©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

AREA

Illustration

1. Find the area of the closed figure bounded by the curves $y=\sqrt{x}, y=\sqrt{4-3 x} a n d y=0$

- Watch Video Solution

2. Find the area, lying above the $\mathrm{x}=a \mathrm{ais}$ and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.
3. Find the area bounded by
(i) $\mathrm{y}=\log _{e}|x|$ and $y=0$
(ii) $y=\left|\log _{e}\right| x| |$ and $y=0$

- Watch Video Solution

4. Find the area bounded by $y=\frac{1}{x^{2}-2 x+2}$ and x -axis.

- Watch Video Solution

5. find the area of $y=3-2 x-x^{\wedge} 2$

- Watch Video Solution

6. If the area of bounded between the x-axis and the graph of $y=6 x-3 x^{2}$ between the ordinates $x=1 a n d x=a$ is 19 units, then a
can take the value 4 or -2 two value are in $(2,3)$ and one in $(-1,0)$ two value are in $(3,4)$ and one in $(-2,-1)$ none of these

- Watch Video Solution

7. Prove that area common to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and its auxiliary circle $x^{2}+y^{2}=a^{2}$ is equal to the area of another ellipse of semi-axis a and ab.

- Watch Video Solution

8. Let $f(x)=$ maximum $\left\{x^{2},(1-x)^{2}, 2 x(1-x)\right\}$ where $x \in[0,1]$. Determine the area of the region bounded by the curve $y=f(x)$ and the lines $y=0, x=0, x=1$.

- Watch Video Solution

9. Consider the region formed by the lines $x=0, y=0, x=2, y=2$. If the area enclosed by the curves $y=e^{x} a n d y=1 n x$, within this region, is being removed, then find the area of the remaining region.

- Watch Video Solution

10. Draw a rough sketch of the curve $y=\frac{x^{2}+3 x+2}{x^{2}-3 x+2}$ and find the area of the bounded region between the curve and the x-axis.

- Watch Video Solution

11. Find the area bounded by the curve $y=(x-1)(x-2)(x-3)$ lying between the ordinates $x=0 a n d x=3$.

- Watch Video Solution

12. Find the area bounded by the curve $x= \begin{cases}-2-y, & y<-1 \\ y^{3}, & -1 \leq y \leq 1 \\ 2-y, & y>1\end{cases}$ and $x=0$ is

- Watch Video Solution

13. Find the area enclosed by the graph of $y=\log _{e}(x+1)$, y-axis, and the line $y=1$

(Watch Video Solution

14. Find the area bounded by the curve $y=\sin ^{-1} x$ and the line $x=0,|y|=\frac{\pi}{2}$.

- Watch Video Solution

15. Find the area of the region bounded by the curves $y=\sqrt{x+2}$ and $y=\frac{1}{x+1}$ between the lines $\mathrm{x}=0$ and $\mathrm{x}=2$.

(D) Watch Video Solution

16. Find the area bounded by $y=\sin ^{-1} x, y=\cos ^{-1} x$, and the X-axis.

- Watch Video Solution

17. Find the area bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$.

- Watch Video Solution

18. Find the area bounded by the curves $y=\sin x a n d y=\cos x$ between two consecutive points of the intersection.

- Watch Video Solution

19. Find the ratio in which the area bounded by the curves $y^{2}=12 x$ and $x^{2}=12 y$ is divided by the line $x=3$.

- Watch Video Solution

20. Find the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$.

- Watch Video Solution

21. The area common to regions $x^{2}+y^{2}-2 x \leq 0$ and ygeq $\sin (\mathrm{pix} / 2)$

- Watch Video Solution

22. Find the area of the region enclosed by the curves $y=x \log x$ and $y=2 x-2 x^{2}$.

- Watch Video Solution

23. Find the area bounded by $y^{2} \leq 4 x, x^{2}+y^{2} \geq 2 x$, and $x \leq y+2$ in the first quadrant.

- Watch Video Solution

24. Sketch the region bounded by the curves $y=x^{2} a n d y=\frac{2}{1+x^{2}}$. Find the area.

- Watch Video Solution

25. Find the area bounded by the curves $y=x^{3}-x$ and $y=x^{2}+x$.

- Watch Video Solution

26. Find the area bounded by $y=-x^{3}+x^{2}+16 x$ and $y=4 x$
27. Find the area of the region enclosed by $y=-5 x-x^{2}$ and $y=x$ on interval $[-1,5]$

- Watch Video Solution

28. If the area enclosed by curve $y=f(x)$ andy $=x^{2}+2$ between the abscissa $x=2 a n d x=\alpha, \alpha>2$, is $\left(\alpha^{3}-4 \alpha^{2}+8\right) s q$. unit. It is known that curve $y=f(x)$ lies below the parabola $y=x^{2}+2$.

- Watch Video Solution

29. Let C_{1} and C_{2} be the graphs of the functions $y=x^{2}$ and $y=2 x$, respectively, where $0 \leq x \leq 1$. Let C_{3} be the graph of a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$, where $0 \leq x \leq 1, f(0)=0$. For a point P on C_{1}, let the lines through P , parallel to the axes, meet C_{2} and C_{3} at Q and R , respectively (see figure). If for every position of $P\left(o n C_{1}\right)$, the areas of the shaded
regions OPQ and ORP are equal, determine the function $f(x)$.

- Watch Video Solution

30.

If
the
area
bounded
by
$f(x)=\sqrt{\tan x}, y=f(c), x=0$ and $x=a, 0<c<a<\frac{\pi}{2}$ minimum then find the value of c.

- Watch Video Solution

31. Find the area of the region R which is enclosed by the curve $y \geq \sqrt{1-x^{2}}$ and $\max \{|x|,|y|\} \leq 4$.

- Watch Video Solution

32. Plot the region in the first quadrant in which points are nearer to the origin than to the line $x=3$.

- Watch Video Solution

33. Consider a square with vertices at $(1,1),(-1,1),(-1,-1)$ and $(1,-1)$. Let S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S and find its area.

- Watch Video Solution

34. Let $O(0,0), A(2,0), \operatorname{and} B\left(1 \frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all those points P inside $O A B$ which satisfy $d(P, O A) \leq \min [d(p, O B), d(P, A B)]$, where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area.

- Watch Video Solution

35. Find the area enclosed by $y=g(x), \mathrm{x}$-axis, $\mathrm{x}=1$ and $\mathrm{x}=37$, where $\mathrm{g}(\mathrm{x})$ is inverse of $f(x)=x^{3}+3 x+1$.

- Watch Video Solution

36. Find the area bounded by the curve $f(x)=x+\sin x$ and its inverse function between the ordinates $x=0$ to $x=2 \pi$.

- Watch Video Solution

1. Find the area bounded by the curve $x^{2}=y, x^{2}=-y a n d y^{2}=4 x-3$

- Watch Video Solution

2. Find the area of the region enclosed by the curve $y=\left|x-\frac{1}{x}\right|(x>0)$ and the line $\mathrm{y}=2$

- Watch Video Solution

3. Find the area of the region bounded by the curves $y=x^{2}, y=\left|2-x^{2}\right|$, andy $=2$, which lies to the right of the line $x=1$.

- Watch Video Solution

4. The ratio in which the line $x-1=0$ divides the area bounded by the curves $2 x+1=\sqrt{4 y+1}, y=x$ and $y=2$ is

- Watch Video Solution

5. If $S_{0}, S_{1}, S_{2}, \ldots$ are areas bounded by the x-axis and half-wave of the curve $y=\sin \pi \sqrt{x}, \quad$ then prove that $S_{0}, S_{1}, S_{2}, \ldots$ are in A.P...

- Watch Video Solution

6. Find the area of the figure enclosed by the curve $5 x^{2}+6 x y+2 y^{2}+7 x+6 y+6=0$.

- Watch Video Solution

7. Find the area bounded by the curves $x^{2}+y^{2}=4, x^{2}=-\sqrt{2} y$ and $x=y$
8. Find the area of the region bounded by the curve $C: y=\tan x$, tan $\geq n t d r a w n \rightarrow C$ at $x=\frac{\pi}{4}$, and the x-axis.

- Watch Video Solution

9. Compute the area of the region bounded by the curves $y-e x(\log)_{e} x a n d y=\frac{\log x}{e x}$

- Watch Video Solution

10. If A_{n} be the area bounded by the curve $y=(\tan x)^{n}$ and the lines $x=0, y=0, x=\pi / 4$, then for $n>2$.

- Watch Video Solution

1. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$

- Watch Video Solution

2. Find the area enclosed by the curves ${ }^{\wedge} x^{\wedge} 2=y, y=x+2$,

(D) Watch Video Solution

3.

A

curve
is
given
by
byy $=\left\{\left(\sqrt{4-x^{2}}\right), 0 \leq x<1 \sqrt{(3 x)}, 1 \leq x \leq 3\right.$. Find the area lying between the curve and x -axis.

- Watch Video Solution

4. Find the area bounded by $\begin{gathered} \\ x\end{gathered}=2 y-y^{\wedge} 2$
5. Find the area bounded by the x -axis, part of the curve $y=\left(1-\frac{8}{x^{2}}\right)$, and the ordinates at $x=2 a n d x=4$. If the ordinate at $x=a$ divides the area into two equal parts, then find a.

- Watch Video Solution

6. Find the area of the region bounded by the x-axis and the curves defined by $y=\tan x$,
(where $\frac{-\pi}{3} \leq x \leq \frac{\pi}{3}$) and $y=\cot x$.(where $\frac{\pi}{6} \leq x \leq \frac{2 \pi}{3}$)

- Watch Video Solution

7. Find the area bounded by $y=\left|\sin x-\frac{1}{2}\right|$ and $y=1$ for $x \in[0, \pi]$

- Watch Video Solution

8. If the area bounded by the graph of $y=x e^{-a x}(a>0)$ and the x -axis is $1 / 9$ then find the value of a.

Watch Video Solution

9. The area bounded by the curve $x y^{2}=a^{2}(a-x)$ and y-axis is

- Watch Video Solution

Concept Application Exercise 92

1. Find the area lying in the first quadrant and bounded by the curve $y=x^{3}$ and the line $y=4 x$.

- Watch Video Solution

2. Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.

