© 'doubtnut

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

CIRCLES

Single Correct Answer Type

1. If a circle passes through the points where the lines
$3 k x-2 y-1=0 \quad$ and $\quad 4 x-3 y+2=0 \quad$ meet \quad the
coordinate axes then $k=$
A. 1
B. -1
C. $\frac{1}{2}$
D. $\frac{-1}{2}$

Answer: C

- Watch Video Solution

2. All chords.of the curve $x^{2}+y^{2}-10 x-4 y+4=0$ which make a right angle at ($8,-2$) pass through
A. $(2,5)$
B. $(-2,-5)$
C. $(-5,-2)$
D. $(5,2)$

Answer: D

D Watch Video Solution

3. Let $A(1,2), B(3,4)$ be two points and $C(x, y)$ be a point such that area of $\triangle A B C$ is 3 sq. units and $(x-1)(x-3)+(y-2)(y-4)=0$. Then number of positions of C, in the xy plane is
A. 2
B. 4
C. 8
D. 0

D Watch Video Solution

4. The equation of the image of the circle $x^{2}+y^{2}+16 x-24 y+183=0$ by the line mirror $4 x+7 y+13=0$ is :
A. $x^{2}+y^{2}+32 x-4 y+235=0$
B. $x^{2}+y^{2}+32 x+4 y-235=0$
C. $x^{2}+y^{2}+32 x-4 y-235=0$
D. $x^{2}+y^{2}+32 x+4 y+235=0$

Answer: D

5. Equation of circle inscribed in $|x-a|+|y-b|=1$ is
A. $(x+a)^{2}+(y+b)^{2}=2$
B. $(x-a)^{2}+(y-b)^{2}=\frac{1}{2}$
C. $(x-a)^{2}+(y-b)^{2}=\frac{1}{\sqrt{2}}$
D. $(x-a)^{2}+(y-b)^{2}=1$

Answer: B

- Watch Video Solution

6. a circle passing through the point $(2,2(\sqrt{2}-1))$ touches the pair of lines $x^{2}-y^{2}-4 x+4=0$. The centre of the circle is
A. $(2,2 \sqrt{2})$ and $(2,6 \sqrt{6}-8)$
B. $(2,5 \sqrt{2})$ and $(2,7 \sqrt{2})$
C. $(2,5 \sqrt{2}-1)$ and $(2,-3)$
D. None of these

Answer: A

- Watch Video Solution

7. If a chord of a the circle $x^{2}+y^{2}=32$ makes equal intercepts of length of I on the co-ordinate axes, then
A. $l<8$
B. $l<16$
C. $l>8$
D. $l>16$

Answer: A

D Watch Video Solution

8. P and Q are any two points on the circle $x^{2}+y^{2}=4$
such that PQ is a diameter. If α and β are the lengths of perpendiculars from P and Q on $x+y=1$ then the maximum value of $\alpha \beta$ is
A. $\frac{1}{2}$
B. $\frac{7}{2}$
C. 1
D. 2

Answer: B

D Watch Video Solution

9. Let $A(-4,0), B(4,0)$ Number of points $c=(x, y)$ on circle $x^{2}+y^{2}=16$ such that area of triangle whose verties are A, B, C is positive integer is:
A. 14
B. 15
C. 16
D. none of these

- Watch Video Solution

10. A triangle is inscribed in a circle of radius 1 . The distance between the orthocentre and the circumcentre of the triangle cannot be
A. 1
B. 2
C. $\frac{3}{2}$
D. 4

Answer: D
11. The circle with equation $x^{2}+y^{2}=1$ intersects the line $y=7 x+5$ at two distinct points A and B . Let C be the point at which the positive x-axis intersects the circle. The angle ACB is
A. $\tan ^{-1}\left(\frac{4}{3}\right)$
B. $\tan ^{-1}\left(\frac{3}{4}\right)$
C. $\pi / 4$
D. $\tan ^{-1}\left(\frac{3}{2}\right)$

Answer: C
12. PA and PB are tangents to a circle S touching it at points A and $B . C$ is a point on S in between A and B as shown in the figure. LCM is a tangent to S intersecting PA and $P B$ in S at points L and M, respectively. Then the perimeter of the triangle PLM depends on o
A. A,B,C and P
B. P but not on C
C. P and C only
D. the radius of S only

