© 'doubtnut

PHYSICS

BOOKS - CBSE COMPLEMENTARY MATERIAL PHYSICS (HINGLISH)

UNIT-III \& UNIT-IV MAGNETIC EFFECTS OF

CURRENT AND MAGNETISM \& E.M.I. AND

ALTERNATING CURRENT

Very Short Answer Questions 1 Mark

1. (a) What happens if a bar magnet is cut into two pieces (i) transverse to its length (ii) along its length?
(b) What happens if an iron bar magnet is melted?

Does it retain its magnetism?
(c) A magnetised needle in a uniform magnetic field
experiences a torque but no net force. However, an iron nail near a bar magnet experiences a force of attration in addition to a torque, explain.
(d) Must every magnetic field configuration have a north pole and a south pole? What about the field due to a toroid?
(e) Can you think of magnetic field configuration
with three poles?
(f) Two identical looking iron bars A and B are given, one of which is definitely known to be magnetised.

How would one ascertain whether or not both are magnetised? If only one is magnetised how does one ascertain which one? Use nothing else but the bars A and B.

- Watch Video Solution

2. How are the figure of merit and current sensitivity
of galvanometer related with each other?
3. Show graphically the variation of magnetic field due to a straight conductor of uniform cross-section or radius 'a' and carrying steady currently as a function of distance $r(a>r)$ from the axis of the conductor.

D Watch Video Solution

4. The force per unit length between two parallel long current carrying conductor is F . If the current in each conductor is tripled, what would be the value of the force per unit length between them?
5. How does the angle of dip vary from equator to poles?

- Watch Video Solution

6. What is the effect on the current measuring range of a galvanometer when it is shunted?
7. An electric current flows in a horizontal wire from

East to West. What will be the direction of magnetic field due to current at a point (i) North of wire, (ii) above the wire.

- Watch Video Solution

8. Suggest a method to shield a certain region of space from magnetic fields.
9. Why the core of a moving coil galvanometer is made of soft iron?

D View Text Solution

10. Where is the vertical component of earth's magnetic field zero?

- Watch Video Solution

11. What are the SI units of pole strength and magnetic moment?
12. If the magnetic field is parallel to the positive y axis and the charged particle is moving along the positive x-axis (Fig.), which way would the Lorentz force be for (a) an electron (negative charge), (b) a proton (positive charge).

13. If a toroid uses bismuth for its core, will the field in the core be greater or less than when the core is empty .

- Watch Video Solution

14. An electron beam projected along $+X$-axis, experience a force due to a magnetic field along the $+Y$-axis. What is the direction of the magnetic field?
15. What do you understand by figure of merit ?

D View Text Solution

16. What is the direction of magnetic dipole moment?

- Watch Video Solution

17. What is the angle of dip at a place where horizontal and vertical components of earth's field are equal?
18. Does a charge Particle gain K.E. when passed through magnetic field region? Justify.

- Watch Video Solution

19. Sketch the magnetic field lines for a current
carrying circular loop.

-
 Watch Video Solution

20. The core of a transformer is laminated to reduce

- Watch Video Solution

21. What is the direction of induced currents in metal rings 1 and 2 seen from the top when current I in the wire is increasing steadily

View Text Solution
22. In which of the following cases will the mutual inductance be (i) minimum (ii) maximum?

(a)

00000

(b)

(c)

- Watch Video Solution

23. In a series L-C-R circuit, voltages across inductor,
capacitor, and resistor are V_{L}, V_{C} and V_{R} respectively.
What is the phase difference between (i) V_{L} and V_{R}
(ii) V_{L} and V_{C} ?

D View Text Solution
24. Can we a transformer be used to step up or step down a D.C. voltage? Explain.

- Watch Video Solution

25. In an a.c. circuit, instantaneous voltage and current are $V=200 \sin 300 t$ volt and $i=8 \cos 300 t$ ampere respectively. What is the average power dissipated in the circuit?

- Watch Video Solution

26. Sketch a graph that shows change in reactance with frequency of a series LCR circuit.

D View Text Solution

27. A coil A is connected to an A.C. ammeter and another coil B to A source of alternaing e.m.f. How will
the reading of ammeter change if a copper plate is
introduced between the coils as shown.

D View Text Solution

28. In a circuit instantaneously voltage and current are
$V=150 \sin 314 t$ volt and $i=12 \cos 314 t \quad$ ampere
respectively. Is the nature of circuit is capacitive or inductive?

- Watch Video Solution

29. In a series LCR circuit, $V_{L}=V_{C} \neq V_{R}$. What is the value of power factor?

D Watch Video Solution

30. In an inductor L, current passed I_{0} and energy
stored in it is U. If the current is now reduced to $I_{0} / 2$,
what will be the new energy stored in the inductor?

- Watch Video Solution

31. A square loop a, b, c, d of a conducting wire has been changed into a rectangular loop a', b', c', d' as
shown in figure. What is the direction of induced current in the loop?