- Watch Video Solution

3. Find the area enclosed by the figure described by the equation $x^{4}+1=2 x^{2}+y^{2}$.

- Watch Video Solution

4. In what ratio does the x-axis divide the area of the region bounded by the parabolas $y=4 x-x^{2}$ and $y=x^{2}-x$?

- Watch Video Solution

| 5. Find \quad the | area of | the | circle |
| :--- | :--- | :--- | :--- | :--- |
| $x^{2}+y^{2}=16$ whichisexteri or | \rightarrow theparabolay ${ }^{2}=6 x$ | by | using |

integration.

- Watch Video Solution

6. Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0, a n d x=3$.

- Watch Video Solution

7. Find the area of the region bounded by the limits $x=0, x=\frac{\pi}{2}, \operatorname{andf}(x)=\sin x, g(x)=\cos x$.

(Watch Video Solution

8. Find the area bounded by $y=\tan ^{-1} x, y=\cot ^{-1} x, a n d y-a \xi s$ in the first quadrant.
9.

Find
the area bounded $y=-(\log)_{e} x, y=(\log)_{e} x, y=(\log)_{e}(-x)$, andy $=-(\log)_{e}(-x)$.

- Watch Video Solution

10. Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

- Watch Video Solution

11. Sketch the region bounded by the curves $y=\sqrt{5-x^{2}}$ and $y=|x-1|$ and find its area.

- Watch Video Solution

12. Sketch the curves and identify the region bounded by the curves $x=\frac{1}{2}, x=2, y=\log x a n y=2^{x}$. Find the area of this region.
13. Find the area bounded by $y=x^{2}$ and $y=x^{1 / 3}$ for $x \in[-1,1]$.

- Watch Video Solution

14. Find the smallest area bounded by the curves $y=x-\sin x, y=x+\cos x$.

- Watch Video Solution

Concept Application Exercise 93

1. Find the continuous function f where $\left(x^{4}-4 x^{2}\right) \leq f(x) \leq\left(2 x^{2}-x^{3}\right)$ such that the area bounded by $y=f(x), y=x^{4}-4 x^{2}$. then y -axis, and the line $x=t$, where $(0 \leq t \leq 2) \quad$ is $\quad k \quad$ times the area bounded by $y=f(x), y=2 x^{2}-x^{3}, y-a \xi s$, and line $x=t(w h e r e 0 \leq t \leq 2)$.
2. If the area bounded by the x-axis, the curve $y=f(x),(f(x)>0)$ and the lines $x=1, x=b$ is equal to $\sqrt{b^{2}+1}-$ then find $\mathrm{f}(\mathrm{x})$.

- Watch Video Solution

3. The area bounded by the graph of $y=f(x), f(x)>0$ on $[0, \mathrm{a}]$ and x axis is $\frac{a^{2}}{2}+\frac{a}{2} \sin a+\frac{\pi}{2} \cos a$ then find the value of $f\left(\frac{\pi}{2}\right)$.

- Watch Video Solution

4. A curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is such that $f(x) \geq 0$ and $f(0)=0$ and bounds a curvilinear triangle with the base $[0, x]$ whose area is proportional to $(n+1)^{\text {th }}$ power of $f(x)$. If $f(1)=1$ then find $\mathrm{f}(\mathrm{x})$.
5. Find the area of curve enclosed by : $|x+y|+|x-y| \leq 4,|x| \leq 1, y \geq \sqrt{x^{2}-2 x+1}$.

(D) Watch Video Solution

6. Consider two regions
R_{1} : points P are nearer to $(1,0)$ than to $x=-1$.
R_{2} : Points P are nearer to $(0,0)$ than to $(8,0)$ Find the area of the region common to R_{1} and R_{2}.

- Watch Video Solution

7. If $f:[-1,1] \rightarrow\left[-\frac{1}{2}, \frac{1}{2}\right]: f(x)=\frac{x}{1+x^{2}}$, then find the area bounded by $y=f^{-1}(x)$, the x-axis and the lines $x=\frac{1}{2}, x=-\frac{1}{2}$.

- Watch Video Solution

1. Area enclosed by the curve $y=f(x)$ defined parametrically as $x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}$ isequa $<0 \quad \pi$ sqünits \quad (b) $\quad \frac{\pi}{2}$ sqünits $\frac{3 \pi}{4}$ squinits (d) $\frac{3 \pi}{2}$ squinits
A. π sq. units
B. $\pi / 2$ sq. units
C. $\frac{3 \pi}{4}$ sq. units
D. $\frac{3 \pi}{2}$ sq. units

Answer: A

- Watch Video Solution

2. Let $f(x)=$ minimum $(x+1, \sqrt{1-x})$ for all $x \leq 1$. Then the area bounded by $y=f(x)$ and the x -axis is k units then 6 k is equal to
A. $\frac{7}{3}$ sq. units
B. $\frac{1}{6}$ sq. units
C. $\frac{11}{6}$ sq. units
D. $\frac{7}{6}$ sq. units

Answer: D

- Watch Video Solution

3. The area of the closed figure bounded by $x=-1, y=0, y=x^{2}+x+1$, and the tangent to the curve $y=x^{2}+x+1$ at $\mathrm{A}(1,3)$ is
A. (a) $4 / 3$ sq. units
B. (b) $7 / 3$ sq. units
C. (c) $7 / 6$ sq. units
D. (d) None of these

Answer: C

4. The area bounded by the curve $a^{2} y=x^{2}(x+a)$ and the x-axis is
A. $a^{2} / 3$ sq. units
B. $a^{2} / 4$ sq. units
C. $3 a^{2} / 4$ sq. units
D. $a^{2} / 12$ sq. units

Answer: D

- Watch Video Solution

5. The area between the curve $y=2 x^{4}-x^{2}$, the x -axis, and the ordinates of the two minima of the curve is
A. $11 / 60$ sq. units
B. $7 / 120$ sq. units
C. $1 / 30$ sq. units
D. $7 / 90$ sq. units

Answer: B

- Watch Video Solution

6. The area of the closed figure bounded by $x=-1, x=2$, and
$y=\left\{-x^{2}+2, x \leq 12 x-1, x>1\right.$ and the ascissa axis is (a)
$\frac{16}{3}$ squinits (b) $\frac{10}{3}$ squinits (c) $\frac{13}{3}$ squinits (d) $\frac{7}{3}$ squinits
A. $16 / 3$ sq. units
B. $10 / 3$ sq. units
C. $13 / 3$ sq. units
D. $7 / 3$ sq. units

Answer: A

- Watch Video Solution

7. The value of the parameter a such that the area bounded by $y=a^{2} x^{2}+a x+1$, coordinate axes, and the line $\mathrm{x}=1$ attains its least value is equal to
A. $\frac{1}{4}$ sq. units
B. $-\frac{1}{2}$ sq. units
C. $\frac{3}{4}$ sq. units
D. -1 sq. units

Answer: C

- Watch Video Solution

8. The positive valu of the parameter ' k ' for which the area of the figure bounded by the curve $y=\sin (k x), x=\frac{2 \pi}{3 k}, x=\frac{5 \pi}{3 k}$ and x-axis is less than 2 can be
A. $\frac{1}{8}<k<\frac{3}{8}$
B. $0<k<\frac{1}{8}$
C. $1<k<2$
D. $\frac{3}{8}<k<\frac{5}{8}$

Answer: C

- Watch Video Solution

9. The area bounded by the curve $y=x\left(1-\log _{e} x\right)$ and x -axis is
A. $\frac{e^{2}}{4}$
B. $\frac{e^{2}}{2}$
C. $\frac{e^{2}-e}{2}$
D. $\frac{e^{2}-e}{4}$

Answer: A

10. The area inside the parabola $5 x^{2}-y=0$ but outside the parabola $2 x^{2}-y+9=0$ is (a) $12 \sqrt{3}$ sq units (b) $6 \sqrt{3}$ sq units (c) $8 \sqrt{3}$ sq units (d) $4 \sqrt{3}$ sq units
A. $12 \sqrt{3}$ sq. units
B. $6 \sqrt{3}$ sq. units
C. $8 \sqrt{3}$ sq. units
D. $4 \sqrt{3}$ sq. units

Answer: A

- Watch Video Solution

11. Area enclosed between the curves $|y|=1-x^{2}$ and $x^{2}+y^{2}=1$ is (a) $\frac{3 \pi-8}{3}$ (b) $\frac{\pi-8}{3}$ (c) $\frac{2 \pi-8}{3}$ (d) None of these
A. $\frac{3 \pi-8}{3}$ sq. units
B. $\frac{\pi-8}{3}$
C. $\frac{2 \pi-8}{3}$ sq. units
D. None of these

Answer: A

- Watch Video Solution

12. If A_{n} is the area bounded by $\mathrm{y}=\mathrm{x}$ and $y=x^{n}, n \in N$, then
$A_{2} . A_{3} \ldots A_{n}=$
A. $\frac{1}{n(n+1)}$
B. $\frac{1}{2^{n} n(n+1)}$
C. $\frac{1}{2^{n-1} n(n+1)}$
D. $\frac{1}{2^{n-2} n(n+1)}$

Answer: D

13. The area of the region is 1st quadrant bounded by the y-axis, $y=\frac{x}{4}, y=1+\sqrt{x}$, and $y=\frac{2}{\sqrt{x}}$ is
A. $2 / 3$ sq. units
B. $8 / 3$ sq. units
C. $11 / 3$ sq. units
D. $13 / 6$ sq. units

Answer: C

- Watch Video Solution

14. The area of the closed figure bounded by $y=\frac{x^{2}}{2}-2 x+2$ and the tangents to it at $\left(1, \frac{1}{2}\right) \operatorname{and}(4,2)$ is $\frac{9}{8}$ sqinits (b) $\frac{3}{8}$ squinits $\frac{3}{2}$ squinits (d) $\frac{9}{4}$ sqiunits
A. $9 / 8$ sq. units
B. $3 / 8$ sq. units
C. $3 / 2$ sq. units
D. $9 / 4$ sq. units