Answer: B
13. Two equal chords $A B$ and $A C$ of the circle $x^{2}+y^{2}-6 x-8 y-24=0$ are drawn from the point
$A(\sqrt{33}+3,0)$. Another chord PQ is drawn intersecting
$A B$ and $A C$ at points R and S, respectively given that $A R=S C=7$ and $\mathrm{RB}=\mathrm{AS}=3$. The value of $P R / Q S$ is
A. 1
B. 1.5
C. 2
D. None of these

Answer: A
14. From a point P outside a circle with centre at C, tangents $P A$ and $P B$ are drawn such that $\frac{1}{(C A)^{2}}+\frac{1}{(P A)^{2}}=\frac{1}{16}$, then the length of chord $A B$ is
A. 6
B. 8
C. 4
D. 12

Answer: B

- Watch Video Solution

15. $(1,2 \sqrt{2})$ is a point on circle, $x^{2}+y^{2}=9$. Which of the following is not the point on the circle at 2 units distance from $(1,2 \sqrt{2})$?
A. $(-1,2 \sqrt{2})$
B. $(2 \sqrt{2}, 1)$
C. $\left(\frac{23}{9}, \frac{10 \sqrt{2}}{9}\right)$
D. None of these

Answer: B
16. inside the circles $x^{2}+y^{2}=1$ there are three circles of equal radius a tangent to each other and to s the value of a equals to
A. $\sqrt{2}(\sqrt{2}-1)$
B. $\sqrt{3}(2-\sqrt{3})$
C. $\sqrt{2}(2-\sqrt{3})$
D. $\sqrt{3}(\sqrt{3}-1)$

Answer: B
17. If the curves $\frac{x^{2}}{4}+y^{2}=1$ and $\frac{x^{2}}{a^{2}}+y^{2}=1$ for a suitable value of a cut on four concyclic points, the equation of the circle passing through these four points is
A. $x^{2}+y^{2}=2$
B. $x^{2}+y^{2}=1$
C. $x^{2}+y^{2}=4$
D. none of these

Answer: B

- Watch Video Solution

18. AB is a chord of $x^{2}+y^{2}=4$ and $\mathrm{P}(1,1)$ trisects AB .

Then the length of the chord $A B$ is (a) 1.5 units (c) 2.5 units
(b) 2 units (d) 3 units
A. 1.5 units
B. 2 units
C. 2.5 units
D. 3 units

Answer: D

D Watch Video Solution
19. AB is a chord of the circle $x^{2}+y^{2}=\frac{25}{2}$. P is a point such that $P A=4, P B=3$. If $A B=5$, then distance of P from origin can be:

$$
\begin{aligned}
& \text { A. } \frac{9}{\sqrt{2}} \\
& \text { B. } \frac{3}{\sqrt{2}} \\
& \text { C. } \frac{5}{\sqrt{2}} \\
& \text { D. } \frac{7}{\sqrt{2}} \text { or } \frac{1}{\sqrt{2}}
\end{aligned}
$$

Answer: D
20. chord $A B$ of the circle $x^{2}+y^{2}=100$ passes through the point $(7,1)$ and subtends are angle of 60° at the circumference of the circle. if m_{1} and m_{2} are slopes of two such chords then the value of $m_{1} \cdot m_{2}$ is
A. -1
B. 1
C. $7 / 12$
D. -3

Answer: A

- Watch Video Solution

21. P and Q are two points on a line passing through $(2,4)$ and having slope m. If a line segment $A B$ subtends a right angles at P and Q, where $A(0,0)$ and $B(6,0)$, then range of values of m is

$$
\begin{aligned}
& \text { A. }\left(\frac{2-3 \sqrt{2}}{4}, \frac{2+3 \sqrt{2}}{4}\right) \\
& \text { B. }\left(-\infty, \frac{2-3 \sqrt{2}}{4}\right) \cup\left(\frac{2+3 \sqrt{2}}{4}, \infty\right) \\
& \text { C. }(-4,4) \\
& \text { D. }(-\infty,-4) \cup(4, \infty)
\end{aligned}
$$

Answer: B

22. In the $x y$-plane, the length of the shortest path from $(0,0)$ to $(12,16)$ that does not go inside the circle $(x-6)^{2}+(y-8)^{2}=25$ is
$10 \sqrt{3}$
$10 \sqrt{5}$
$10 \sqrt{3}+\frac{5 \pi}{3}$
$10+5 \pi$
A. $10 \sqrt{3}$
B. $10 \sqrt{5}$
C. $10 \sqrt{3}+\frac{5 \pi}{3}$
D. $10+5 \pi$

