©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

3D COORDINATION SYSTEM

Dpp 31

1. Given two points A and B. If area of triangle $A B C$ is constant then locus of point C in space is
A. sphere
B. cone
C. cylinder
D. None of these

Answer: C

- Watch Video Solution

2. The direction cosines of a line equally inclined to three mutually perpendiclar lines having direction cosines as $l_{1}, m_{1}, n_{1}, l_{2}, m_{2}, n_{2}$ and l_{3}, m_{3}, n_{3} are
A. $l_{1}+l_{2}+l_{3}, m_{1}+m_{2}+m_{3}, n_{1}+n_{2}+n_{3}$
B. $\frac{l_{1}+l_{2}+l_{3}}{\sqrt{3}}, \frac{m_{1}+m_{2}+m_{3}}{\sqrt{3}}, \frac{n_{1}+n_{2}+n_{3}}{\sqrt{3}}$
C. $\frac{l_{1}+l_{2}+l_{3}}{3}, \frac{m_{1}+m_{2}+m_{3}}{3}, \frac{n_{1}+n_{2}+n_{3}}{3}$
D. none of these

- Watch Video Solution

3. If $P(x, y, z)$ is a point on the line segment joining $Q(2,2,4)$ and $R(3,5,6)$ such that the projection of $\overrightarrow{O P}$ on the axes are $\frac{13}{5}, \frac{19}{5}, \frac{26}{5}$ respectively, then P divides $Q R$ in the ratio:
A. $1: 2$
B. $3: 2$
C. $2: 3$
D. $1: 3$

- Watch Video Solution

4. $A=\left[\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right]$ and $B=\left[\begin{array}{ccc}p_{1} & q_{1} & r_{1} \\ p_{2} & q_{2} & r_{2} \\ p_{3} & q_{3} & r_{3}\end{array}\right]$

Where p_{i}, q_{i}, r_{i} are the co-factors of the elements l_{i}, m_{i}, n_{i}
for $i=1,2,3$. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ and $\left(l_{3}, m_{3}, n_{3}\right)$
are the direction cosines of three mutually perpendicular
lines then $\left(p_{1}, q_{1}, r_{1}\right),\left(p_{2}, q_{2}, r_{2}\right)$ and $\left(p_{3}, q, r_{3}\right)$ are
A. the direction cosines of three mutually perpendicular
lines
B. the direction ratios of three mutually perpendicular lines which are not direction cosines.
C. the direction cosines of three lines which need not
be perpendicular
D. the direction of three lines which need not be perpendicular

Answer: A

- Watch Video Solution

5. A line segment joining ($1,0,1$) and the origin ($0,0,0$) is resolved about the x -axis to form a right circular cone. If (x, y, z) is any point on the cone, other than the origin, then it satisfies the equation

$$
\text { A. } x^{2}-2 y^{2}-z^{2}=0
$$

B. $x^{2}-y^{2}-z^{2}=0$
C. $2 x^{2}-y^{2}-2 z^{2}=0$
D. $x^{2}-2 y^{2}-2 z^{2}=0$

Answer: B

- Watch Video Solution

6. Three straight lines mutually perpendicular to each other meet in a point P and one of them intersects the x axis and another intersects the y-axis, while the third line passes through a fixed point $(0,0, c)$ on the z-axis. Then the locus of P is

$$
\text { A. } x^{2}+y^{2}+z^{2}-2 c x=0
$$

B. $x^{2}+y^{2}+z^{2}-2 c y=0$
C. $x^{2}+y^{2}+z^{2}-2 c z=0$
D. $x^{2}+y^{2}+z^{2}-2 c(x+y+z)=0$

Answer: C

- Watch Video Solution

7. ABCD is a tetrahedron such that each of the $\triangle A B C$,
$\triangle A B D$ and $\triangle A C D$ has a right angle at A . If $\operatorname{ar}(\triangle A B C)=k_{1} \cdot \operatorname{Ar}(\triangle A B D)=k_{2}, \operatorname{ar}(\triangle B C D)=k_{3}$ then $\operatorname{ar}(\triangle A C D)$ is
A. $\sqrt{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}}$
B. $\sqrt{\frac{k_{1} k_{2} k_{3}}{k_{1}+k_{2}+k_{3}}}$
C. $\sqrt{\left|k_{1}^{2}+k_{2}^{2}-k_{3}^{2}\right|}$
D. $\sqrt{\left|k_{2}^{2}-k_{1}^{2}-k_{3}^{2}\right|}$

Answer: C

- Watch Video Solution

8. Find the acute angle between the two straight lines whose direction cosines are given by $l+m+n=0$ and $l^{2}+m^{2}-n^{2}=0$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: B::D

- Watch Video Solution

9. The volume of a right triangular prism $A B C A_{1} B_{1} C_{1}$ is equal to 3. If the position vectors of the vertices of thebase

ABC are $A(1,0,1), B(2,0,0)$ and $C(O, 1,0)$, then position vectors of the vertex A_{1}, can be
A. $(-2,0,2)$
B. $(0,-2,0)$
C. $(0,2,0)$
D. $(2,2,2)$

- Watch Video Solution

10. A and B are two points with coordinates $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$, respectively, in space. Let P and Q be feet of the perpendicular drawn from A and B to a line L whose direction ratios are I, m, n. Let θ be the angle between $A B$ and L then find the value of $\cos \theta$

- Watch Video Solution

11. The direction cosines of two lines are connected by relation $l+m+n=0$ and 4 l is the harmonic mean between m and n .

Then,