Answer: A

- Watch Video Solution

> 15. The area of the region bounded by $x^{2}+y^{2}-2 x-3=0$ and $y=|x|+1$ is
A. $\frac{\pi}{2}-1$ sq. units
B. 2π sq. units
C. 4π sq. units
D. $\pi / 2$ sq. units

Answer: A

16. The area enclosed by the curve $y=\sqrt{4-x^{2}}, y \geq \sqrt{2} \sin \left(\frac{x \pi}{2 \sqrt{2}}\right)$, and the x-axis is divided by the y-axis in the ratio.
(a) $\frac{\pi^{2}-8}{\pi^{2}+8}$
(b) $\frac{\pi^{2}-4}{\pi^{2}+4}$
(c) $\frac{\pi-4}{\pi-4}$
(d) $\frac{2 \pi^{2}}{2 \pi+\pi^{2}-8}$
A. $\frac{\pi^{2}-8}{\pi^{2}+8}$
B. $\frac{\pi^{2}-4}{\pi^{2}+4}$
C. $\frac{\pi-4}{\pi-4}$
D. $\frac{2 \pi^{2}}{2 \pi+\pi^{2}-8}$

Answer: D

- Watch Video Solution

17. The area bounded by the curve $y^{2}=1-x$ and the lines $y=\frac{[x]}{x}, x=-1$, and $x=\frac{1}{2}$ is
A. $\frac{3}{\sqrt{2}}-\frac{11}{6}$ sq. units
B. $3 \sqrt{2}-\frac{11}{4}$ sq. units
C. $\frac{6}{\sqrt{2}}-\frac{11}{5}$ sq. units
D. None of these

Answer: A

- Watch Video Solution

18. The area bounded by the curves $y=(\log)_{e} x a n d y=\left((\log)_{e} x\right)^{2}$ is
A. $e-2$ sq. units
B. $3-e$ sq. units
C. e sq. units
D. $e-1$ sq. units

Answer: B

19. The area bounded by $y=3-|3-x|$ and $y=\frac{6}{|x+1|}$ is
A. $\frac{15}{2}-6$ In 2 sq. units
B. $\frac{13}{2}-3$ In 2 sq. units
C. $\frac{13}{2}-6$ In 2 sq. units
D. None of these

Answer: C

- Watch Video Solution

20. Find the area enclosed between the curves:
$y=\log _{e}(x+e), x=\log _{e}\left(\frac{1}{y}\right) \&$ the x -axis.
A. 2 sq. units
B. 1 sq. units
C. 4 sq. units
D. None of these

Answer: A

- Watch Video Solution

21. Find the area enclosed the curve $y=\sin x$ and the X-axis between
$x=0$ and $x=\pi$.
A. $\frac{7}{2}$ sq. units
B. $\frac{7}{4}+\sqrt{3}$ sq. units
C. $\frac{7 \sqrt{3}}{4}$ sq. units
D. $7-\frac{\sqrt{3}}{4}$ sq. units

Answer: A

- Watch Video Solution

22. The area bounded by $y=x^{2}, y=[x+1], 0 \leq x \leq 2$ and the y-axis is where [.] is greatest integer function.
A. $\frac{1}{3}$
B. $\frac{\sqrt{2}}{3}$
C. 1
D. $\frac{7}{3}$

Answer: B

- Watch Video Solution

23. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the X-axis is
A. 7 sq. units
B. 6 sq. units
C. 9 sq. units
D. None of these

Answer: C

D Watch Video Solution

24. The area bounded by the curves $y=x e^{x}, y=x e^{-x}$ and the line
$x=1$ is $\frac{2}{e}$ sqünits (b) $1-\frac{2}{e}$ sqünits $\frac{1}{e}$ squinits (d) $1-\frac{1}{e}$ squnits
A. $\frac{2}{e}$ sq. units
B. $1-\frac{2}{e}$ sq. units
C. $\frac{1}{e}$ sq. units
D. $1-\frac{1}{e}$ sq. units

Answer: A

D Watch Video Solution

25. The area of the region whose boundaries are defined by the curves $\mathrm{y}=2$ $\cos x, y=3 \tan x$, and the y-axis is
A. $1+3 \operatorname{In}\left(\frac{2}{\sqrt{3}}\right)$ sq. units
B. $1+\frac{3}{2}$ In $3-3$ In 2 sq. units
C. $1+\frac{3}{2}$ In $3-\operatorname{In} 2$ sq. units
D. In $3-\operatorname{In} 2$ sq. units

Answer: B

- Watch Video Solution

26. Area bounded by $y=\sec ^{-1} x, y=\cot ^{-1} x$ and line $\mathrm{x}=1$ is given by
A. $\log (3+2 \sqrt{2})-\frac{\pi}{2}$ sq. units
B. $\frac{\pi}{2}-\log (3+2 \sqrt{2})$ sq. units
C. $\pi-\log _{e} 3$ sq. units
D. None of these

Answer: A

- Watch Video Solution

27. The area bounded by the curve $y=\frac{3}{|x|}$ and $y+|2-x|=2$ is

Watch Video Solution

28. The area enclosed by $y=x^{2}+\cos x$ and its normal at $x=\frac{\pi}{2}$ in the first quadrant is
A. $\frac{\pi^{5}}{32}-\frac{\pi^{4}}{64}+\frac{\pi^{3}}{32}+1$
B. $\frac{\pi^{5}}{16}-\frac{\pi^{4}}{32}+\frac{\pi^{3}}{24}-1$
C. $\frac{\pi^{5}}{32}-\frac{\pi^{4}}{32}+\frac{\pi^{3}}{16}$
D. $\frac{\pi^{5}}{32}-\frac{\pi^{4}}{32}+\frac{\pi^{3}}{24}+1$

Answer: D

- Watch Video Solution

29. Given $f(x)=\int_{0}^{x} e^{t}\left(\log _{e} \sec t-\sec ^{2} t\right) d t, g(x)=-2 e^{x} \tan x$, then the area bounded by the curves $y=f(x)$ and $y=g(x)$ between the ordinates $x=0$ and $x=\frac{\pi}{3}$, is (in sq. units)
A. $\frac{1}{2} e^{\frac{\pi}{3}} \log _{e} 2$
B. $e^{\frac{\pi}{3}} \log _{e} 2$
C. $\frac{1}{4} e^{\frac{\pi}{3}} \log _{e} 2$
D. $e^{\frac{\pi}{3}} \log _{e} 3$

Answer: B

- Watch Video Solution

30. The area of the loop of the curve $a y^{2}=x^{2}(a-x)$ is $4 a^{2}$ squinits (b) $\frac{8 a^{2}}{15}$ squinits $\frac{16 a^{2}}{9}$ squinits (d) None of these
A. $4 a^{2}$ sq. units
B. $\frac{8 a^{2}}{15}$ sq. units
C. $\frac{16 a^{2}}{9}$ sq. units
D. None of these

Answer: B

- Watch Video Solution

31. Aea of the region nclosed between the curves $x=y^{2}-1$ and $x=|y| \sqrt{1-y^{2}}$ is
A. 1 sq. units
B. $4 / 3$ sq. units
C. $2 / 3$ sq. units
D. 2 sq. units

Answer: D

- Watch Video Solution

32. The area bounded by the loop of the curve $4 y^{2}=x^{2}\left(4-x^{2}\right)$ is given by (1) $\frac{7}{3}$ (2) $\frac{8}{3}$ (3) $\frac{11}{3}$ (4) $\frac{16}{3}$
A. $7 / 3$ sq. units
B. $8 / 3$ sq. units
C. $11 / 3$ sq. units
D. $16 / 3$ sq. units
33. The area enclosed by the curves
$x y^{2}=a^{2}(a-x) \operatorname{and}(a-x) y^{2}=a^{2} x$ is
A. $(\pi-2) a^{2}$ sq. units
B. $(4-\pi) a^{2}$ sq. units
C. $\pi a^{2} / 3$ sq. units
D. None of these

Answer: A

- Watch Video Solution

34. The area bounded by the two branches of curve $(y-x)^{2}=x^{3}$ and the straight line $x=1$ is $\frac{1}{5}$ squinits (b) $\frac{3}{5}$ squinits $\frac{4}{5}$ squinits $\frac{8}{4}$ squinits
A. $1 / 5$ sq. units
B. $3 / 5$ sq. units
C. $4 / 5$ sq. units
D. $8 / 4$ sq. units

Answer: C

- Watch Video Solution

35. The area bounded by the curves
$y=\sin ^{-1}|\sin x|$ and $y=\left(\sin ^{-1}|\sin x|\right)^{2}$, where $0 \leq x \leq 2 \pi$, is
A. $\frac{1}{3}+\frac{\pi^{2}}{4}$ sq. units
B. $\frac{1}{6}+\frac{\pi^{3}}{8}$ sq. units
C. 2 sq. units
D. None of these

Answer: D

- Watch Video Solution

36. Consider two curves $C_{1}: y^{2}=4[\sqrt{y}] \operatorname{xandC}_{2}: x^{2}=4[\sqrt{x}] y$, where
[.] denotes the greatest integer function. Then the area of region enclosed by these two curves within the square formed by the lines $x=1, y=1, x=4, y=4$ is (a) $\frac{8}{3}$ squinits (b) $\frac{10}{3}$ squinits (c) $\frac{11}{3}$ squinits (d) $\frac{11}{4}$ squinits
A. $8 / 3$ sq. units
B. $10 / 3$ sq. units
C. $11 / 3$ sq. units
D. $11 / 4$ sq. units

Answer: C

- Watch Video Solution

37. The area enclosed between the curve $y^{2}(2 a-x)=x^{3}$ and the line $x=2$ above the x-axis is
A. πa^{2} sq. units
B. $\frac{3 \pi a^{2}}{2}$ sq. units
C. $2 \pi a^{2}$ sq. units
D. $3 \pi a^{2}$ sq. units