D View Text Solution
32. Twelve wires of equal lengths are connected in the form of a skeleton of a cube, which is moving with a velocity \vec{V} in the direction of magnetic field \vec{B}. Find the emf in each arm of the cube.

33. Current versus voltage ($1-\mathrm{v}$) graphs for two different series L-C-R circuits have been shown in adjoining diagram. R_{1} and R_{2} are resistances of the two circuits. Which one is greater- R_{1} or R_{2} ?

- Watch Video Solution

34. Why do we prefer carbon brushes than copper in an a.c. generator?
35. What are the values of capacitive and inductive reactance in a dc circuit?

(Watch Video Solution

36. Give the direction of the induced current in a coil mounted on an insulating stand when a bar magnet is quickly moved along the axis of the coil from one side
to the other as shown in figure.

- Watch Video Solution

37. In figure, the arm PQ is moved from $x=0 \operatorname{to} x=2 b$ with constant speed V . Consider the magnet field as shown in figure. Write
(i) direction of induced current in rod
(ii) polarity induced across rod.

- Watch Video Solution

38. A wire moves with some speed perpendicular to a magnetic field. Why is emf induced across the rod?
39. Predict the polarity of the capacitor in the situation described in the figure below.

D Watch Video Solution

40. Define RMS Value of Current.

D View Text Solution

41. In given figure three curves a, b and c shows
variation of resistance, (R) capacitive reactance $\left(X_{c}\right)$
and inductive $\left(X_{L}\right)$ reactance with frequency. Identify
the respective curves for these.

Frequency in Hz

- Watch Video Solution

42. A long straight wire with current i passes (without touching) three square wire loops with edge lengths
$2 \mathrm{~L}, 1.5 \mathrm{~L}$ and L . The loops are widely spaced (so as do not affect one another). Loops 1 and 3 are symmetric about the long wire. Rank the loops according to the size of the current induced in them if current i is (a) constant and (b) increasing.

D View Text Solution

43. In an L-C circuit, current is oscillating with
frequency $4 \times 10^{6} \mathrm{~Hz}$. What is the frequency with which magnetic energy is oscillating?
44. A current carrying wire (straight) passes inside a triangular coil as shown in figure. The current in the wire is perpendicular to paper inwards. Find the direction of induced current in the loop if current in
the wire is increasing with time.

- Watch Video Solution

45. Wire carrying a study current and rod $A B$ are in the
same plane the rod move parallel to wire with velocity
v then which end of the rod is at higher potential.

46. The current i in an induction coil varies with time t according to the graph

Draw the graph of induced e.m.f. with time.

- View Text Solution

47. Can a capacitor of suitable capacitance be used in an AC circuit in place of the choke coil ?
48. In the given figure,

a cylinderical bar magnet is rotated about its axis. A
wire is connected from the axis and is made to touch
the cylinderical surface through a contact. Then, current in the Ammeter is.....

- Watch Video Solution

Short Answer Questions 2 Marks

1. A galvanometer of resistance 120Ω gives full scale deflection for a current of 5 mA . How can it be converted into an ammeter of range 0 to 5 A ? Also determine the net resistance of the ammeter.
2. A current loop is placed in a uniform magnetic field in the following orientations (1) and (2). Calculate the magnetic moment in each case.

(i)

(ii)

D View Text Solution

3. A current of 10A flows through a semicircular wire of radius 2 cm as shown in figure (a). What is direction and magnitude of the magnetic field at the centre of
semicircle? Would your answer change if the wire were bent as shown in figure (b) ?

- Watch Video Solution

4. A proton an an α-particle, moving with the same velocity, enter a uniform magnetic field, acting normal to the plane of their motion. The ratio of the radii of the circular paths descirbed by the proton and α particle is
5. Mention two properties of soft iron due to which it is preferred for making electromagnet.

D View Text Solution

6. A magnetic dipole of magnetic moment M is kept in
a magnetic field B. What is the minimum and maximum
potential energy? Also give the most stable position and most unstable position of magnetic dipole.

D Watch Video Solution
7. (a) What happens if a bar magnet is cut into two pieces : (i) transverse to its length. (ii) along its length?

- Watch Video Solution

8. A steady current I flows along an infinitely long straight wire with circular cross-section of radius R.

What will be the magnetic field outside and inside the wire at a point r distance far from the axis of wire?

- View Text Solution

9. A circular coil of n turns and radius R carries a
current I . It is unwound and rewound to make another
square coil of side 'a' keeping number of turns and current same. Calculate the ratio of magnetic moment of the new coil and the original coil.

- Watch Video Solution

10. A coil of N turns and radius R carries a current I. It is unwound and rewound to make another coil of radius $R / 2$, current remaining the same. Calculate the ratio of magnetic moments of the new coil and the original coil.

