

MATHS

BOOKS - CBSE COMPLEMENTARY MATERIAL MATHS (HINGLISH)

VECTORS

One Marks Questions

1. If $\overrightarrow{AB} = 3\hat{i} + 2\hat{j} - \hat{k}$ and the coordinate of A are (4, 1, 1), then find

the coordinates of B.

2. Let $\overrightarrow{a} = -2\hat{i} + \hat{j}$, $\overrightarrow{b} = \hat{i} + 2\hat{j}$ and $\overrightarrow{c} = 4\hat{i} + 3\hat{j}$. Find the value of x and y such that $\overrightarrow{c} = x\overrightarrow{a} + y\overrightarrow{b}$.

3. Fina a unit vector in the direaction of the resultant of the vectors $\hat{i} - \hat{j} + 3\hat{k}, 2\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} + 2\hat{j} - 2\hat{k}$.

Watch Video Solution

4. Find a vactor of magnitude of 5 units parallel to the resultant of vector

$$\overrightarrow{a} = 2 \hat{i} + 3 \hat{j} + \hat{k} \, ext{ and } \stackrel{
ightarrow}{b} = \left(\hat{i} - 2 \hat{j} - \hat{k}
ight)$$

Watch Video Solution

5. For what value of λ are the vector \overrightarrow{a} and \overrightarrow{b} perpendicular to each other? Where $\overrightarrow{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 5\hat{i} - 9\hat{j} + 2\hat{k}$

6. Write the value of p for which

$$\overrightarrow{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$$
 and $\overrightarrow{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are parallel vectors.
Watch Video Solution
7. For any two vectors \overrightarrow{a} and \overrightarrow{b} write when $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$
holds.
Watch Video Solution
8. Find the value of p if $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + 3\hat{j} + p\hat{k}) = \overrightarrow{0}$
Watch Video Solution
9. Evaluated: $\hat{i}(\hat{j} \times \hat{k}) + (\hat{i} \times \hat{k}) \cdot \hat{j}$
Watch Video Solution

10. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j}, \ \overrightarrow{b} = \hat{i} + \hat{j} - \hat{k}, \ \overrightarrow{c} = 3\hat{i} - \hat{k}, \ \text{find} \left[a \overrightarrow{b} \overrightarrow{c} \right]$$

Watch Video Solution

11. If
$$\overrightarrow{a} = 5\hat{i} - 4\hat{j} + \hat{k}$$
, $\overrightarrow{b} = -4\hat{i} + 3\hat{j} - 2\hat{k}$ and $\overrightarrow{c} = \hat{i} - 2\hat{j} - 2\hat{k}$,
then evaluate \overrightarrow{c} . $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$

Watch Video Solution

12. Show that vector $\hat{i} + 3\hat{j} + \hat{k}, 2\hat{i} - \hat{j} - \hat{k}, 7\hat{j} + 3\hat{k}$ are parallel to same plane.

Watch Video Solution

13. Find a vector of magnitude 6 which is perpendicular to both the vectors $2\hat{i} - \hat{j} + 2\hat{k}$ and $4\hat{i} - \hat{j} + 3\hat{k}$.

14. If
$$\overrightarrow{a}$$
. $\overrightarrow{b} = 0$, then what can you say about \overrightarrow{a} and \overrightarrow{b} ?
Watch Video Solution
15. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = \overrightarrow{a}$. \overrightarrow{b} , then what is the angle between \overrightarrow{a} and \overrightarrow{b} ?
Watch Video Solution

16. Show that the asreas of the parallelogram having diagonals $3\hat{i}+\hat{j}-2h*k ext{ and } \hat{i}-3\hat{j}+4\hat{k}is5\sqrt{3}$

Watch Video Solution

17. If \hat{i}, \hat{j} and \hat{k} are three mutually perpendicular vectors, then find the value of \hat{j} . $(\hat{k} \times \hat{i})$.

18. P and Q are two points with positon vectors $3\overrightarrow{a} - 2\overrightarrow{b}$ and $\overrightarrow{a} + \overrightarrow{b}$ respectively. Write the positon vector of a point R which divides the segment PQ in the ratio 2:1 extermally.

