© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - CBSE COMPLEMENTARY MATERIAL MATHS
 (HINGLISH)

VECTORS

One Marks Questions

1. If $\overrightarrow{A B}=3 \hat{i}+2 \hat{j}-\hat{k}$ and the coordinate of A are $(4,1,1)$, then find the coordinates of B.

- Watch Video Solution

2. Let $\vec{a}=-2 \hat{i}+\hat{j}, \vec{b}=\hat{i}+2 \hat{j}$ and $\vec{c}=4 \hat{i}+3 \hat{j}$. Find the value of x and y such that $\vec{c}=x \vec{a}+y \vec{b}$.
3. Fina a unit vector in the direaction of the resultant of the vectors $\hat{i}-\hat{j}+3 \hat{k}, 2 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}+2 \hat{j}-2 \hat{k}$.

- Watch Video Solution

4. Find a vactor of magnitude of 5 units parallel to the resultant of vector $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{b}=(\hat{i}-2 \hat{j}-\hat{k})$

- Watch Video Solution

5. For what value of λ are the vector \vec{a} and \vec{b} perpendicular to each other? Where $\vec{a}=\lambda \hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=5 \hat{i}-9 \hat{j}+2 \hat{k}$

- Watch Video Solution

6. Write the value of p for which $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+p \hat{j}+3 \hat{k}$ are parallel vectors.

- Watch Video Solution

7. For any two vectors \vec{a} and \vec{b} write when $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ holds.

- Watch Video Solution

8. Find the value of p if $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+3 \hat{j}+p \hat{k})=\overrightarrow{0}$

- Watch Video Solution

9. Evaluated: $\hat{i}(\hat{j} \times \hat{k})+(\hat{i} \times \hat{k}) \cdot \hat{j}$

- Watch Video Solution

10. If $\vec{a}=2 \hat{i}-3 \hat{j}, \vec{b}=\hat{i}+\hat{j}-\hat{k}, \vec{c}=3 \hat{i}-\hat{k}$, find $[a \vec{b} \vec{c}]$

- Watch Video Solution

11. If $\vec{a}=5 \hat{i}-4 \hat{j}+\hat{k}, \vec{b}=-4 \hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}-2 \hat{k}$, then evaluate $\vec{c} \cdot(\vec{a} \times \vec{b})$

- Watch Video Solution

12. Show that vector $\hat{i}+3 \hat{j}+\hat{k}, 2 \hat{i}-\hat{j}-\hat{k}, 7 \hat{j}+3 \hat{k}$ are parallel to same plane.

- Watch Video Solution

13. Find a vector of magnitude 6 which is perpendicular to both the vectors $2 \hat{i}-\hat{j}+2 \hat{k}$ and $4 \hat{i}-\hat{j}+3 \hat{k}$.

- Watch Video Solution

14. If $\vec{a} \cdot \vec{b}=0$, then what can you say about \vec{a} and \vec{b} ?

- Watch Video Solution

15. If \vec{a} and \vec{b} are two vectors such that $|\vec{a} \times \vec{b}|=\vec{a} \cdot \vec{b}$, then what is the angle between \vec{a} and \vec{b} ?

- Watch Video Solution

16. Show that the asreas of the parallelogram having diagonals $3 \hat{i}+\hat{j}-2 h * k$ and $\hat{i}-3 \hat{j}+4 \hat{k} i s 5 \sqrt{3}$

- Watch Video Solution

17. If \hat{i}, \hat{j} and \hat{k} are three mutually perpendicular vectors, then find the value of $\hat{j} .(\hat{k} \times \hat{i})$.
18. P and Q are two points with positon vectors $3 \vec{a}-2 \vec{b}$ and $\vec{a}+\vec{b}$ respectively. Write the positon vector of a point R which divides the segment PQ in the ratio $2: 1$ extermally.

Watch Video Solution

19. Find lamda when the scalar projection of
$\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k} o n \vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ is 4 units.

- Watch Video Solution

20. Find "a" so that the vectors $\vec{p}=3 \hat{i}-2 \hat{j}$ and $\vec{q}=2 \hat{i}+a \hat{j}$ be orthogonal.

- Watch Video Solution

21. If $\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{c}=\lambda \hat{i}-\hat{j}+\lambda \hat{k} \quad$ are coplanar, find the value of λ.

Watch Video Solution

22. What is the point of trisection of $P Q$ nearer to P if positions of P and Q are $3 \hat{i}+3 \hat{j}-4 \hat{k}$ and $9 \hat{i}+8 \hat{j}-10 \hat{k}$ respectively ?