- Watch Video Solution

11. At a place horizontal component of the earths magnetic field is B and angle of dip at the place is 60°.

What is the value of horizontal component of the earths magnetic field.
(i) at Equator, (ii) at a place where dip angle is 30°

- View Text Solution

12. A galvanometer coil has a resistance G. 1% of the total current goes through the coil and rest through
the shunt. What is the resistance of the shunt in terms of G?

- Watch Video Solution

13. Prove that magnetic moment of a hydrogen atom in its ground state is $e h / 4 \pi m$. Symbols have their usual meaning.

- Watch Video Solution

14. Each of conductors shown in figure carries 2A of current into or out of page. Two paths are indicated
for the line integral $\oint \stackrel{\rightharpoonup}{B}$. $\vec{d} I$. What is the value of the integral for the path (a) and (b).

(a)

(b)

- Watch Video Solution

15. What is the radius of the path of an electron (mass
$9 \times 10^{-31} \mathrm{~kg}$ and charge $1.6 \times 10^{-19} C$) moving at a speed of $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$ in a magnetic field of $6 \times 10^{-4} T$ perpendicular to it? What is its frequency?

Calculate its energy in $\mathrm{keV} .\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$.
16. Why is it necessary for voltmeter to have a higher resistance?

- View Text Solution

17. A $D C$ ammeter cannot measure alternating current because

- Watch Video Solution

18. Define the term: magnetic dipole moment of a current loop. Write the expression for the magnetic moment when an electron revolves at a speed v around an orbit of radius r in hydrogen atom.

- Watch Video Solution

19. An ac source of $r m s$ voltage V is put across a series
combination of an inductor L , capacitor C and a resistor R . If V_{L}, V_{C} and V_{R} are the rms voltage across L, C and R respectively then why is $V \neq V_{L}+V_{C}+V_{R}$? Write correct relation among V_{L}, V_{C} and V_{R}.

- View Text Solution

20. A bar magnet is falling with some acceleration 'a' along the vertical axis of a coil as shown in fig. What will be the acceleration of the magnet (whether $a>g$ or $\mathrm{a}<\mathrm{g}$ or $\mathrm{a}=\mathrm{g}$) if (a) coil ends are not connected to each other? (b) coil ends are connected to each other?

21. The series L-C-R circuit shown in fig. is in resonance state. What is the voltage across the inductor?

D Watch Video Solution

22. The division marked on the scale of an a.c. ammeter are not equally spaced. Why?
23. Circuit shown here uses an air filled parallel plate capacitor. A mica sheet is now introduced between the plates of capacitor. Explain with reason the effect on brightness of the bulb B.

D View Text Solution
24. In the figure shown, coils P and Q are identical and moving apart with same velocity V. Induced currents in the coils are I_{1} and I_{2}. Find I_{1} / I_{2}.

- Watch Video Solution

25. An electron is passing through a field but no force is acting on it. Under what conditions is it possible, if
the motion of the electron be in the (i) electric field (ii) magnetic field?

- Watch Video Solution

26. A $1.5 \mu \mathrm{~F}$ capacitor is charged to 57 V . The charging battery is then disconnected, and a 12 mH coil is connected in series with the capacitor so that LC Oscillations occur. What is the maximum current in the coil? Assume that the circuit has no resistance.
27. The self inductance of the motor of an electric fan
is 10 H . In order to impart maximum power at 50 Hz , it
should be connected to a capacitance of

- Watch Video Solution

28. A galvanometer needs 50 mV for full scale deflection
of 50 Divisions. Find it voltage sensitivity. What must be its resistance if its current sensitivity is 1 Div/A.

D View Text Solution

29. A light bulb and an open coil inductor are connected to an ac source through a key as shown in

Fig. The switch is closed and after sometime, an iron rod is inserted inot the interior of the inductor. The glow of the ligth bulb (a) increases (b) decreases (c) is unchanged as the iron is inserted. Give your answer with reasosns. What will be your answer if ac source is replaced by dc source ?

30. Show that in the free oscillations of an LC circuit,
the sum of energies stored in the capacitor and and the inductor is constant in time.

- Watch Video Solution

31. Show that the potential difference across the LC combination is zero at the resonating frequency in series LCR circuit
32. When a large amount of current is passing through solenoid, it contract, explain why ?

- View Text Solution

33. Answer the following questions :
(a) In any a.c. circuit, is the applied instantaneous
voltage equal to the algebraic sum of the instantaneous voltages acorss the series elements of the circuit ? Is the same true for r.m.s. voltage?
(b) A capacitor is used in the primary circuit of an induction coil.
(c) An applied voltage signal consists of a
superposition of a d.c. voltage and an a.c. voltage of
high frequency. The circuit consists of an inductor and
a capacitor in series. Show that the d.c. signal will appear across C and the a.c. signal will appear across L.
(d) A choke coil in series with a lamp is connected to a d.c. line. The lamp is seen to shine brightly. Insertion of an iron core in the choke causes no change in the lamp's brightness. Predict the corresponding observation if the connection is to an a.c. line.
(e) Why is choke coil needed in use of fluorescent tubes with ac mains ? Why can we not use an ordinary resistor instead of choke coil?
34. A bar magnet M is dropped so that is falls vertically through the coil C. The graph obtained for voltage produced across the coil Vs time is shown in figure.