Answer: B

D Watch Video Solution

38. The area of the region of the plane bounded by $\max (|x|,|y|) \leq 1$ and $x y \leq \frac{1}{2}$ is
(a) $\frac{1}{2}+\ln 2$ sq. units
(b) $3+\ln 2$ sq.units
(c) $\frac{31}{4}$ sq. units
(d) $1+2 \ln 2$ sq.units
A. $1 / 2+\ln 2$ sq. units
B. $3+\ln 2$ sq. units
C. $31 / 4$ sq. units
D. $1+2 \ln 2$ sq. units

Answer: B

- Watch Video Solution

39. Find tha area of the region containing the points (x, y) satisfying $4 \leq x^{2}+y^{2} \leq 2(|x|+|y|)$.
A. 8 sq. units
B. 2 sq. units
C. 4π sq. units
D. 2π sq. units

Answer: A

40. Let $f(x)$ be a non-negative continuous function such that the area bounded by the curve $y=f(x)$, the x-axis, and the ordinates $x=\frac{\pi}{4}$ and $x=\beta>\frac{\pi}{4}$ is $\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta$. Then $f^{\prime}\left(\frac{\pi}{2}\right)$ is
A. $\left(\frac{\pi}{2}-\sqrt{2}-1\right)$
B. $\left(\frac{\pi}{4}+\sqrt{2}-1\right)$
C. $-\frac{\pi}{2}$
D. $\left(1-\frac{\pi}{2}-\sqrt{2}\right)$

Answer: C

- Watch Video Solution

Multiple Correct Answers Type

1. Let $A(k)$ be the area bounded by the curves $y=x^{2}-3$ and $y=k x+2$ The range of $A(k)$ is $\left(\frac{10 \sqrt{5}}{3}, \infty\right)$ The range of $A(k)$ is

$\left(\frac{20 \sqrt{5}}{3}, \infty\right)$ If function $k \vec{A}(k)$ is defined for $k \in[-2, \infty)$, then $A(k)$

 is many-one function. The value of k for which area is minimum is 1 .A. The range of $A(k)$ is $\left[\frac{10 \sqrt{5}}{3}, \infty\right)$
B. The range of $A(k)$ is $\left[\frac{20 \sqrt{5}}{3}, \infty\right)$
C. If function $k \rightarrow A(k)$ is defined for $k \in[-2, \infty)$, then $\mathrm{A}(\mathrm{k})$ is many-one function
D. The value of k for which area is minimum is 1

Answer: B::C

- Watch Video Solution

2. The parabolas $y^{2}=4 x a n d x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are the areas of these parts numbered from top to bottom, respectively, then

$$
S_{1}: S_{2} \equiv 1: 1 \text { (b) } S_{2}: S_{3} \equiv 1: 2 S_{1}: S_{3} \equiv 1: 1 \text { (d) } S_{1}:\left(S_{1}+S_{2}\right)=1: 2
$$

A. $S_{1}: S_{2} \equiv 1: 1$
B. $S_{2}: S_{3} \equiv 1: 2$
C. $S_{1}: S_{3} \equiv 1: 1$
D. $S_{1}:\left(S_{1}+S_{2}\right)=1: 2$

Answer: A::C::D

- Watch Video Solution

3. Which of the following have the same bounded area $f(x)=s \in x, g(x)=\sin ^{2} x$, where $0 \leq x \leq 10 \pi$

$$
f(x)=s \in x, g(x)=|s \in x|, \text { where } 0 \leq x \leq 20 \pi
$$

$$
f(x)=|s \in x|, g(x)=\sin ^{3} x, \text { where } 0 \leq x \leq 10 \pi
$$

$$
f(x)=s \in x, g(x)=\sin ^{4} x, \text { where } 0 \leq x \leq 10 \pi
$$

A. $f(x)=\sin x, g(x)=\sin ^{2} x$, where $0 \leq x \leq 10 \pi$
B. $f(x)=\sin x, g(x)=|\sin |, \quad$ where $0 \leq x \leq 20 \pi$
C. $f(x)=|\sin |, g(x)=\sin ^{3} x, \quad$ where $0 \leq x \leq 10 \pi$
D. $f(x)=\sin x, g(x)=\sin ^{4} x, \quad$ where $0 \leq x \leq 10 \pi$

Answer: A::C::D

- Watch Video Solution

4. If the curve $y=a x^{\frac{1}{2}}+b x$ passes through the point $(1,2)$ and lies above the x-axis for $0 \leq x \leq 9$ and the area enclosed by the curve, the x axis, and the line $x=4$ is 8 sq. units, then (a) $a=1$ (b) $b=1 a=3$ (d) $b=-1$
A. $a=1$
B. $b=1$
C. $a=3$
D. $b=-1$

Answer: C::D

5. The area bounded by the curve $x=a \cos ^{3} t,, y=a \sin ^{3} t$, is :
A. $12 a^{2} \int_{0}^{\pi / 2} \cos ^{4} t \sin ^{2} t d t$
B. $12 a^{2} \int_{0} \cos ^{2} t \sin ^{4} t d t$
C. $2 \int_{-a}^{a}\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2} d x$
D. $4 \int_{0}^{a}\left(a^{2 / 3}-x^{2 / 3}\right) d x$

Answer: A::C::D

- Watch Video Solution

6. If A_{1} is the area area bounded by $\left|x-a_{i}\right|+|y|=b_{i}, i \in N$,where $a_{i+1}=a_{i}+\frac{3}{2} b_{i}$ and $b_{i+1}=\frac{b_{i}}{2}, a_{i}=0$ and $b_{i}=32$, then
A. $A_{3}=128$
B. $A_{3}=256$
C. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A_{i}=\frac{8}{3}(32)^{2}$
D. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A_{i}=\frac{4}{3}(16)^{2}$

Answer: A:C

- Watch Video Solution

7. Find the area bounded by the curve $y=2 x-x^{2}$, and the line $y=x$
A. $2 \int_{1}^{e} \sqrt{\log _{e} y} d y$
B. $2 e-\int^{1} e^{x^{2}} d x$
C. $\int_{-1}^{1}\left(e-e^{x^{2}}\right) d x$
D. $2 \int_{0} \sqrt{x} e^{x} d x$

Answer: A::B::C::D

8. The area bounded by the curves $y=|x|-1$ and $y=-|x|+1$ is 1 sq. units (b) 2 sq. units $2 \sqrt{2}$ sq. units (d) 4 sq. units
A. $\alpha=e^{2}+1$
B. $\alpha=e^{2}-2$
C. $\beta=1+e^{-1}$
D. $\beta=1+e^{-2}$

Answer: A: D

- Watch Video Solution

9.

Consider
curves
$S_{1}: \sqrt{|x|}+\sqrt{|y|}=\sqrt{a}, S_{2}: x^{2}+y^{2}=a^{2}$ and $S_{3}:|x|+|y|=a$. If α is the area bounded by S_{2} and S_{3}, then
A. $\alpha=a^{2}\left(\pi-\frac{2}{3}\right)$
B. $\beta=\frac{4 a^{2}}{3}$
C. $\gamma=2 a^{2}(\pi-1)$
D. the ratio in which S_{3} divides area between S_{1} and S_{2} is $4: 3(\pi-2)$

Answer: A::B::D

D Watch Video Solution

10. Let $A(k)$ be the area bounded by the curves $y=x^{2}+2 x-3$ and $y=k x+1$. Then
A. the value of k for which $A(k)$ is least is 2
B. the value of k for which $A(k)$ is least is $3 / 2$
C. least value of $A(k)$ is $32 / 3$
D. least value of $A(k)$ is $64 / 3$

Answer: A::C

11. The area of the region bounded by the curve $y=e^{x}$ and lines $\mathrm{x}=0$ and $y=e$ is
A. $e-1$
B. $\int_{1}^{e} \operatorname{In}(e+1-y) d y$
C. $e-\int_{0}^{1} e^{x} d x$
D. $\int_{1}^{e} \operatorname{In} \mathrm{y} d y$

Answer: B::C::D

12. The area of the region $R=\left\{(x, y):|x| \leq|y|\right.$ and $\left.x^{2}+y^{2} \leq 1\right\}$ is
A. $\frac{1}{2}<\alpha<1$
B. $\alpha^{4}+4 \alpha^{2}-1=0$
C. $0<\alpha \leq \frac{1}{2}$
D. $2 \alpha^{4}-4 \alpha^{2}+1=0$

Answer: A::D

- Watch Video Solution

13. Let $f: R \rightarrow R$ be a differentiable function such that $f(x)=x^{2}+\int_{0}^{x} e^{-t} f(x-t) d t$.
$y=f(x)$ is
A. The curve $y=f(x)$ passes through the point $(1,2)$
B. The curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ passes through the point $(2,-1)$
C. The
area
of
the
region
$\left\{(x, y) \in[0,1] \times R: f(x) \leq y \leq \sqrt{1-x^{2}}\right\}$ is $\frac{\pi-2}{4}$
D. The
area
of
the
region

$$
\left\{(x, y) \in[0,1] \times R: f(x) \leq y \leq \sqrt{1-x^{2}}\right\} \text { is } \frac{\pi-1}{4}
$$

- Watch Video Solution

Linkded Comprehension Type

1. Let A_{r} be the area of the region bounded between the curves $y^{2}=\left(e^{-k r}\right) x($ where $k>0, r \in N)$ and the line $y=m x($ where $m \neq 0$, k and m are some constants $A_{1}, A_{2}, A_{3}, \ldots$ are in G.P. with common ratio
A. e^{-k}
B. $e^{-2 k}$
C. $e^{-4 k}$
D. None of these

Answer: B

2. Let A_{r} be the area of the region bounded between the curves $y^{2}=\left(e^{-k r}\right) x($ where $k>0, r \in N)$ and the line $y=m x($ where $m \neq 0$, k and m are some constants
$\lim _{n \rightarrow \infty} \Sigma_{i=1}^{n} A_{i}=\frac{1}{48\left(e^{2 k}-1\right)}$ then the value of m is
A. 3
B. 1
C. 2
D. 4

