-z+1=0 a n d x+y-2 z+3=0$ and perpendicular to the plane $3 x-y-2 z-4=0$.

- Watch Video Solution

8. Find the coordinates of the centroid of the triangle whose vertices are $(3,5) ;(4,6)$ and $(2,4)$.

Watch Video Solution

9. Show that the lines
$\frac{x-1}{2}=\frac{y+1}{3}=z$ and $\frac{x+1}{5}=\frac{y-2}{1} z=2$
do not intersect each other .

- Watch Video Solution