(i) Explain the shape of the graph.
(ii) Why is the negative peak longer than the positive peak?

D View Text Solution
35. How does the mutual inductance of a pair of coils change when
(i) distance between the coils is increased and
(ii) number of turns in the coils is increased?

D Watch Video Solution

36. Two circular conductors are perpendicular to each other as shown in figure. If the current is changed in conductor B, will a current be induced in the
conductor A,

D Watch Video Solution
37. What is a radial magnetic field? Why is it required in a galvanometer ?
38. The hysterisis loop of material depends not only on the nature of material but also on the history of its magnetization cycles. Suggest a use of this property of material.

D View Text Solution

39. A wire in the form of a tightly would solenoid is
connected to a $D C$ source, and carries a current. If the
coil is stretched so that there are gaps between successive elements of the spiral coil, then
40. prove that the charge induced does not depend on the rate of change of magnetic flux.

- Watch Video Solution

41. Consider a magnet surround by a wire with an on /
of switch S (figure) if the switch is thrown from the off
position (open circuit) to the on position the (closed
circuit).

Circuit open

Circuit closed

- Watch Video Solution

Short Answers Questions 3 Marks

1. Derive an expression for the force between two long parallel current carrying conductors. Use this expression to define SI unit of current.

- Watch Video Solution

2. Distinguish between the magnetic properties of dia, para and ferromagnetic substances in terms of (i) susceptibility
(ii) magnetic permeability and
(iii) Coercivity. Give one example of each of these materials.

Draw the field lines due to an external magnetic field
near a (i) diamagnetic
(ii) paramagnetic substance.

- Watch Video Solution

3. Name the elements or parameters of earth's magnetic field.

- Watch Video Solution

4. Describe the path of a charged particle moving in a uniform magnetic field with initial velocity
(i) parallel to (or along) the field.
(ii) perpendicular to the field.
(iii) at an arbitrary angle $\theta\left(0^{\circ}<\theta<90^{\circ}\right)$.

- Watch Video Solution

5. Obtain an expression for the magnetic moment of an electron moving with a speed ' v ' in a circular orbit of radius ' r '. How does the magnetic moment change when :
(i) the frequency of revolution is doubled?
(ii) the orbital radius is halved?
6. State Ampere's circuital law. Use this law to obtain
the expression for the magnetic field inside an air cored toroid of average radius r having n-turns per unit length and carrying a steady current I.

- Watch Video Solution

7. (a)Using Ampere's circuitlal law,obtain the expression for the magnetic field due to a long solenoid at a point inside the solenoid on its axis.
(b)In what respect is a toroid different from a solenoid?Draw and compare the pattern of the magnetic field lines in the two cases.
(c)How is the magnetic field inside a given solenoid made strong?

- Watch Video Solution

8. A magnetic dipole of moment M is placed in uniform magnetic field B so that angle betweem direction of M and B is θ,the torque acting on the magnetic dipole is

- Watch Video Solution

9. A moving coil galvanometer has N number of turns in a coil of effective area. A it carries a current I. The
magnetic field B is radial. The torque acting on the coil is

- Watch Video Solution

10. One of the two identical conducting wires of length

L is bent in the form of a circular loop and the other one into a circular coil of N identical turns. If the same current passed in both, the ratio of the magnetic field at the central of the loop $\left(B_{L}\right)$ to that at the central of the coil $\left(B_{C}\right)$, i.e. $\frac{B_{L}}{B_{C}}$ will be :
11. Obtain an expression for the self inductance of a straight solenoid of length I and radius $r(l \gg r)$.

- Watch Video Solution

12. In a series L-C-R circuit X_{L}, X_{C} and R are the inductive reactance, capacitive reactance and resistance respectively at a certain frequency f. If the frequency of a.c. is doubled, what will be the values of reactances and resistance of the circuit?

- View Text Solution

13. Name four applications of Eddy currents.

- Watch Video Solution

14. (i) An a.c. Source of voltage $V=V_{0} \sin \omega t$ is connected to a series combination of L, C and R. Use the phasor diagram to obtain expression for impedance of the circuit and phase angle between voltage and current. Find the condition when current will be phase with the voltage. What is the circuit in this condition called ?
(ii) In a series LR circuit $X_{L}=R$ and power factor of the circuit is P_{1}. When capacitor which capacitance C
such that $X_{L}=X_{C}$ is put in series, the power factor
becomes P_{2}.Calculate P_{1} / P_{2}

- Watch Video Solution

15. A voltage, $E=E_{0} \sin \omega t$ is applied across an inductor L. Obtain an expression for the current.
16. The energy stored in an inductor of self-inductance