Watch Video Solution

20. Find "a" so that the vectors $\overrightarrow{p} = 3\hat{i} - 2\hat{j}$ and $\overrightarrow{q} = 2\hat{i} + a\hat{j}$ be orthogonal.

21. If
$$\overrightarrow{a} = \hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 2\hat{i} + \hat{j} - \hat{k}$ and $\overrightarrow{c} = \lambda\hat{i} - \hat{j} + \lambda\hat{k}$ are

coplanar, find the value of λ .

22. What is the point of trisection of PQ nearer to P if positions of P and Q are $3\hat{i} + 3\hat{j} - 4\hat{k}$ and $9\hat{i} + 8\hat{j} - 10\hat{k}$ respectively ?

Two Marks Questions

1. A vector \overrightarrow{r} is inclined to x-axis at 45° and y-axis at 60° if $|\overrightarrow{r}| = 8$ units. Find \overrightarrow{r} .

2. If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = 60 \left| \overrightarrow{a} - \overrightarrow{b} \right| = 40$$
 and $\left| \overrightarrow{b} \right| = 46$ find $\left| \overrightarrow{a} \right|$

Watch Video Solution

3. Write the projection of
$$\overrightarrow{b} + \overrightarrow{c}$$
 on \overrightarrow{a} where
 $\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$

Watch Video Solution

4. If the points (-1, -1, 2), (2, m, 5) and (3, 11, 6) are collinear, find the value of m.

5. For any three vectors
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} write value of the following
 $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) + \overrightarrow{b} \times \left(\overrightarrow{c} + \overrightarrow{a}\right) + \overrightarrow{c} \times \left(\overrightarrow{a} + \overrightarrow{b}\right)$

D Watch Video Solution

6. If
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 + \left| \overrightarrow{a} \cdot \overrightarrow{b} \right|^2 = 144$$
 and $\left| \overrightarrow{a} \right| = 4$, then $\left| \overrightarrow{b} \right|$ is equal to -

Watch Video Solution

7. If for any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} .
 $\left(\overrightarrow{a} + \overrightarrow{b}\right)^2 + \left(\overrightarrow{a} - \overrightarrow{b}\right)^2 = \lambda \left[\left(\overrightarrow{a}\right)^2 + \left(\overrightarrow{b}\right)^2\right]$ then write the value of λ .

8. If \overrightarrow{a} , \overrightarrow{b} are two vectors such that $\left| \left(\overrightarrow{a} + \overrightarrow{b} \right) = \left| \overrightarrow{a} \right|$ then prove that $2\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to \overrightarrow{b} .

Watch Video Solution

9. Show that the vectors $a=3\hat{i}-2\hat{j}+\hat{k}, b=\hat{i}-3\hat{j}+5\hat{k}$ and $c=2\hat{j}+\hat{j}-4\hat{k}$ form a right angled triangle.

Watch Video Solution

10. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ and $|\overrightarrow{a}| = 5$, $|\overrightarrow{b}| = 12$. $|\overrightarrow{c}| = 13$, then find $\overrightarrow{a} \overrightarrow{b} + \overrightarrow{b} \overrightarrow{c} + \overrightarrow{c} \overrightarrow{a}$

11. The two vectors $\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$ represent the two side vectors $\overrightarrow{A}B$ and $\overrightarrow{A}C$ respectively of triangle ABC. Find the length of the through A.

Watch Video Solution

Four Marks Questions

1. The points A,B and C with position vectors $3\hat{i} - y\hat{j} + 2\hat{k}, 5\hat{i} - \hat{j} + \hat{k}$ and $3x\hat{i} + 3\hat{j} - \hat{k}$ are collinear. Find the values of x and y and also the ratio in which the point B divides AC.

