# ©゙’ doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - CBSE COMPLEMENTARY

## MATERIAL PHYSICS (HINGLISH)

## CBSE EXAMINATION PAPER, DELHI <br> REGION - 2015 (CODE NO. 55/1/1/D)

Section A

1. Define capacitor reactance. Write its SI units.

## - Watch Video Solution

2. What is the electric flux through a cube of side 1 cm which encloses an electric dipole ?

## - Watch Video Solution

3. A concave lens of refractive index 1.5 is immersed in a medium of refractive index 1.65. What is the nature of the lens?
4. Graph showing the variation of current versus voltage for a material GaAs is shown in figure. Identify the region of (i) negative resistance (ii) where Ohm's law is obeyed.

5. A proton and an a-particle have the same deBroglie wavelength. Determine the ratio of their accelerating potentials

## - Watch Video Solution

2. A proton and an a-particle have the same de-Broglie wavelength. Determine the ratio of their speeds.
3. Show that the radius of the orbit in hydrogen atom varies as n 2 , where n is the principal quantum number of the atom.

## D Watch Video Solution

4. Use the mirror equation to show that an
object placed between $f$ and $2 f$ of a concave mirror forms an image beyond $2 f$.
5. Find an expression for intensity of transmitted light when a polaroid sheet is rotated between I polaroids. In which position of the polaroid sheet will the transmitted intensity be maximum ?

## D Watch Video Solution

6. Use Kirchhoff s rules to obtain conditions
for the balance condition in a Wheatstone bridge.

## Section C

1. Name the parts of the electromagnetic spectrum which is
suitable for radar systems used in aircraft navigation.

Write in brief, how these waves can be produced.
2. Name the parts of the electromagnetic spectrum which is
used to treat muscular strain.

Write in brief, how these waves can be produced.

## - Watch Video Solution

3. Name the parts of the electromagnetic spectrum which is
used as a diagnostic tool in medicine.

Write in brief, how these waves can be produced.

## D Watch Video Solution

4. A giant refracting telescope at an observatory has an objective lens of focal length 15 cm .If an eye piece of focal length 1.0 cm is used What is the angular magnification of the telescope?
5. (i) A giant refracting telescope at an observatory has an objective lens of focal length 15 m . If an eyepiece of focal length 1.0 cm is used, what is angular magnification of the telescope?
(ii) If this telescope is used to view the moon, what is the diameter of the image of the moon
formed by the objective lens ? the diameter of the moon is $3.48 \times 10^{6} \mathrm{~m}$, and the radius of lunar orbit is $3.8 \times 10^{8} \mathrm{~m}$.
6. Write Einstein's photoelectric equation and mention which important features in photoelectric el explained with the help of .this equation. The maximum kinetic energy of the photoelectrons gets doubled when the wavelength of light the surface changes from
$\lambda_{1}$ to $\lambda_{2}$. Derive the expressions for the threshold wavelength $\lambda_{0}$ and wo for the metal surface.
7. In the study of Geiger-Marsdon experiment on scattering of a-particles by a thin foil of ... trajectory of $\alpha$-particles in the coulomb field of target nucleus. Explain briefly how one gets the ... on the size of the nucleus from this study.

From the relation $R=R_{0} A^{1 / 3}$, where $R_{0}$ is constant and $A$ is the mass number of the nucleus, nuclear matter density is independent of A .
8. Distinguish between nuclear fission and
fusion. Show how in both these processes
energy is ...... Calculate the energy release in
MeV in the deuteriumtritium fusion reaction:
$\cdot{ }_{1}^{2} H+{ }_{\cdot 1}^{3} H \rightarrow \cdot{ }_{1}^{3} \mathrm{He}+n$
Using the data.
$m\left({ }_{1}^{2} H\right)=2.014102 u \quad m\left(\cdot{ }_{1}^{3} H\right)=3.016049 u$
$m\left(\cdot{ }_{1}^{3} \mathrm{He}\right)=4.002603 u \quad m_{n}=1.008665 u$
$l u=931.5 M e V / c^{2}$

## D View Text Solution

9. A cell of emf ' $E$ ' and internal resistance ' $r$ ' is
connected across a variable load resistor $R$.

Draw the terminal voltage V versus (i) R and
(ii) the current I.

It is found that when $R=4 \Omega$, the current is 1

A and when R is increased to $9 \Omega$, the current reduce to 0.5 A . Find the values of the emf E and internal resistance $r$.

## D Watch Video Solution

10. Two capacitors of unknown capacitances
$C_{1}$ and $C_{2}$ are connected first in series and then in parallel, across a battery of 100 V . If the energy stored in the two combinations is
0.045 J and 0.25 J respectively determine the values of $C_{1}$ and $C_{2}$. Also calculate the charge on each capacitor in parallel combination.

## Watch Video Solution

11. State the principle of working of a galvanometer.

A galvanometer of resistance $G$ is converted into a voltmeter to measure upto V volts by connecting resistance $R_{1}$ in series with the coil. If a resistance $R_{2}$ is connected in series with it, then it can measure $\mathrm{V} / 2$ volts. Find the resistance, in terms of $R_{1}$ and $R_{2}$, required to be connected to convert it into a volt meter that can read upto 2 V . Also find the resistance

G of the galvanometer in terms of $R_{1}$ and $R_{2}$.

## View Text Solution

12. With what considerations in view, a photodiode is fabricated ? State its working with the help of a suitable diagram.

Even though the current in the forward bias is known to the more than in the reverse bias. yet the photodiode works in reverse bias What is the reason?

## D View Text Solution

13. In double slit experiment using light of wavelength 600 nm , the angular width of a fringe formed on a distant screen is $0.1^{\circ}$. What is the spacing between the two slits ?

## D Watch Video Solution

14. Answer the following questions:

Light of wavelength 5000 A propagating in air gets partly reflected from the surface of water.

How will the wavelengths and frequencies of the reflected and refracted light be affected?

## D Watch Video Solution

15. An inductor L of inductance $X_{L}$ is connected in series with a bulb $B$ and an $A C$ source. How would brightness of the bulb change when (i) number of turns in the inductor is increased (ii) an iron rod is inserted in the inductor and (iii) a capacitor of reactance $X_{C}=X_{L}$ is inserted in series .

## Watch Video Solution

## Section E

1. State Ampere's circuital law. Use this law to
obtain the expression for the magnetic field
inside an air cored toroid of average radius $r$
having $n$-turns per unit length and carrying a steady current I.

- Watch Video Solution

2. An observer to the left of a solenoid of $N$ turns each of cross section area ' $A$ ' observes that a steady current $I$ in it flows in the clockwise direction Depict the magnetic field lines due to the solenoid specifying its polarity and show mat it acts as a bar magnet of magnetic moment $\mathrm{m}=$ NIA


## - Watch Video Solution

3. Define mutual inductance and write its S.I. units.

## D Watch Video Solution

4. Write an expression for mutual inductance of two co-axial solenoids.

## D Watch Video Solution

5. An electric dipole of dipole moment $\vec{p}$
consists of point charges $+q$ and $-q$
separated by a distance 2a apart. Deduce the expression for the electric field $\vec{E}$ due to the dipole at a distance $x$ from the center of dipole on its axial line in terms of the dipole moment $\vec{p}$. Hence show that in the limit
$a \rightarrow 0 \vec{E}=\frac{2 \vec{p}}{\left(4 \pi \varepsilon_{0} x^{3}\right)}$.

## - Watch Video Solution

6. Given the electric field in the region $\vec{E}=2 \xi$ , find the net electric flux through the cube

## and enclosed by it.



## D View Text Solution