L henry carrying a current of I ampere is

- Watch Video Solution

17. A conducting rod held horizontally along East-West
direction is dropped from rest at certain height near
Earth's surface. Why should there be an induced e.m.f.
across the ends of the rod? Draw a graph showing the
variation of e.m.f. as a function of time from the instant it begins to fall.
18. In an LC circuit, resistance of the circuit is negligible. If time period of oscillation is T then :
(i) at what time is the energy stored completely electrical

D View Text Solution

19. In an LC circuit, resistance of the circuit is negligible. If time period of oscillation is T then :
(ii) at what time is the energy stored completely magnetic
20. In an LC circuit, resistance of the circuit is negligible. If time period of oscillation is T then :
(iii) at what time is the total energy shared equally between the inductor and capacitor.

D View Text Solution

21. An alternating voltage of frequency f is applied across a series $L C R$ circuit.Le f_{r} be the resonance frequency for the circuit.Will the current in the circuit lag, lead or remain in phase with the applied voltage when (i) $f>f_{r}$,(ii) $f<f_{r}$? Explain your answer in each case.

- Watch Video Solution

22. Fig. show three alternating circuits with equal currents. If frequency of alt. e.m.f be increased, what will be the effect on currents in the three cases? Explain.

- Watch Video Solution

23. Study the circuit (a) and (b) shown in Fig. and answer the following questions.
(a) Under which conditions would the rms currents in the two circuits be the same ?

Can the rms curent in circuit (b) be larger than that in
(a) ?

- Watch Video Solution

24. Can the instantaneous power output of an ac source ever be negative ? Can the average power output be negative ?

- Watch Video Solution

25. A device ' X ' is connected to an AC source. The variation of voltage, current and power in one complete cycle is shown in fig.

(a) Which curves shows power consumption over a full cycle?

- View Text Solution

26. A device ' X ' is connected to an AC source. The variation of voltage, current and power in one complete cycle is shown in fig.

(b) What is the average power consumption over a cycle?

D View Text Solution

27. A device ' X ' is connected to an AC source. The
variation of voltage, current and power in one complete cycle is shown in fig.

(c) Identify the device X if curve B shows voltage.

- View Text Solution

Long Answer Questions 5 Marks

1. Draw a neat and labelled diagram of a cyclotron.

State the underlying principle and explain how a positively charged particle gets accelerated in this
machine. Show mathematically that the cyclotron frequency does not depend upon the speed of the particle.

- Watch Video Solution

2. Draw a labelled diagram of AC generator. Derive the expression for the instantaneous value of the emf induced in the coil.
3. Describe the construction and working of a transformer with a neat labelled diagram

- Watch Video Solution

4. An L-C circuit contains inductor of inductance L and
capacitor of capacitance C with an initial charge q_{0}. The resistance of the circuit is negligible. Let the instant the circuit is closed be $t=0$.
(i) What is the total energy stored initially?

- Watch Video Solution

5. An L-C circuit contains inductor of inductance L and capacitor of capacitance C with an initial charge q_{0}. The resistance of the circuit is negligible. Let the instant the circuit is closed be $t=0$.
(i) What is the total energy stored initially?

- Watch Video Solution

Numericals

1. An electron travels on a circular path of radius 10 m in a magnetic field of $2 \times 10^{-3} \mathrm{~T}$. Calculate the speed
of electron. What is the potential difference through which it must be accelerated to acquire this speed?

- Watch Video Solution

2. A charge particle of mass m and charge q entered into magnetic field B normally after accelerating by potential difference V . Calculate radius of its circular path.

- Watch Video Solution

3. Calculate the magnetic field due to a circular coil of

500 turns and of mean diameter 0.1 m , carrying a current of 14 A (i) at a point on the axis distance 0.12 m from the centre of the coil (ii) at the centre of the coil.

- Watch Video Solution

4. An electron of kinetic energy 10 keV moves perpendicular to the direction of a uniform magnetic field of 0.8 milli tesla. Calculate the time period of rotation of the electron in the magnetic field.
5. If the current sensitivity of a moving coil galvanometer is increased by 20% and its resistance also increased by 50% then how will the voltage sensitivity of the galvanometer be affected?

D View Text Solution

6. A uniform wire is bent into one turn circular loop and same wire is again bent in two circular loop. For the same current passed in both the cases compare the magnetic field induction at their centres.

- Watch Video Solution

7. A horizontal electrical power line carries a current of

90A from east to west direction. What is the magnitude and direction of magnetic field produced by the power line at a point 1.5 m below it?

- View Text Solution

8. A galvanometer with a coil of resistance 90Ω shows
full scale deflection for a potential difference 25 mV .
What should be the value of resistance to convert the
galvanometer into a voltmeter of range 0 V to 5 V . How
should it be converted?
9. Two identical circular loops P and Q carrying equal currents are placed such that their geometrical axis are perpendicular to each other as shown in figure.

