© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CBSE COMPLEMENTARY

MATERIAL PHYSICS (HINGLISH)

CBSE BOARD EXAMNATION PAPER

(2017)

Section A

1. Does the charge given to a metallic sphere depend on whether it is hollow or solid ? Give reason for your answer.

D Watch Video Solution

2. A long straight current carrying wire passes normally through the centre of circular loop. If
the current through the wire increases, will there be an induced emg in the loop ? Justify.
3. At a place, the horizontal component of earth's magnetic field is B and angle of dip is 60°. What is the value of horizontal component of earth's magnetic field at equator?

- Watch Video Solution

4. Name the junction diode whose I-V characteristics are drawn below:

- Watch Video Solution

5. How is the speed of em-waves in vacuum determined by the electric and magnetic fields ?

Section B

1. How does Ampere-Maxwell law explain the
flow the of current through a capacitor when
it is being charged by a battery? Write the expression for the displacement current in terms of the rate of change of electric flux.

D Watch Video Solution

2. Define the distance of closest approach. An
a particle of kinetic energy K is bombarded on
a thin gold foil. The distance of the closest approach is r . What will be the distance of closest approach for an a particle of double the kinetic energy?

Or
Write two important of Rutherford nuclear model of the atom.
3. Find out the wavelength of the electron orbiting in the ground state of hydrogen atoms.

D Watch Video Solution

4. Define the magnifying power of a compound microscope when thefinal image is formed at infinity. Why must both the objective and the eyepiece of a compound microscope has short focal lengths? Explain.

Section C

1. Find the values of the phase difference between the current and the voltage in the series LCR circuit shown below, which one leads in phase: current or voltage?

D View Text Solution

2. (i) Find the value of the phase difference between the current and the voltage in the
series LCR circuit shown below. Which one leads in phase : current or voltage?

(ii) What making any other change, find the value of the additional capacitor C, to be connected in parallel with the capacitor C , in order to make the power factor of the circuit unity.
3. Write the two processes that take place in the formatioin for a p-n junction. Explain with the help of a diagram, the formation of depletion region and barrier potential in a p-n junction.

- Watch Video Solution

4. (i) Obtain the expression for the cyclotron
frequency.
(ii) A deutron and a proton are accelerated by
the cyclotron. Can both the accelerated with the same oscillator frequency ? Give greason to justify your answer.

D Watch Video Solution

5. A deutron and a proton are accelerated by
the cyclotron. Can both be accelerated with
the same oscillator frequency? Give reason to justify your answer.

D Watch Video Solution

6. How does one explain the emission of electrons from a photosensitive surface with the help of Einstein's equation?

- Watch Video Solution

7. (i) How does one explain the emission of electron from a photosensitive surface with te help of Einstein's photoelectric equation ?
(ii) The work function of the following metals
is given
$N a=2.75 \mathrm{eV}, K=2.3 \mathrm{eV}, \mathrm{Mo}=4.17 \mathrm{eV}$
and $N i=5.15 \mathrm{eV}$. Which of these metals will not cause photoelectric emission for radiation of wavelength $3300 \AA$ from a laser source placed 1 m aways from these metals ? What happens if the laser source is brought nearer and placed 50 cm away?

D Watch Video Solution

8. A resistance of R draw current from a potentiometer. The potentiometer wire, $A B$, has total resistance of R_{0}. A voltage V is
supplied to the potentiometer. Derive an expression for the voltage across R when the sliding contact is in the middle of potentiometer wire.

D View Text Solution

9. Find equivalent capacitance between A and
B in the combination givenbelow. Each capacitor is of $2 \mu F$ capacitance.

D View Text Solution

10. If a dc source of $7 V$ is connected across $A B$,
how much charge is drawn from the source and what is the energy stored in the network?
11. Derive the expression for the electric potential at any point along the axial line of an electric dipole.

D Watch Video Solution

12. Diagrammatically represent the position of a dipole in (i) stable (ii) unstable equilibrium when placed in a uniform electric field.
13. A radioactive nucleus A undergoes a series of decays as given below.

$$
\mathrm{A} \xrightarrow{\alpha} \mathrm{~A}_{1} \xrightarrow{\beta} \mathrm{~A}_{2} \xrightarrow{\alpha} \mathrm{~A}_{3} \xrightarrow{\gamma} \mathrm{~A}_{4}
$$

The mass number and atomic number of are

176 and 71 respectively.