Answer: C

- Watch Video Solution

3. If $y=f(x)$ is a monotonic function in ($a, b)$, then the area bounded by the ordinates at $x=a, x=b, y=f(x)$ and $y=f(c)($ where $c \in(a, b))$ is minimum whe

Proof : $A=\int_{a}^{c}(f(c)-f(x)) d x+\int_{c}^{b}(f(c)) d x$ $=f(c)(c-a)-\int_{a}^{c}(f(x)) d x+\int_{a}^{b}(f(x)) d x-f(c)(b-c)$
$\Rightarrow \quad A=[2 c-(a+b)] f(c)+\int_{c}^{b}(f(x)) d x-\int_{a}^{c}(f(x)) d x$

Differentiating w.r.t. c, we get

$\frac{d A}{d c}=[2 c-(a+b)] f^{\prime}(c)+2 f(c)+0-f(c)-(f(c)-0)$
For maxima and minima, $\frac{d A}{d c}=0$

$$
\Rightarrow \quad f^{\prime}(c)[2 c-(a+b)]=0\left(a s f^{\prime}(c) \neq 0\right)
$$

Hence, $c=\frac{a+b}{2}$
Also for $c<\frac{a+b}{2}, \frac{d A}{d c}<0$ and for $c>\frac{a+b}{2}, \frac{d A}{d c}>0$

Hence, A is minimum when $c=\frac{a+b}{2}$.
If the area bounded by $f(x)=\frac{x^{3}}{3}-x^{2}+a$ and the straight lines $\mathrm{x}=0$, $x=2$, and the x-axis is minimum, then the value of a is
A. $1 / 2$
B. 2
C. 1
D. $2 / 3$

Answer: D

- Watch Video Solution

4. If $y=f(x)$ is a monotonic function in ($a, b)$, then the area bounded by the ordinates at $x=a, x=b, y=f(x)$ and $y=f(c)($ where $c \in(a, b))$ is min iumwhen $c=\frac{a+b}{2}$.
Proof: $A=\int_{a}^{c}(f(c)-f(x)) d x+\int_{c}^{b}(f(c)) d x$
$=f(c)(c-a)-\int_{a}^{c}(f(x)) d x+\int_{a}^{b}(f(x)) d x-f(c)(b-c)$
$\Rightarrow \quad A=[2 c-(a+b)] f(c)+\int_{c}^{b}(f(x)) d x-\int_{a}^{c}(f(x)) d x$

Differentiating w.r.t. c, we get

$$
\frac{d A}{d c}=[2 c-(a+b)] f^{\prime}(c)+2 f(c)+0-f(c)-(f(c)-0)
$$

For maxima and minima, $\frac{d A}{d c}=0$

$$
\Rightarrow \quad f^{\prime}(c)[2 c-(a+b)]=0\left(a s f^{\prime}(c) \neq 0\right)
$$

Hence, $c=\frac{a+b}{2}$
Also for $c<\frac{a+b}{2}, \frac{d A}{d c}<0$ and for $c>\frac{a+b}{2}, \frac{d A}{d c}>0$ Hence, A is minimum when $c=\frac{a+b}{2}$.

The value of the parameter a for which the area of the figure bounded by
the abscissa axis, the graph of the function $y=x^{3}+3 x^{2}+x+a$, and the straight lines, which are parallel to the axis of ordinates and cut the abscissa axis at the point of extremum of the function, which is the least, is
A. 2
B. 0
C. -1
D. 1

Answer: C

- Watch Video Solution

5. If $y=f(x)$ is a monotonic function in ($a, b)$, then the area bounded by the ordinates
$x=a, x=b, y=f(x)$ and $y=f(c)($ where $c \in(a, b))$ is minimum whe

Proof : $A=\int_{a}^{c}(f(c)-f(x)) d x+\int_{c}^{b}(f(c)) d x$
$=f(c)(c-a)-\int_{a}^{c}(f(x)) d x+\int_{a}^{b}(f(x)) d x-f(c)(b-c)$
$\Rightarrow \quad A=[2 c-(a+b)] f(c)+\int_{c}^{b}(f(x)) d x-\int_{a}^{c}(f(x)) d x$

Differentiating w.r.t. c, we get
$\frac{d A}{d c}=[2 c-(a+b)] f^{\prime}(c)+2 f(c)+0-f(c)-(f(c)-0)$
For maxima and minima, $\frac{d A}{d c}=0$

$$
\Rightarrow \quad f^{\prime}(c)[2 c-(a+b)]=0\left(a s f^{\prime}(c) \neq 0\right)
$$

Hence, $c=\frac{a+b}{2}$
Also for $c<\frac{a+b}{2}, \frac{d A}{d c}<0$ and for $c>\frac{a+b}{2}, \frac{d A}{d c}>0$ Hence, A is minimum when $c=\frac{a+b}{2}$.

If the area enclosed by $f(x)=\sin x+\cos x, y=a$ between two consecutive points of extremum is minimum, then the value of a is
A. 0
B. -1
C. 1
D. 2

Answer: A

- Watch Video Solution

6. Consider the area $S_{0}, S_{1}, S_{2} \ldots$. bounded by the x-axis and half-waves of the curve $y=e^{-x} \sin x, \quad$ where $x \geq 0$.

The value of S_{0} is
A. $\frac{1}{2}\left(1+e^{\pi}\right)$ sq. units
B. $\frac{1}{2}\left(1+e^{-\pi}\right)$ sq. units
C. $\frac{1}{2}\left(1-e^{-\pi}\right)$ sq. units
D. $\frac{1}{2}\left(e^{\pi}-1\right)$ sq. units

Answer: A

- Watch Video Solution

7. Consider the sequence of natural numbers s_{0}, s_{1}, s_{2},... such that $s_{0}=3, s_{1}=3$ and $s_{n}=3+s_{n-1} s_{n-2}$, then
A. $\frac{e^{\pi}}{2}$
B. $e^{-\pi}$
C. e^{π}
D. $\frac{e^{-\pi}}{2}$

Answer: C

8. Consider the area $S_{0}, S_{1}, S_{2} \ldots$. bounded by the x-axis and half-waves of the curve $y=e^{-x} \sin x, \quad$ where $x \geq 0$.

The value of S_{0} is
A. $\frac{1+e^{\pi}}{1-e^{-\pi}}$
B. $\frac{\frac{1}{2}\left(1+e^{\pi}\right)}{1-e^{\pi}}$
C. $\frac{1}{2\left(1-e^{-\pi}\right)}$
D. None of these

Answer: B

- Watch Video Solution

9.

Two
curves
$C_{1} \equiv[f(y)]^{2 / 3}+[f(x)]^{1 / 3}=0$ and $C_{2} \equiv[f(y)]^{2 / 3}+[f(x)]^{2 / 3}=12$,
satisfying the
relation
$(x-y) f(x+y)-(x+y) f(x-y)=4 x y\left(x^{2}-y^{2}\right)$
The area bounded by the curve C_{1} and C_{2} is
A. (a) $2 \pi-\sqrt{3}$ sq. units
B. (b) $2 \pi+\sqrt{3}$ sq. units
C. (c) $\pi+\sqrt{6}$ sq. units
D. (d) $2 \sqrt{3}-\pi$ sq. units

Answer: B

- Watch Video Solution

10.

Two
curves
$C_{1} \equiv[f(y)]^{2 / 3}+[f(x)]^{1 / 3}=0$ and $C_{2} \equiv[f(y)]^{2 / 3}+[f(x)]^{2 / 3}=12$,
satisfying
the
relation
$(x-y) f(x+y)-(x+y) f(x-y)=4 x y\left(x^{2}-y^{2}\right)$
The area bounded by the curve C_{2} and $|x|+|y|=\sqrt{12}$ is
A. (a) $12 \pi-24$ sq. units
B. (b) $6-\sqrt{12}$ sq. units
C. (c) $2 \sqrt{12}-6$ sq. units
D. (d) None of these

Answer: A

- Watch Video Solution

11.

$C_{1} \equiv[f(y)]^{2 / 3}+[f(x)]^{1 / 3}=0$ and $C_{2} \equiv[f(y)]^{2 / 3}+[f(x)]^{2 / 3}=12$,
satisfying the
relation
$(x-y) f(x+y)-(x+y) f(x-y)=4 x y\left(x^{2}-y^{2}\right)$
The area bounded by C_{1} and $x+y+2=0$ is
A. (a) $5 / 2$ sq. units
B. (b) $7 / 2$ sq. units
C. (c) $9 / 2$ sq. units
D. (d) None of these

Answer: C

12.

Consider
the
two
curves
$C_{1}: y=1+\cos x$ and $C_{2}: y=1+\cos (x-\alpha)$ for $\alpha \in\left(0, \frac{\pi}{2}\right)$, where

Also the area of the figure bounded by the curves C_{1}, C_{2}, and $x=0$ is same as that of the figure bounded by $C_{2}, y=1$, and $x=\pi$.

The value of α is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{8}$

Answer: C

- Watch Video Solution

13. Consider two curves $C_{1}: y=\frac{1}{x} a n d C_{2}: y=1 n x$ on the $x y$ plane. Let D_{1} denotes the region surrounded by C_{1}, C_{2}, and the line $x=1 a n d D_{2}$
denotes the region surrounded by C_{1}, C_{2} and the line $x=a$. If $D_{1}=D_{2}$, then the sum of logarithm of possible value of a is \qquad
A. 1 sq. units
B. 2 sq. units
C. $2+\sqrt{3}$ sq. units
D. None of these

Answer: B

- Watch Video Solution

14. Consider the function defined implicity by the equation $y^{2}-2 y e^{\sin ^{-1} x}+x^{2}-1+[x]+e^{2 \sin ^{-1} x}=0($ where $[\mathrm{x}]$ denotes the greates The area of the region bounded by the curve and the line $x=-1$ is
A. $\pi+1$ sq. units
B. $\pi-1$ sq. units
C. $\frac{\pi}{2}+1$ sq. units
D. $\frac{\pi}{2}-1$ sq. units

Answer: A

- Watch Video Solution

15. Consider the function defined implicity by the equation $y^{2}-2 y e^{\sin ^{-1} x}+x^{2}-1+[x]+e^{2 \sin ^{-1} x}=0$ (where $[\mathrm{x}]$ denotes the greates Line $\mathrm{x}=0$ divides the region mentioned above in two parts. The ratio of area of left-hand side of line to that of right-hand side of line is
A. $1+\pi: \pi$
B. $2-\pi: \pi$
C. 1:1
D. $\pi+2: \pi$

Answer: D

16. Consider two functions
$f(x)=\left\{\begin{array}{ll}{[x],} & -2 \leq x \leq-1 \\ |x|+1, & -1<x \leq 2\end{array}\right.$ and $g(x)= \begin{cases}{[x],} & -\pi \leq x<0 \\ \sin x, & 0 \leq x \leq \pi\end{cases}$ where [.] denotes the greatest integer function.