And the direction of current appear's anticlockwise as
seen from point O which is equidistant from loop P
and Q . Find the magnitude and direction of the net magnetic field produced at the p oint O .

$\tan \theta=\frac{B_{2}}{B_{1}}=1, \theta=\pi / 4$.

- Watch Video Solution

10. A cyclotron's oscillator frequency is 10 MHz . What should be the operating magnetic field for accelerating protons, if the radius of its dees is 60 cm ?

What is the kinetic energy of the proton beam produced by the accelerator? Given $e=1.6 \times 10^{-19} C, m=1.67 \times 10^{-27} \mathrm{~kg}$. Express your answer in units of $\mathrm{MeV}\left[1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J}\right]$.

D View Text Solution

11. The coil of a galvanometer is $0.02 \times 0.08 \mathrm{~m} 2$. It consists of 200 turns of fine wire and is in a magnetic
field of 0.2 tesla. The restoring torque constant of the suspension fibre is $10^{-6} \mathrm{Nm}$ per degree. Assuming the magnetic field to be radial.
(i) What is the maximum current that can be measured by the galvanometer, if the scale can accommodate
30° deflection?
(ii) What is the smallest, current that can be detected if the minimum observable deflection is 0.1° ?

- View Text Solution

12. A voltmeter reads 5 V at full scale deflection and is graded according to its resistance per volt at full scale deflection as $5000 \Omega V^{-1}$. How will you convert it into a voltmeter that reads 20 V at full scale deflection? Will it still be graded as $5000 \Omega V^{-1}$? Will you prefer this voltmeter to one that is graded as $2000 \Omega V^{-1}$?
13. A short bar magnet placed with its axis at 30° with an external field 1000 G experiences a torque of 0.02

Nm. (i) What is the magnetic moment of the magnet.
(ii) What is the work done in turning it from its most stable equilibrium to most unstable equilibrium position?

D View Text Solution

14. What is the magnitude of the equatorial and axial
fields due to a bar magnet of length 4 cm at a distance of 40 cm from its mid point? The magnetic moment of the bar magnet is a $0.5 \mathrm{Am}^{2}$

D View Text Solution

15. What is the magnitude of magnetic force per unit length on a wire carrying a current of 8 A and making an angle of 30° with the direction of a uniform magnetic field of 0.15T?

- Watch Video Solution

16. Two moving coil metres M_{1} and M_{2} have the following particular

$$
\begin{aligned}
& R_{1}=10 \Omega, N_{1}=30, A_{1}=3.6 \times 10^{-3} \mathrm{~m}^{2}, B_{1}=0.25 T \\
& R_{2}=14 \Omega, N_{2}=42, A_{2}=1.8 \times 10^{-3} \mathrm{~m}^{2}, B_{2}=0.50 T
\end{aligned}
$$

The spring constants are identical for the two metres.
What is the ratio of current sensitivity and voltage sensitivity of M_{2} to M_{1} ?

- Watch Video Solution

17. Figure shows a small magnetised needle P placed at a point O . The arrow shows the direction of magnetic moment. The other arrows show different positions
(and orientations of the magnetic moment) of another identical magnetised needle Q.

(a) In which configuration is the system not in equilibrium?
(b) In which configuration is the system in (i) stable and (ii) unstable equilibrium?
(c) Which configuration corresponds to the lowest potential energy among all the configurations shown?

18. Figure shows a small magnetised needle P placed at

a point O . The arrow shows the direction of magnetic moment. The other arrows show different positions
(and orientations of the magnetic moment) of another identical magnetised needle Q .

(a) In which configuration is the system not in equilibrium?
(b) In which configuration is the system in (i) stable and (ii) unstable equilibrium?
(c) Which configuration corresponds to the lowest potential energy among all the configurations shown?
19. Figure shows a small magnetised needle P placed at
a point O . The arrow shows the direction of magnetic moment. The other arrows show different positions
(and orientations of the magnetic moment) of another identical magnetised needle Q .

(a) In which configuration is the system not in equilibrium?
(b) In which configuration is the system in (i) stable and (ii) unstable equilibrium?
(c) Which configuration corresponds to the lowest potential energy among all the configurations shown?
20. In the circuit, the current is to be measured. What is the value of the current if the ammeter shown :

(a) is a galvanometer with a resistance $R_{G}=60 \Omega$,

D Watch Video Solution
21. In the circuit shown in figure, the current is to measured. What is the value of the current if the ammeter shown (i) is a galvanometer with a resistance $R_{G}=60 \cdot 00 \Omega$. (ii) is a galvanometer described in
but converted to an ammeter by a shunt resistance $r_{s}=0 \cdot 02 \Omega$, (iii) is an ideal ammeter with zero resistance?

22. In the circuit, the current is to be measured. What is the value of the current if the ammeter shown :

(c) is an ideal ammeter with zero resistance?