- Watch Video Solution

$$
\begin{aligned}
& \text { 23. what is the angle between } \\
& \vec{a} \text { and } \vec{b} \text {, if } \vec{a} \cdot \vec{b}=3 \text { and }|\vec{a} \times \vec{b}|=3 \sqrt{3} \text {. }
\end{aligned}
$$

- Watch Video Solution

Two Marks Questions

1. A vector \vec{r} is inclined to x -axis at 45° and y -axis at 60° if $|\vec{r}|=8$ units. Find \vec{r}.

- Watch Video Solution

2. If $|\vec{a}+\vec{b}|=60|\vec{a}-\vec{b}|=40$ and $|\vec{b}|=46$ find $|\vec{a}|$

- Watch Video Solution

3. Write the projection of $\vec{b}+\vec{c}$ on \vec{a} where
$\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$

- Watch Video Solution

4. If the points $(-1,-1,2),(2, m, 5)$ and $(3,11,6)$ are collinear, find the value of m.
5. For any three vectors \vec{a}, \vec{b} and \vec{c} write value of the following $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})$

- Watch Video Solution

6. If $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=144$ and $|\vec{a}|=4$, then $|\vec{b}|$ is equal to --

- Watch Video Solution

7. If for any two vectors \vec{a} and \vec{b}.
$(\vec{a}+\vec{b})^{2}+(\vec{a}-\vec{b})^{2}=\lambda\left[(\vec{a})^{2}+(\vec{b})^{2}\right]$ then write the value of λ.

- Watch Video Solution

8. If \vec{a}, \vec{b} are two vectors such that $|(\vec{a}+\vec{b})=|\vec{a}|$ then prove that $2 \vec{a}+\vec{b}$ is perpendicular to \vec{b}.

- Watch Video Solution

9. Show that the vectors $a=3 \hat{i}-2 \hat{j}+\hat{k}, b=\hat{i}-3 \hat{j}+5 \hat{k}$ and $c=2 \hat{j}+\hat{j}-4 \hat{k}$ form a right angled triangle.

- Watch Video Solution

10. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=5,|\vec{b}|=12 .|\vec{c}|=13, \quad$ then \quad find $\vec{a} \vec{b}+\vec{b} \vec{c}+\vec{c} \vec{a}$

- Watch Video Solution

11. The two vectors $\hat{j}+\hat{k}$ and $3 \hat{i}-\hat{j}+4 \hat{k}$ represent the two side vectors $\vec{A} B$ and $\vec{A} C$ respectively of triangle $A B C$. Find the length of the through A.

- Watch Video Solution

Four Marks Questions

1. The points A, B and C with position vectors $3 \hat{i}-y \hat{j}+2 \hat{k}, 5 \hat{i}-\hat{j}+\hat{k}$ and $3 x \hat{i}+3 \hat{j}-\hat{k}$ are collinear. Find the values of x and y and also the ratio in which the point B divides AC .

- Watch Video Solution

2. If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3}$.
3. Let $\vec{a}=4 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=\hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}-\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and satisfying $\vec{d} \cdot \vec{c}=21$

- Watch Video Solution

4. If \widehat{a} and \hat{b} are unit vectors inclined at an angle θ then prove that $\cos \frac{\theta}{2}=\frac{1}{2}|\widehat{a}+\hat{b}|$

- Watch Video Solution

5. If \widehat{a} and \hat{b} are unit vectors inclined at angle θ then prove that $\tan \frac{\theta}{2}=\left|\frac{\widehat{a}-\hat{b}}{\widehat{a}+\hat{b}}\right|$
6. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}

Watch Video Solution

7. For any vector \vec{a}
$|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}$ is equal to

- Watch Video Solution

8. Show that $(\vec{a} \times \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}=\left|\begin{array}{l}\vec{a} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} \cdot \vec{b}\end{array}\right|$

- Watch Video Solution

9. If \vec{a}, \vec{b} and \vec{c} are the position vectors of vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of a $\triangle A B C$, show that the area of triangle $A B C$ is $\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$. Deduce the condition for points \vec{a}, \vec{b} and \vec{c} to be collinear.

Watch Video Solution

10. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a} \cdot \vec{c}$. If the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$, then \vec{a} equals

- Watch Video Solution

11. if $\vec{a}+\vec{b}+\vec{c}=0$, then show that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.

- Watch Video Solution

12. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{j}-\hat{k}$ are given vectors, then find a vector \vec{b} satisfying the equation $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \cdot \vec{b}=3$.

- Watch Video Solution

13. Let, \vec{a}, \vec{b} and \vec{c} be three non zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b}. if the angle between \vec{a} and \vec{b} is $\pi / 6$, prove that $[\vec{a} \vec{b} \vec{c}]^{2}=\frac{1}{4}|\vec{a}|^{2}|\vec{b}|^{2}$

- Watch Video Solution

14. If the
vectors
$\vec{\alpha}=a \hat{i}+\hat{j}+\hat{k}, \vec{\beta}=\hat{i}+b \hat{j}+\hat{k}$ and $\vec{\gamma}=\hat{i}+\hat{j}+c \hat{k}$ are coplanar, then prove that $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1 \quad$ where $a \neq 1, b \neq 1$ and $c \neq 1$

- Watch Video Solution

15. Find the altitude of a parallelepiped determined by the vectors \vec{a}, \vec{b} and \vec{c} if the base is taken as parallelogram detemined by \vec{a} and \vec{b} and if $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}+$

- Watch Video Solution

16.