> Watch Video Solution

2. If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3.}$

3. Let $\overrightarrow{a} = 4\hat{i} + 5\hat{j} - \hat{k}$, $\overrightarrow{b} = \hat{i} - 4\hat{j} + 5\hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} - \hat{k}$. Find a vector \overrightarrow{d} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and satisfying $\overrightarrow{d} \cdot \overrightarrow{c} = 21$

Watch Video Solution

4. If \hat{a} and \hat{b} are unit vectors inclined at an angle θ then prove that $\cos \frac{\theta}{2} = \frac{1}{2} |\hat{a} + \hat{b}|$

Watch Video Solution

5. If \widehat{a} and \widehat{b} are unit vectors inclined at an angle θ then prove that

$$anrac{ heta}{2}=\left|rac{\widehat{a}-\widehat{b}}{\widehat{a}+\widehat{b}}
ight|$$

6. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitude show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c}

Watch Video Solution

7. For any vector
$$\vec{a}$$

$$\left| \overrightarrow{a} imes \hat{i}
ight|^2 + \left| \overrightarrow{a} imes \hat{j}
ight|^2 + \left| \overrightarrow{a} imes \hat{k}
ight|^2$$
 is equal to

Watch Video Solution

8. Show that
$$\left(\overrightarrow{a} \times \overrightarrow{b}\right)^2 = \left|\overrightarrow{a}\right|^2 \left|\overrightarrow{b}\right|^2 - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2 = \left|\frac{\overrightarrow{a} \cdot \overrightarrow{a}}{\overrightarrow{a} \cdot \overrightarrow{b}}\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\overrightarrow{a} \cdot \overrightarrow{b}}\right|$$

Watch Video Solution

9. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are the position vectors of vertices A,B,C of a $\triangle ABC$, show that the area of triangle ABC is $\frac{1}{2} \left| \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \right|$. Deduce the condition for points \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} to be collinear.

10. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be unit vectors such that $\overrightarrow{a}, \overrightarrow{b} = 0 = \overrightarrow{a}, \overrightarrow{c}$. If the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{6}$, then \overrightarrow{a} equals

Watch Video Solution

11. if
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
, then show that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$.

Watch Video Solution

12. If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{c} = \hat{j} - \hat{k}$ are given vectors, then find a vector \overrightarrow{b} satisfying the equation $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$.

13. Let, \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three non zero vectors such that \overrightarrow{c} is a unit vector perpendicular to both \overrightarrow{a} and \overrightarrow{b} . if the angle between \overrightarrow{a} and \overrightarrow{b} is $\pi/6$, prove that $\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]^2 = \frac{1}{4}|\overrightarrow{a}|^2|\overrightarrow{b}|^2$

Watch Video Solution

15. Find the altitude of a parallelepiped determined by the vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} if the base is taken as parallelogram detemined by \overrightarrow{a} and \overrightarrow{b} and if $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \overrightarrow{b} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{j} + \hat{j}$

16. Prove that the four points
$$(4\hat{i} + 5\hat{j} + \hat{k}), -(\hat{j} + \hat{k}), (3\hat{i} + 9\hat{j} + 4\hat{k})$$
 and $4(-\hat{i} + \hat{j} + \hat{k})$ are

coplanar.

Watch Video Solution

17. If $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{c}\right| = 5$ such that each is perpendicular to sum of the other two, find $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$

Watch Video Solution

18. Decompose the vector $6\hat{i}-3\hat{j}-6\hat{k}$ into vectors which are parallel

and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$.

19. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} are vectors such that $\overrightarrow{a}, \overrightarrow{b} = \overrightarrow{a}, \overrightarrow{c}, \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}, a \neq 0$. then show that $\overrightarrow{b} = \overrightarrow{c}$.

Watch Video Solution

20. If $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are three non zero vectors such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$ and $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$. Prove that $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are mutually at right angles and $\left|\overrightarrow{b}\right| = 1$ and $\left|\overrightarrow{c}\right| = \left|\overrightarrow{a}\right|$

21. For any three vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 the value of $\left[\overrightarrow{a} - \overrightarrow{b}, \overrightarrow{b} - \overrightarrow{c}, \overrightarrow{c} - \overrightarrow{a}\right]$, is **Watch Video Solution**

22. If $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 2$ find the volume of the parallelepiped whose coteminus edges are $2\overrightarrow{a} + \overrightarrow{b}, 2\overrightarrow{b} + \overrightarrow{c}, 2\overrightarrow{c} + \overrightarrow{a}$.