Determie the mass and atomic number of A4 and A .

D Watch Video Solution

14. Write the basic nuclear processes
underlying β^{+}and β^{-}decays.

D Watch Video Solution

15. A ray of light incident on face $A B$ of an equilateral glass prism, shows minimum deviation of $30 \circ$.Calculate the speed of light through the prism.

- Watch Video Solution

16. In the above example, find the angle of incidence at face $A B$, so that emergent ray
grazes along the face $A C^{\prime}$.

D Watch Video Solution

17. Describe the working principle of a moving
coil galvanometer. Why is necessary to use
(i) a radial magnetic field and
(ii) a cylindrical soft iron core in a galvanometer ?

Write the expression for current sensitivity of
the galvanometer .

Can a galvanometer as such be used for measuring the current? Explain.

D Watch Video Solution

18. Define mutual inductance between two
long coaxial solenoids. Find out the expression
for the mutual inductance of inner solenoid of
length I having the radius r_{1} and the number of turns n_{1} per unit length due to the second other solenoid of same length and n_{2} number of turns per unit length.

Watch Video Solution

Section E

1. Draw a labelled diagram of $A C$ generator.

Derive the expression for the instantaneous
value of the emf induced in the coil.

- Watch Video Solution

2. A circular coil of cross-sectional area $200 \mathrm{~cm}^{2}$

and 20 turns is rotated about the vertical
diameter with angular speed of $50 \mathrm{rad} / \mathrm{s}$ in a uniform magnetic of $3.0 \times 10^{-2} T$. Calculate the maximum value of current in the coil.

D Watch Video Solution

3. (a) Draw a labelled diagram of a step-up
transformer. Obtain the ratio of secondary to
primary voltage in terms of number of turns and currents in the two coils.
(b) A power transmission line feeds input power at 2200 V to a step-down transformer
with its primary windings having 3000 turns.

Find the number of turns in the secondary to get the power output at 220 V .

D Watch Video Solution

4. A power transmission line feeds input potential at 2200 V to a step down transformer with its primary winding having 3000 turns. Find the number of turns in secondary to get the power output at 220 V .
5. (a) Distinguish between unpolarized light and linearly polarized light. How does one get linearly polarised light with the help of a plaroid ?
(b) A narrow beam of unpolarised light of intensity I_{0} is incident on a polaroid P_{1}. The light transmitted by it is then incident on a second polaroid P_{2} with its pass axis making angle of 60° relative to the pass axis of P_{1}.

Find the intensity of the light transmitted by
P_{2}.

- Watch Video Solution

6. A narrow beam of unpolarised light of intensity I_{0} is incident on a polaroid P_{1}. The light transmitted by it is then incident on a second polaroid P_{2} with its pass axis making an angle of 60° to the pass axis of P_{1}. Find intensity of light transmitted by P_{2}.

- Watch Video Solution

7. (a) Explain two features to distinguish between the interference pattern in Young's double slit experiment with the difference pattern obtained due to a single slit.
(b) A monochromatic light of wavelength

500 nm is incident normally on a single slit of width 0.2 nm of produce a diffraction pattern.

Find the angular width of the central maximum obtained on the screen.

Estimate the number of fringes obtained in Young's double slit experimental with fringe width 0.5 mm , which can be accommodated
within the region of total angular spread of the central maximum due to single slit.

D Watch Video Solution

8. A monochromatic light of wavelength

500 nm is incident normally on a single slit of
width 0.2 mm to produce a diffraction pattern.

Find the angular width of central maximum obtained on the screen, $1 m$ away.

Estimate the number of fringes obtained in

YDSE with fringe width 0.5 mm , which can be
accommodated within the region of total angular spread of the central maximum due to a single slit.

D Watch Video Solution

9. Derive an expression for drift velocity of electrons in a conductor. Hence deduce ohm's
law.

D Watch Video Solution
10. A wire whose cross-sectional area is
incereasing linearly from its one end to the other, is connected across a battery of V volts.

Which of the following quantities remain constant in the wire ?
A. drift speed
B. current density
C. electric current
D. electric field
11. State the Kirchhoff's rules used in electric networks. How are these rules justified ?

- Watch Video Solution

12. The current is drawn from a cell of emf E
and iternal resitance r connected to the network of resistors each of resistor r as
shown in the figure. Obtain the expression for
(i) the current draw from the cell and (ii) the power consumed in the network.

- Watch Video Solution