- Watch Video Solution

23. An element $d \vec{l}=d x \hat{i}$ (where $d x=1 \mathrm{~cm}$) is
placed at the origin and carries a large current
$i=10 \mathrm{~A}$. What is the magnetic field on the Y -axis at a distance of $0.5 m$?

- Watch Video Solution

24. A straight wire of mass 200 g and length 1.5 m
carries a current of 2 A . It is suspended in midair by a uniform horizontal magnetic field B. What is the magnitude of the magnetic field?

25. A rectangular loop of sides 25 cm and 10 cm carrying current of 15 A is placed with its longer side parallel to a long straight conductor 2.0 cm apart carrying a current of 25 A . What is the new force on the loop?

D View Text Solution

26. In a chamber, a uniform magnetic field of $6 \cdot 5 G\left(1 G=10^{-4} T\right)$ is maintained. An electron is shot into the field with a speed of $4.8 \times 10^{6} \mathrm{~ms}^{-1}$
normal to the field. (i) Explain why the path of the electron is a circle. Determine the radius of the circular orbit. $\left(e=1 \cdot 6 \times 10^{-19} C, m_{e}=9 \cdot 1 \times 10^{-31} \mathrm{~kg}\right)$.

D Watch Video Solution

27. In a chamber, a uniform magnetic field of $6 \cdot 5 G\left(1 G=10^{-4} T\right)$ is maintained. An electron is shot into the field with a speed of $4.8 \times 10^{6} \mathrm{~ms}^{-1}$ normal to the field. (i) Explain why the path of the electron is a circle. Determine the radius of the circular orbit. $\left(e=1 \cdot 6 \times 10^{-19} C, m_{e}=9 \cdot 1 \times 10^{-31} \mathrm{~kg}\right)$.
28. The horizontal and veritical components of eaths's
field at a place ar 0.22 gauss of 0.38 gauss, respectively.
Calculate the angle of dip and resultant intensity of earth's field.

- Watch Video Solution

29. Following figure shows the path of an electron that passes through two regions containing uniform magnetic fields of magnitudes B_{1} and B_{2}. It's path in
each region is a half circle, choose the correct option

- Watch Video Solution

30. In a series $C-R$ circuit, applied voltage is $V=110 \sin 314 t$ volt. What is the (i) The peak voltage
(ii) Average voltage over half cycle ?
31. Magnetic flux linked with each turn of a 25 turns coil is 6 milliweber. The flux is reduced to 1 mWb in 0.5 s . Find induced emf in the coil.

- Watch Video Solution

32. The current through an inductive circuit of inductance 4 mH is $\mathrm{i}=12 \cos 300 \mathrm{t}$ ampere. Calculate :
(i) Reactance of the circuit.

- View Text Solution

33. The current through an inductive circuit of inductance 4 mH is $\mathrm{i}=12 \cos 300 \mathrm{t}$ ampere. Calculate :
(ii) Peak voltage across the inductor.

- View Text Solution

34. A power transmission line feeds input power at 2400 V to a step down transformer with its primary windings having 4000 turns. What should be the number of turns in the secondary windings in order to get output power at 240 V ?
35. The magnetic flux linked with a closed circuit of resistance 8Ω varies with time according to the expression $\phi=\left(5 t^{2}-4 t+2\right)$ where ϕ is in milliweber and t in second. Calculate the value of induce current at $t=15 \mathrm{~s}$.

- Watch Video Solution

36. A capacitor, a resistor and 4 H inductor are connected in series to an a.c. source of 50 Hz . Calculate
capacitance of capacitor if the current is in phase with voltage.
37. A series C-R circuit consists of a capacitance 16 mF and resistance 8Ω. If the input a.c. voltage is ($200 \mathrm{~V}, 50$ Hz), Calculate (i) voltage across capacitor and resistor.
(ii) Phase by which voltage lags/leads current.

D View Text Solution

38. A rectangular conducting loop of length I and breadth b enters a uniform magnetic field B as shown below.

The loop is moving at constant speed v and at $t=0$ it just enters the field B. Sketch the following graphs for the time interval $\mathrm{t}=0$ to $t=\frac{3 I}{v}$.
(i) Magnetic flux versus time

D View Text Solution

39. A rectangular conducting loop of length I and breadth b enters a uniform magnetic field B as shown below.

The loop is moving at constant speed v and at $t=0$ it just enters the field B. Sketch the following graphs for the time interval $\mathrm{t}=0$ to $t=\frac{3 l}{v}$.
(ii) Induced emf versus times

D View Text Solution

40. A rectangular conducting loop of length I and breadth b enters a uniform magnetic field B as shown below.

The loop is moving at constant speed v and at $t=0$ it just enters the field B. Sketch the following graphs for the time interval $\mathrm{t}=0$ to $t=\frac{3 l}{v}$.
(iii) Power versus time

Resistance of the loop is R.