The exhaustive domain of $g(f(x))$ is
A. $\frac{\sqrt{3}}{4}+\frac{\pi}{6}$ sq. units
B. $\frac{\sqrt{3}}{2}+\frac{\pi}{6}$ sq. units
C. $\frac{\sqrt{3}}{4}-\frac{\pi}{6}$ sq. units
D. $\frac{\sqrt{3}}{2}-\frac{\pi}{6}$ sq. units

Answer: A

(D) Watch Video Solution

17. Computing area with parametrically represented boundaries: If the boundary of a figure is represented by parametric equation, i.e., $x=x(t), y=(t)$, then the area of the figure is evaluated by one of the three formulas :
$S=-\int_{\alpha}^{\beta} y(t) x^{\prime}(t) d t$,
$S=\int_{\alpha}^{\beta} x(t) y^{\prime}(t) d t$,
$S=\frac{1}{2} \int_{\alpha}^{\beta}\left(x y^{\prime}-y x^{\prime}\right) d t$,
Where α and β are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t .

The area of the region bounded by an are of the cycloid $x=a(t-\sin t), y=a(1-\cos t)$ and the x -axis is
A. $6 \pi a^{2}$ sq. units
B. $3 \pi a^{2}$ sq. units
C. $4 \pi a^{2}$ sq. units
D. None of these

Answer: B

18. Computing area with parametrically represented boundaries: If the boundary of a figure is represented by parametric equation, i.e., $x=x(t), y=(t)$, then the area of the figure is evaluated by one of the three formulas :
$S=-\int_{\alpha}^{\beta} y(t) x^{\prime}(t) d t$,
$S=\int_{\alpha}^{\beta} x(t) y^{\prime}(t) d t$,
$S=\frac{1}{2} \int_{\alpha}^{\beta}\left(x y^{\prime}-y x^{\prime}\right) d t$,
Where α and β are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t.

The area of the loop described as
$x=\frac{t}{3}(6-t), y=\frac{t^{2}}{8}(6-t)$ is
A. $\frac{27}{5}$ sq. units
B. $\frac{24}{5}$ sq. units
C. $\frac{27}{6}$ sq. units
D. $\frac{21}{5}$ sq. units

D Watch Video Solution

19. Computing area with parametrically represented boundaries: If the boundary of a figure is represented by parametric equation, i.e., $x=x(t), y=(t)$, then the area of the figure is evaluated by one of the three formulas :
$S=-\int_{\alpha}^{\beta} y(t) x^{\prime}(t) d t$
$S=\int_{\alpha}^{\beta} x(t) y^{\prime}(t) d t$,
$S=\frac{1}{2} \int_{\alpha}^{\beta}\left(x y^{\prime}-y x^{\prime}\right) d t$,
Where α and β are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t .

If the curve given by parametric equation $x=t-t^{3}, y=1-t^{4}$ forms a loop for all values of $t \in[-1,1]$ then the area of the loop is
A. $\frac{1}{7}$ sq. units
B. $\frac{3}{5}$ sq. units
C. $\frac{16}{35}$ sq. units
D. $\frac{8}{35}$ sq. units

Answer: C

- Watch Video Solution

20. Let $f(x)$ be a continuous function fiven by
$f(x)=\left\{\begin{array}{ll}2 x, & |x| \leq 1 \\ x^{2}+a x+b, & |x|>1\end{array}\right.$, then
If $\mathrm{f}(\mathrm{x})$ is continuous for all real x then the value of $a^{2}+b^{2}$ is
A. 3
B. 4
C. 5
D. 11

Answer: C

21. Let $f(x)$ be continuous function given by $f(x)=\{2 x,|x| \leq 1$ and $\left.x^{2}+a x+b,|x|>1\right\}$.

Find the area of the region in the third quadrant bounded by the curves $x=-2 y^{2}$ and $y=f(x)$ lying on the left of the line $8 x+1=0$.
A. sq. units
B. $\frac{257}{192}$ sq. units
C. $\frac{257}{96}$ sq. units
D. $\frac{289}{192}$ sq. units

Answer: B

- Watch Video Solution

Matrix Match Type

1. Match the following lists :

List I	List II
a. The area bounded by the curve $y=x\|x\|, x$-axis and the ordinates $x=1, x=-1$	p. $10 / 3$ sq. units
b. The area of the region lying between the lines $x-y+2=0, x=0$, and the curve $x=\sqrt{y}$	q. 64/3 sq. units
c. The area enclosed between the curves	
$y^{2}=x$ and $y=\|x\|$	r. $2 / 3$ sq. units
d. The area bounded by parabola $y^{2}=x$, straight line $y=4$, and the y-axis	s. $1 / 6$ sq. units

- Watch Video Solution

2. show that the tangents to thre curve $y=2 x^{3}-3$ at the point where $x=2$ and $x=-2$ are parallel

- Watch Video Solution

3. find the point on the curve $y=2 x^{2}-6 x-4$ at which the tangent is
4. Find the point on the curve $y=x^{3}-11 x+5$ at which the tangent has the equation $y=x-11$

- Watch Video Solution

5. find the equation of the tangent to the curve $y=-5 x^{2}+6 x+7$ at the point $(1 / 2,35 / 4)$

- Watch Video Solution

Numerical Value Type

1. The area enclosed by the curve $c: y=x \sqrt{9-x^{2}}(x \geq 0)$ and the x-axis is \qquad
2. Let S be the area bounded by the curve $y=\sin x(0 \leq x \leq \pi)$ and the x-axis and T be the area bounded by the curves $y=\sin x\left(0 \leq x \leq \frac{\pi}{2}\right), y=a \cos x\left(0 \leq x \leq \frac{\pi}{2}\right), \quad$ and the x-axis (wherea $\in R^{+}$) The value of ($3 a$) such that $S: T=1: \frac{1}{3}$ is \qquad

- Watch Video Solution

3. Let C be a curve passing through $M(2,2)$ such that the slope of the tangent at any point to the curve is reciprocal of the ordinate of the point. If the area bounded by curve C and line $x=2$ is A, then the value of $\frac{3 A}{2}$ is..

- Watch Video Solution

4. The area enclosed by $f(x)=12+a x \pm x^{2}$ coordinates axes and the ordinates at $x=3(f(3)>0)$ is 45 sq. units. If m and n are the x -axis intercepts of the graph of $y=f(x)$, then the value of $(m+n+a)$ si \qquad .
5. If the area bounded by the curve $f(x)=x^{1 / 3}(x-1)$ and the x-axis is A, then the value of 28 A is ..

- Watch Video Solution

6. If the area bounded by the curve $y=x^{2}+1$ and the tangents to it drawn from the origin is A, then the value of $3 A$ is

- Watch Video Solution

7. If the area enclosed by the curve $y=\sqrt{x}$ and $x=-\sqrt{y}$, the circle $x^{2}+y^{2}=2$ above the x-axis is A, then the value of $\frac{16}{\pi} A$ is

- Watch Video Solution

8. The value of $a(a>0)$ for which the area bounded by the curves $y=\frac{x}{6}+\frac{1}{x^{2}}, y=0, x=a$, and $x=2 a$ has the least value is \qquad .

(Watch Video Solution

9. Area bounded by the curve $[|x|]+[|y|]=3$, where[.] denotes the greatest integer function

- Watch Video Solution

10. The area bounded by the curves $y=x(x-3)^{2}$ and $y=x$ is \qquad (in sq. units)

- Watch Video Solution

11.

If
the
area
of
the
region
$\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$ is A, then the
\qquad

- Watch Video Solution

12. If S is the sum of possible values of c for which the area of the figure bounded by the curves $y=\sin 2 x$, the straight lines $x=\frac{\pi}{6}, x=c$, and the abscissa axis is equal to $\frac{1}{2}$, then the value of π / S is \qquad

- Watch Video Solution

13. If A is the area bounded by the curves $y=\sqrt{1-x^{2}}$ and $y=x^{3}-x$, then of $\frac{\pi}{A}$.

- Watch Video Solution

14. Consider two curves $C_{1}: y=\frac{1}{x} a n d C_{2}: y=1 n x$ on the $x y$ plane. Let D_{1} denotes the region surrounded by C_{1}, C_{2}, and the line $x=1$ and D_{2}
denotes the region surrounded by C_{1}, C_{2} and the line $x=a$. If $D_{1}=D_{2}$, then the sum of logarithm of possible value of a is \qquad

- Watch Video Solution

15. If ' $a^{\prime}(a>0)$ is the value of parameter for each of which the area of the figure bounded by the straight line $y=\frac{a^{2}-a x}{1+a^{4}}$ and the parabola $y=\frac{x^{2}+2 a x+3 a^{2}}{1+a^{4}}$ is the greatest, then the value of a^{4} is

- Watch Video Solution

16. If S is the sum of cubes of possible value of c for which the area of the figure bounded by the curve $y=8 x^{2}-x^{5}$, then straight lines $x=1 a n d x=c$ and the abscissa axis is equal to $\frac{16}{3}$, then the value of $[S]$, where [.] denotest the greatest integer function, is \qquad

- Watch Video Solution

17. For a point P in the plane, let $d_{1}(P) \operatorname{andd}_{2}(P)$ be the distances of the point P from the lines $x-y=0 a n d x+y=0$ respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \leq d_{1}(P)+d_{2}(P) \leq 4$, is

- Watch Video Solution

18. A farmer F_{1} has a land in the shape of a triangle with vertices at $P(0,0), Q(1,1)$ and $R(2,0)$. From this land, a neighbouring farmer F_{2} takes away the region which lies between the side $P Q$ and a curve of the form $y=x^{n}(n>1)$. If the area of the region taken away by the farmer F_{2} is exactly 30% of the area of $P Q R$, then the value of n is
\qquad .