Watch Video Solution

23. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$, $|\overrightarrow{c}| = 7$, then find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

24. If the magnitude of the vector product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vector $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to $\sqrt{2}$, then find the value of ' λ '

25. If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ show that $\left(\overrightarrow{a} - \overrightarrow{d}\right)$ is parallel to $\left(\overrightarrow{b} - \overrightarrow{c}\right)$. *Itisgivent* vec!=vecd and vecb!=vecc.

Watch Video Solution

26. Find a vector of magnitude $\sqrt{171}$ which is perpendicular to both of

the vectors $\widehat{a}=\widehat{i}+2\widehat{j}-3\widehat{k}\,$ and $\,\widehat{b}=3\widehat{i}-\widehat{j}+2\widehat{k}.$

Watch Video Solution

27. If a is a nonzero real number prove that the vectors

$$\stackrel{r}{lpha} = a \hat{i} + 2a \hat{j} - 3a \hat{k}, \stackrel{i}{eta} = (2a+1) \hat{i} + (2a+3) \hat{j} + (a+1) \hat{k} \, ext{ and } \stackrel{r}{\gamma} = (3a)$$

are never coplanar,

28. If with reference to a right handed system of mutually perpendicular unit vectors \hat{i} , \hat{j} , \hat{k} we have $\overrightarrow{\alpha} = 3\hat{i} - \hat{j}$, and $\overrightarrow{\beta} = 2\hat{i} + \hat{j} - 3\hat{k}$. Express $\overrightarrow{\beta}$ in the form $\overrightarrow{\beta} = \overrightarrow{\beta}_1 + \overrightarrow{\beta}_2$, where $\overrightarrow{\beta}_1$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}_2$ is perpendicular to $\overrightarrow{\alpha}$.

Watch Video Solution

29. Find a unit vector perpendicular to plane ABC when position vectors of A,B,C are $3\hat{i} - \hat{j} + 2\hat{k}$, $\hat{i} - \hat{j} - 3\hat{k}$ and $4\hat{i} - 3\hat{j} + \hat{k}$ respectively.

30. Find a unit vector in XY plane which makes an angle 45° with the vector $\hat{i} + \hat{j}$ at angle of 60° with the vector $3\hat{i} - 4\hat{j}$.

31. Suppose $\overrightarrow{a} = \lambda \hat{i} - 7\hat{j} + 3\hat{k}$, $\overrightarrow{b} = \lambda \hat{i} + \hat{j} + 2\lambda \hat{k}$. If the angle between \overrightarrow{a} and \overrightarrow{b} is greater than 90° then prove that λ satisfies the inequality $-7 < \lambda < 1$.

Watch Video Solution

32. Let
$$\overrightarrow{V} = 2\hat{i} + \hat{j} - \hat{k}$$
 and $\overrightarrow{W} = \hat{i} + 3\hat{k}$. if \overrightarrow{U} is a unit vector, then the maximum value of the scalar triple product $\left[\overrightarrow{U}\overrightarrow{V}\overrightarrow{W}\right]$ is

Watch Video Solution

$$\overrightarrow{a} = \hat{i} - \hat{k}, \ \overrightarrow{b} = x\hat{i} + \hat{j} + (1-x)\hat{k} \ \text{and} \ \overrightarrow{c} = y\hat{i} + x\hat{j} + (1+x-y)\hat{k}. \ T$$

1.4

[veca vecb vecc]` depends on (A) only x (B) only y (C) neither x nor y (D) both x and y

34. Let a, b and c be distinct non-negative numbers. If vectos $a\hat{i} + a\hat{j} + c\hat{k}, \hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar, then c is

Watch Video Solution

35. If
$$\begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + c^3 \end{vmatrix} = 0$$
 and the vectors

 $A\equivig(1,a,a^2ig),B\equivig(1,b,b^2ig),C\equivig(1,c,c^2ig)$ are non-coplanar then the

value of abc equal to