- Watch Video Solution

41. A charged 8 mF capacitor having charge 5 mC is connected to a 5 mH inductor. What is :
(i) the frequency of current oscillations?

D View Text Solution

42. A charged 8 mF capacitor having charge 5 mC is connected to a 5 mH inductor. What is :
(ii) the frequency of electrical energy oscillations in the capacitor?

- View Text Solution

43. A charged 8 mF capacitor having charge 5 mC is connected to a 5 mH inductor. What is :
(iii) the maximum current in the inductor?

- View Text Solution

44. A charged 8 mF capacitor having charge 5 mC is connected to a 5 mH inductor. What is :
iv) the magnetic energy in the inductor at the instant when charge on capacitor is 4 mC ?

- View Text Solution

45. $\mathrm{A} 31.4 \Omega$ resistor and 0.1 H inductor are connected in series to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source. Calculate
(i) the current in the circuit

- Watch Video Solution

46. A 31.4Ω resistor and 0.1 H inductor are connected in series to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source. Calculate
(ii) the voltage (rms) across the inductor and the resistor.

D Watch Video Solution

47. A 31.4Ω resistor and 0.1 H inductor are connected in series to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source. Calculate
(iii) is the algebraic sum of voltages across inductor and resistor more than the source voltage ? If yes, resolve the paradox.

D View Text Solution

48. A squre loop of side $a=12 \mathrm{~cm}$ with its sides parallel to x, and y-axis is moved with velocity, $V=8 \mathrm{~cm} / \mathrm{s}$ in the positive x direction in a magnetic field along the positive z-direction. The field is neither uniform in space nor constant in time. It has a gradient
$\partial B / \partial x=-10^{-3} T / c m$ along the x-direction, and it is changing in time at the rate $\partial B / \partial t=7 T / \mathrm{sec}$ in the loop if its resistance is $\mathrm{R}=4.5 \Omega$. Find the current .
49. A square loop of side 12 cm with its sides parallel to
x and y - axes is moved with a velocity $8 \mathrm{~cm} / \mathrm{s}$ along positive x-direction in an environment containing magnetic field along $+v e$ z-direction. The field has a gradient of 10^{-3} tesla/em along $-v e$ x-direction
(increasing along $-v e x$-axis) and also decreases with time at the rate of 10^{-3} tesla $/ s$. The emf induced in the loop is
50. Figure shows a wire ab of length I which can slide on a U-shaped rail of negligible resistance. The resistance of the wire is R. The wire is pulled to the right with a constant speed v. Draw an equivalent circuit diagram representing the induced emf by a battery. Find the current in the wire.

$$
\begin{cases}\bar{J}_{+}^{-} & \varepsilon=\mathrm{B} v / \\ \bar{彳}_{\mathrm{R}} & \mathrm{I}=\varepsilon / r=\frac{\mathrm{B} v /}{\mathrm{R}}\end{cases}
$$

51. A loop made of straight edegs has six corners at $A(0,0,0), B(L, O, 0) C(L, L, 0), D(0, L, 0) E(0, L, L)$ and $F(0,0, L)$. Where L is in meter. A magnetic field $B=B_{0}(\hat{i}+\hat{k}) T$ is present in the region. The flux passing through the loop $A B C D E F A$ (in that order) is

- Watch Video Solution

52. A coil of 0.01 henry inductance and 1 ohm resistance is connected to 200 volt, 50 Hz ac supply.

Find the impedance of the circuit and time lag between max. alternating voltage and current.

- Watch Video Solution

53. An electrical device draws 2 kW power form AC mains [voltage $223 \mathrm{~V}(\mathrm{rms})=\sqrt{50,000} \mathrm{~V}$]. The current differs (lags) in phase by $\phi\left(\tan =\frac{-3}{4}\right)$ as compared to voltage. Find (i) R, (ii) $X_{C}-X_{L}$, and (iii) I_{M}. Another device has twice the values for R, X_{C} and X_{L}. How are the answers affected ?

- Watch Video Solution

54. In a LCR circuit, the plot of $I_{\max }$ versus ω is shown in figure. Find the bandwith?

D View Text Solution

55. An inductor of unknown value, a capacitor of $100 \mu F$ and a resistor of 10 ohm are conneted in series
to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ a.c. source It is found that power
factor of the circuit is unity. Calculate inductance of the inductor and current amplitude.
56. A 100 turn coil of area $0.1 m^{2}$ rotates at half a revolution per second. It is placed in a magnetic field of 0.01 T perpendicular to the axis of rotation of the coil. Calculate the maximum voltage generated in the coil.

- Watch Video Solution

57. The magnetic flux linked with a large circular coil of radius R is $0.5 \times 10^{-3} \mathrm{~Wb}$, when current of 0.5 A flows through a small neighbouring coil of radius r. Calculate
the coefficient of mutual inductance for the given pair of coils.

If the current through the small coil suddenly falls to
zero, what would be the effect in the larger coil.

- View Text Solution