- Watch Video Solution

1. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the X -axis is
A. 3
B. 6
C. 9
D. 12

Answer: C

- Watch Video Solution

2. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $x=0$ and $x=\frac{3 \pi}{2}$ is
A. $4 \sqrt{2}+1$
B. $4 \sqrt{2}-1$
C. $4 \sqrt{2}+2$
D. $4 \sqrt{2}-2$

Answer: D

- Watch Video Solution

3. The area of the region enclosed by the curve $y=x, x=e, y=\frac{1}{x}$ and the positive X -axis is
A. $\frac{5}{2}$ square units
B. $\frac{1}{2}$ square units
C. 1 square units
D. $\frac{3}{2}$ square units

Answer: D

- Watch Video Solution

4. The area bounded between the parabolas $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line $\mathrm{y}=2$ is
A. $20 \sqrt{2}$
B. $\frac{10 \sqrt{2}}{3}$
C. $\frac{20 \sqrt{2}}{3}$
D. $10 \sqrt{2}$

Answer: C

- Watch Video Solution

5. The area (in square units) bounded by the curves $y=\sqrt{x}, 2 y-x+3=0, x$-axis, and lying in the first quadrant is
A. 9
B. 36
C. 18
D. $\frac{27}{4}$

Answer: A

- Watch Video Solution

6. The area of the region described by $A=\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$ is
A. $\frac{\pi}{2}+\frac{4}{3}$
B. $\frac{\pi}{2}-\frac{4}{3}$
C. $\frac{\pi}{2}-\frac{2}{3}$
D. $\frac{\pi}{2}+\frac{2}{3}$

Answer: D

- Watch Video Solution

7. The area (in sq. units) of the region described by $\{x, y): y^{2} \leq 2 x$ and $\left.y \geq 4 x-1\right\}$ is
A. $\frac{7}{32}$
B. $\frac{5}{64}$
C. $\frac{15}{64}$
D. $\frac{9}{32}$

Answer: D

- Watch Video Solution

8. The area (in sq units) of the region
$\left\{(x, y): y^{2} \geq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \geq 0\right\}$ is
A. $\pi-\frac{8}{3}$
B. $\pi-\frac{4 \sqrt{2}}{3}$
C. $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$
D. $\pi-\frac{4}{3}$

Answer: A

- Watch Video Solution

9. The area (in sq units) of the region bounded by the curve $y=\sqrt{x}$ and the lines $y=0, y=x-2$, is
A. $\frac{5}{2}$
B. $\frac{59}{12}$
C. $\frac{3}{2}$
D. $\frac{7}{3}$

Answer: A

- Watch Video Solution

10. Let ${ }^{g} g(x)=\cos ^{\wedge} 2 x, f(x)=s q r t x$ and alpha,beta (alpha
A. $\frac{1}{2}(\sqrt{2}-1)$
B. $\frac{1}{2}(\sqrt{3}-1)$
C. $\frac{1}{2}(\sqrt{3}+1)$
D. $\frac{1}{2}(\sqrt{3}-\sqrt{2})$

Answer: B

- Watch Video Solution

Single Correct Answer Type

1. Let the straight line $x=b$ divide the area enclosed by $y=(1-x)^{2}, y=0$, and $x=0 \quad$ into two parts $R_{1}(0 \leq x \leq b)$ and $R_{2}(b \leq x \leq 1)$ such that $R_{1}-R_{2}=\frac{1}{4}$. Then b equals
A. $3 / 4$
B. $1 / 2$
C. $1 / 3$
D. $1 / 4$

Answer: B

- Watch Video Solution

2. The area enclosed by the curves
$y=\sin x+\cos x$ and $y=|\cos x-\sin x|$ over the interval $\left[0, \frac{\pi}{2}\right]$ is (a)
$4(\sqrt{2}-1)$ (b) $2 \sqrt{2}(\sqrt{2}-1)$ (c) $2(\sqrt{2}+1)$ (d) $2 \sqrt{2}(\sqrt{2}+1)$
A. $4(\sqrt{2}-1)$
B. $2 \sqrt{2}(\sqrt{2}-1)$
C. $2(\sqrt{2}+1)$
D. $2 \sqrt{2}(\sqrt{2}+1)$

Answer: B

D Watch Video Solution

3. Area of the region $\left\{(x, y) \in R^{2}: y \geq \sqrt{|x+3|}, 5 y \leq x+9 \leq 15\right\}$ is equal to
A. $\frac{1}{6}$
B. $\frac{4}{3}$
C. $\frac{3}{2}$
D. $\frac{5}{3}$

Answer: C

- Watch Video Solution

4. The area enclosed between the curve $y=\sin ^{2} x$ and $y=\cos ^{2} x$ in the interval $0 \leq x \leq \pi$ is \qquad sq. units.
A. 2 sq unit
B. $\frac{1}{2}$ sq unit
C. 1 sq unit
D. None of these

Answer: C

D Watch Video Solution

5. The area of the region enclosed by $y=x^{2}$ and $y=\sqrt{|x|}$ is
A. $1 / 3$
B. $2 / 3$
C. $1 / 6$
D. 1

Answer: B

6. The area of the region bonded by $y=e^{x}, y=e^{-x}, x=0$ and $\mathrm{x}=1$ is
(a) $e+\frac{1}{e}$ (b) $\log \left(\frac{4}{e}\right)$ (c) $4 \log \left(\frac{4}{e}\right)$ (d) $e+\frac{1}{e}-2$
A. $e+\frac{1}{e}$
B. $\log (4 / e)$
C. $4 \log (4 / e)$
D. $e+\frac{1}{e}-2$

Answer: D

- Watch Video Solution

7. The area bounded by the curve $y=\left|\cos ^{-1}(\sin x)\right|-\left|\sin ^{-1}(\cos x)\right|$ and axis from $\frac{3 \pi}{2} \leq x \leq 2 \pi$
A. π^{2} sq. units
B. $\pi^{2} / 4$ sq. units
C. $\pi^{2} / 2$ sq. units
D. none of these

Answer: B

- Watch Video Solution

8. If $(a, 0)$, agt 0 , is the point where the curve $y=\sin 2 x-\sqrt{3} \sin x$ cuts the x -axis first, A is the area bounded by this part of the curve, the origin and the positive x-axis. Then
A. $4 A+8 \cos a=7$
B. $4+8 \sin a=7$
C. $4 A-8 \sin a=7$
D. $4 A-8 \cos a=7$

Answer: A

9. The area in the first quadrant between $x^{2}+y^{2}=\pi^{2}$ and $y=\sin x$ is
(a) $\frac{\left(\pi^{3}-8\right)}{4}$
(b) $\frac{\pi^{3}}{4}$
(c) $\frac{\left(\pi^{3}-16\right)}{4}$
(d) $\frac{\left(\pi^{3}-8\right)}{2}$
A. $\frac{\left(\pi^{3}-8\right)}{4}$
B. $\frac{\pi^{3}}{4}$
C. $\frac{\left(\pi^{3}-16\right)}{4}$
D. $\frac{\left(\pi^{3}-8\right)}{2}$

Answer: A

- Watch Video Solution

10. The area bounded by the curves $y=\cos ^{-1} x, y=\sin ^{-1} x$ and $y=-\pi x^{3}$, where $-1 \leq x \leq 1$,is
A. $\frac{3 \pi}{2}+1-\sqrt{2}$ sq. units
B. $\frac{3 \pi}{4}+1+\sqrt{2}$ sq. units
C. $\frac{3 \pi}{4}+2-\sqrt{2}$ sq. units
D. $\frac{3 \pi}{4}+1-\sqrt{2}$ sq. units

Answer: D

- View Text Solution

11. The area bounded by the curve $y=\sin ^{2} x-2 \sin x$ and the x-axis, where $x \in[0,2 \pi]$, is
A. 4 sq. units
B. 8 sq. units
C. 16 sq. units
D. 20 sq. units

Answer: B

12. Consider the functions $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$, both defined from $R \rightarrow R$ and are defined as $f(x)=2 x-x^{2}$ and $g(x)=x^{n}$ where $n \in N$. If the area between $f(x)$ and $g(x)$ is $1 / 2$, then the value of n is
A. 5
B. 6
C. 7
D. 8

Answer: A

- Watch Video Solution

13. Let a function $f(x)$ be defined in $[-2,2]$ as
$f(x)=\left\{\begin{array}{ll}\{x\}, & -2 \leq x<-1 \\ |\operatorname{sgn} x|, & -1 \leq x \leq 1 \\ \{-x\}, & 1<x \leq 2\end{array}\right.$ where $\{x\}$ and $\operatorname{sgn} x$ denote
fractional part and signum functions, respectively. Then find the area bounded by the graph of $f(x)$ an the x-axis.
A. 2 sq. units
B. 3 sq. units
C. 4 sq. units
D. 5 sq. units

Answer: B

D Watch Video Solution

14. The area bounded by $y=x^{2}+2$ and $y=2|x|-\cos \pi x$ is equal to
A. $2 / 3$
B. $8 / 3$
C. $4 / 3$
D. $1 / 3$

Answer: B

15. Area bounded by $f(x)=\frac{x^{2}-1}{x^{2}+1}$ and the line $y=1$ is
A. π sq. units
B. 2π sq. units
C. $\pi / 2$ sq. units
D. none of these