Prove that the four points $(4 \hat{i}+5 \hat{j}+\hat{k}),-(\hat{j}+\hat{k}),(3 \hat{i}+9 \hat{j}+4 \hat{k})$ and $4(-\hat{i}+\hat{j}+\hat{k})$ are coplanar.

- Watch Video Solution

17. If $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$ such that each is perpendicular to sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$

- Watch Video Solution

18. Decompose the vector $6 \hat{i}-3 \hat{j}-6 \hat{k}$ into vectors which are parallel and perpendicular to the vector $\hat{i}+\hat{j}+\hat{k}$.

- Watch Video Solution

19. If \vec{a}, \vec{b} and \vec{c} are vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}, a \neq 0$. then show that $\vec{b}=\vec{c}$.

- Watch Video Solution

20. If \vec{a}, \vec{b} and \vec{c} are three non zero vectors such that $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$. Prove that \vec{a}, \vec{b} and \vec{c} are mutually at right angles and $|\vec{b}|=1$ and $|\vec{c}|=|\vec{a}|$

- Watch Video Solution

21. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ the value of $\left[\begin{array}{ccc}\vec{a}-\vec{b} & \vec{b}-\vec{c} & \vec{c}-\vec{a}\end{array}\right]$, is

- Watch Video Solution

22. If $[\vec{a} \vec{b} \vec{c}]=2$ find the volume of the parallelepiped whose coteminus edges are $2 \vec{a}+\vec{b}, 2 \vec{b}+\vec{c}, 2 \vec{c}+\vec{a}$.

- Watch Video Solution

23. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

24. If the magnitude of the vector product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vector $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to $\sqrt{2}$, then find the value of ' λ '

- Watch Video Solution

25. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ show that $(\vec{a}-\vec{d})$ is parallel to $(\vec{b}-\vec{c})$. Itisgivent ${ }^{\wedge}$ vec! $=$ vecd and vecb! $=$ vecc.

- Watch Video Solution

26. Find a vector of magnittude $\sqrt{171}$ which is perpendicular to both of the vectors $\widehat{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{b}=3 \hat{i}-\hat{j}+2 \hat{k}$.

- Watch Video Solution

27. If a is a nonzero real number prove that the vectors
$\stackrel{r}{\alpha}=a \hat{i}+2 a \hat{j}-3 a \hat{k}, \stackrel{i}{\beta}=(2 a+1) \hat{i}+(2 a+3) \hat{j}+(a+1) \hat{k}$ and $\stackrel{r}{\gamma}=(3 a$
are never coplanar,

- Watch Video Solution

28. If with reference to a right handed system of mutually perpendicular unit vectors $\hat{i}, \hat{j}, \hat{k}$ we have $\vec{\alpha}=3 \hat{i}-\hat{j}$, and $\vec{\beta}=2 \hat{i}+\hat{j}-3 \hat{k}$. Express $\vec{\beta}$ in the form $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$, where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$.

- Watch Video Solution

29. Find a unit vector perpendicular to plane $A B C$ when position vectors of A, B, C are $3 \hat{i}-\hat{j}+2 \hat{k}, \hat{i}-\hat{j}-3 \hat{k}$ and $4 \hat{i}-3 \hat{j}+\hat{k}$ respectively.

- Watch Video Solution

30. Find a unit vector in XY plane which makes an angle 45° with the vector $\hat{i}+\hat{j}$ at angle of 60° with the vector $3 \hat{i}-4 \hat{j}$.

- Watch Video Solution

31. Suppose $\vec{a}=\lambda \hat{i}-7 \hat{j}+3 \hat{k}, \vec{b}=\lambda \hat{i}+\hat{j}+2 \lambda \hat{k}$. If the angle between \vec{a} and \vec{b} is greater than 90° then prove that λ satisfies the inequality $-7<\lambda<1$.

- Watch Video Solution

32. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$. if \vec{U} is a unit vector, then the maximum value of the scalar triple product $[\vec{U} \vec{V} \vec{W}]$ is

- Watch Video Solution

33.

Let
$\vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}$ and $\vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k} . I$
[veca vecb vecc] depends on (A) only x (B) only y (C) neither x nor y (D) both x and y

- Watch Video Solution

34. Let a, b and c be distinct non-negative numbers. If vectos $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}$ and $c \hat{i}+c \hat{j}+b \hat{k}$ are coplanar, then c is

- Watch Video Solution

35. If $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0 \quad$ and the vectors
$A \equiv\left(1, a, a^{2}\right), B \equiv\left(1, b, b^{2}\right), C \equiv\left(1, c, c^{2}\right)$ are non-coplanar then the value of abc equal to

- Watch Video Solution