Answer: B

Watch Video Solution

16. The area bounded by the curve $y=x e^{-x} ; x y=0$ and $x=c$ where c is the x-coordinate of the curve's inflection point, is
A. $1-3 e^{-2}$
B. $1-2 e^{-2}$
C. $1-e^{-2}$
D. none of these

Answer: A

- Watch Video Solution

17. Area of region bounded by the curve $y=\frac{16-x^{2}}{4}$ and $y=\sec ^{-1}\left[-\sin ^{2} x\right]$ (where $[\mathrm{x}]$ denotes the greatest ingeger function) is
A. $\frac{1}{3}(4-\pi)^{3 / 2}$
B. $8(4-\pi)^{3 / 2}$
C. $\frac{8}{3}(4-\pi)^{3 / 2}$
D. $\frac{8}{3}(4-\pi)^{1 / 2}$

Answer: C

18. Suppose $y=f(x)$ and $y=g(x)$ are two continuous functiond whose graphs intersect at the three points $(0,4),(2,2)$ and $(4,0)$ with $f(x)>g(x)$ for $0<x<2$ and $f(x)<g(x)$ for $2<x<4$. If $\int_{0}^{4}[f(x)-g(x)] d x=10$ and $\int_{2}^{4}[g(x)-f(x)] d x=5 \quad$ the \quad area between two curves for $0<x<2$,is (A) 5 (B) 10 (C) 15 (D) 20
A. 5
B. 10
C. 15
D. 20

Answer: C

- Watch Video Solution

19. The ratio of the areas of two regions of the curve $C_{1} \equiv 4 x^{2}+\pi^{2} y^{2}=4 \pi^{2} \quad$ divided by the
$C_{2} \equiv y=-\left(\operatorname{sgn}\left(x-\frac{\pi}{2}\right)\right) \cos x$ (where $\left.\operatorname{sgn}(\mathrm{x})=\operatorname{signum}(\mathrm{x})\right)$ is
A. $\frac{\pi^{2}-2}{\pi^{2}-2 \sqrt{2}}$
B. $\frac{\pi^{2}+2}{\pi^{2}-2 \sqrt{2}}$
C. $\frac{\pi^{2}+6}{\pi^{2}+3 \sqrt{2}}$
D. $\frac{\pi^{2}-1}{\pi^{2}-\sqrt{2}}$

Answer: A

- Watch Video Solution

20. The area bounded by the curves

$$
x \sqrt{3}+y=2 \log _{e}(x-y \sqrt{3})-2 \log _{e} 2, y=\sqrt{3} x
$$

$y=-\frac{1}{\sqrt{3}} x+2$, is
A. $2 \log _{e} 2$ sq. units
B. $2 \log _{e} 2+1$ sq. units
C. $2 \log _{e} 2-1$ sq. units
D. $4 \log _{e} 2-1$ sq. units

- Watch Video Solution

21. Area of region bounded by the curve $y=\frac{4-x^{2}}{4+x^{2}}, 25 y^{2}=9 x$ and $y=\frac{3}{5}|x|-\frac{6}{5}$ which contains (1,0) point in its interior is
A. $\left\{\pi-4 \tan ^{-1} \cdot \frac{1}{2}+\frac{1}{10}\right\}$ sq. units
B. $\left\{\pi-2 \tan ^{-1} \cdot \frac{1}{2}-\frac{1}{5}\right\}$ sq. units
C. $\left\{\pi+4 \tan ^{-1} \cdot \frac{1}{2}-\frac{1}{5}\right\}$ sq. units
D. none of these

Answer: A

D Watch Video Solution

22. Area bounded by the $\min .\{|x|,|y|\}=1$ and the max. $\{|x|,|y|\}=2$ is
A. 4
B. 8
C. 16
D. 9

Answer: A

- Watch Video Solution

23. Consider $f(x)=\left\{\begin{array}{ll}\cos x & 0 \leq x<\frac{\pi}{2} \\ \left(\frac{\pi}{2}-x\right)^{2} & \frac{\pi}{2} \leq x<\pi\end{array}\right.$ such that f is periodic with period π. Then which of the following is not true?
A. The range of f is $\left[0, \frac{\pi^{2}}{4}\right)$.
B. f is discontinuous for infinite values of x.
C. The area bounded by $y=f(x)$ and the X-axis from $x=0$ to $x=n \pi$ is $n\left(1+\frac{\pi^{3}}{24}\right)$ for a given $n \in N$.
D. none of these

- Watch Video Solution

24. The area made by curve $f(x)=[x]+\sqrt{x-[x]}$ and x-axis when $0 \leq x \leq n(n \in N)$ is equal to $\{$ where $[\mathrm{x}]$ is greatest integer function\}
A. $\frac{2 n}{3}+\frac{n(n+1)}{2}$
B. $\frac{n}{3}+\frac{n(n+1)}{2}$
C. $\frac{2 n}{3}+\frac{n(n-1)}{2}$
D. $\frac{n}{3}+\frac{n(n-1)}{2}$

Answer: C

D View Text Solution

25.

the
regions
$A=\left\{(x, y) \mid x^{2}+y^{2} \leq 100\right\}$ and $B=\left\lvert\, \begin{array}{ll}x \quad y \mid \sin (x+y)>0\} & \text { in the }\end{array}\right.$
plane. Then the area of the region $A \cap B$ is
A. 10π
B. 100
C. 100π
D. 50π

Answer: D

- Watch Video Solution

26. Let R be the region containing the point (x, y) on the $X-Y$ plane, satisfying $2 \leq|x+3 y|+|x-y| \leq 4$. Then the area of this region is
A. 5 sq. units
B. 6 sq. units
C. 7 sq. units
D. 8 sq. units

- Watch Video Solution

27. If $f(x)=\left\{\begin{array}{ll}\sqrt{\{x\}} & \text { for } x \not \subset Z \\ 1 & \text { for } x \in Z\end{array}\right.$ and $g(x)=\{x\}^{2}$ where \{.\} denotes fractional part of x then area bounded by $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ for $x \in 0,6$ is
A. $\frac{2}{3}$
B. 2
C. $\frac{10}{3}$
D. 6

Answer: B

- Watch Video Solution

28. Let S is the region of points which satisfies
$y^{2}<16 x, x<4$ and $\frac{x y\left(x^{2}-3 x+2\right)}{x^{2}-7 x+12}>0$. Its area is
A. $\frac{8}{3}$
B. $\frac{64}{3}$
C. $\frac{32}{3}$
D. none of these

Answer: B

- Watch Video Solution

29. The area of the region $\left\{(x, y): x^{2}+y^{2} \leq 5,||x|-|y|| \geq 1\right.$ is
A. $4\left(\pi-\tan ^{-1}\left(\frac{24}{7}\right)\right)-4$
B. $5\left(\pi-\tan ^{-1}\left(\frac{24}{7}\right)\right)-4$
C. $3\left(\pi-\tan ^{-1}\left(\frac{24}{7}\right)\right)-4$
D. $2\left(\pi-\tan ^{-1}\left(\frac{24}{7}\right)\right)-1$

Answer: B

- Watch Video Solution

30. The folloiwng figure shows the graph of a continuous function $y=f(x)$ on the interval $[1,3]$. The points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ have coordinates $(1,1),(3,2),(2,3)$, respectively, and the lines L_{1} and L_{2} are parrallel, with L_{1} being tangent to the curve at C. If the area under the graph of $y=f(x)$ from $x=1$ to $x=3$ is 4 square units, then the area of the shaded region is
A. 1
B. 2
C. 3
D. 4

Answer: B

(D) Watch Video Solution

Multiple Correct Answer Type

1. If the area of bounded between the x-axis and the graph of $y=6 x-3 x^{2}$ between the ordinates $x=1 a n d x=a$ is 19 units, then a can take the value 4 or -2 two value are in $(2,3)$ and one in $(-1,0)$ two value are in $(3,4)$ and one in $(-2,-1)$ none of these
A. one value in $(2,3)$
B. one value in $(-2,-1)$
C. one value in $(-1,0)$
D. one value in $(3,4)$

Answer: B::D

- Watch Video Solution

2. Which of the following is the possible value/values of c for which the area of the figure bounded by the curves $y=\sin 2 x$, the straight lines $x=\pi / 6, x=c$ and the abscissa axis is equal to $1 / 2$?
A. $-\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. none of these

Answer: B

- Watch Video Solution

3. Area of the region bounded by the curve $y=\tan x$ and lines $y=0$ and $x=1$ is
A. \int_{0}^{1} and $(1-x) d x$
B. $\tan 1-\int_{0}^{\tan 1} \tan ^{-1} y d y$
C. $\int_{0}^{\tan 1} \tan ^{-1} y d y$
D. $\int_{0}^{1} \tan ^{-1} x d x$

Answer: A: B

- Watch Video Solution

Comprehension Type

1. In the following figure, the graphs of two functions $y=f(x)$ and $y=\sin x$ are givne They intersect at origin, $A(a, f(a)), B(\pi, 0)$ and $C(2 \pi, 0) \cdot A_{i}(i=1,2,3)$ is the area bounded by the curves as shown in the figure, respectively, for $x \in(0, a), x \in(a, \pi), x \in(\pi, 2 \pi)$.

If $A_{1}=1+(a-1) \cos a-\sin$ a, then

The function $f(x)$ is
A. $x^{2} \sin x$
B. $x \sin x$
C. $2 x \sin x$
D. $x^{3} \sin x$

Answer: B

D Watch Video Solution

2. In the following figure, the graphs of two functions $y=f(x)$ and $y=\sin x$ are givne. They intersect at origin, $A(a, f(a)), B(\pi, 0)$ and $C(2 \pi, 0) \cdot A_{i}(i=1,2,3)$ is the area bounded by the curves as shown in the figure, respectively, for $x \in(0, a), x \in(a, \pi), x \in(\pi, 2 \pi)$. If $A_{1}=1+(a-1) \cos a-\sin$ a, then

The function $f(x)$ is
A. $(\pi-1)$ units 2
B. $(\pi / 2-1)$ units 2
C. $(\pi-\sin 1-1)$ units 2
D. $\pi / 2$ units 2

Answer: C

Watch Video Solution