Answer: C
23. Triangle $A B C$ is right angled at A. The circle with centre
A and radius $A B$ cuts $B C$ and $A C$ internally at D and E respectively. If $B D=20$ and $D C=16$ then the length $A C$ equals
(A) 6sqrt21 (B) 6sqrt26 (C) 30 (D)32
A. $6 \sqrt{21}$
B. $6 \sqrt{26}$
C. 30
D. 32

Answer: B

24. All chords through an external point to the circle $x^{2}+y^{2}=16$ are drawn having length l which is a positive integer. The sum of the squares of the distances from centre of circle to these chords is
A. 154
B. 124
C. 172
D. 128

Answer: A

- Watch Video Solution

25. If $m(x-2)+\sqrt{1-m^{2}} y=3$, is tangent to a circle for all $m \in[-1,1]$ then the radius of the circle is
A. 1.5
B. 2
C. 4.5
D. 3

Answer: D

- Watch Video Solution

26. If the line $3 x-4 y-\lambda=0$ touches the circle $x^{2}+y^{2}-4 x-8 y-5=0$ at (a, b) then which of the
following is not the possible value of $\lambda+a+b$?
A. 20
B. -28
C. -30
D. none of these

Answer: B

- Watch Video Solution

27. The normal at the point $(3,4)$ on a circle cuts the circle at the point $(-1,-2)$. Then the equation of the circle is

$$
\text { A. } x^{2}+y^{2}+2 x-2 y-13=0
$$

B. $x^{2}+y^{2}-2 x-2 y-11=0$
C. $x^{2}+y^{2}-2 x+2 y+12=0$
D. $x^{2}+y^{2}-2 x-2 y+14=0$

Answer: B

- Watch Video Solution

28. For all values of $m \in R$ the line $y-m x+m-1=0$ cuts the circle $x^{2}+y^{2}-2 x-2 y+1=0$ at an angle
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: C

D Watch Video Solution

29. If the line $|y|=x-\alpha$, such that $\alpha>0$ does not meet the circle $x^{2}+y^{2}-10 x+21=0$, then α belongs to
A. $(0,5-2 \sqrt{2}) \cup(5+2 \sqrt{2}, \infty)$
B. $(5-2 \sqrt{2}, 5+2 \sqrt{2})$
C. $(5-2 \sqrt{2}, 7)$
D. none of these
30. Let C be the circle of radius unity centred at the origin.

If two positive numbers x_{1} and x_{2} are such that the line passing through $\left(x_{1},-1\right)$ and $\left(x_{2}, 1\right)$ is tangent to C then $x_{1} \cdot x_{2}$
A. $x_{1} x_{2}=1$
B. $x_{1} x_{2}=-1$
C. $x_{1}+x_{2}=1$
D. $4 x_{1} x_{2}=1$

Answer: A
31. A circle of radius 5 is tangent to the line $4 x-3 y=18$ at $M(3,-2)$ and lies above the line. The equation of the circle is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-6 x+4 y-12=0 \\
& \text { B. } x^{2}+y^{2}+2 x-2 y-3=0 \\
& \text { C. } x^{2}+y^{2}+2 x-2 y-23=0 \\
& \text { D. } x^{2}+y^{2}+6 x+4 y-12=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

32. The line $y=m x$ intersects the circle $x^{2}+y^{2}-2 x-2 y=0$ and $x^{2}+y^{2}+6 x-8 y=0$ at point A and B (points being other than origin). The range of m such that origin divides $A B$ internally is

$$
\begin{aligned}
& \text { A. }-1<m<\frac{3}{4} \\
& \text { B. } m>\frac{4}{3} \text { or } m<-2 \\
& \text { C. }-2<m<\frac{4}{3} \\
& \text { D. } m>-1
\end{aligned}
$$

Answer: A
33. If $C_{1}: x^{2}+y^{2}=(3+2 \sqrt{2})^{2}$ be a circle. PA and PB are pair of tangents on C_{1} where P is any point on the director circle of C_{1}, then the radius of the smallest circle which touches C_{1} externally and also the two tangents PA and $P B$ is
A. 1
B. 2
C. 3
D. 4

Answer: A
34. From points on the straight line $3 x-4 y+12=0$, tangents are drawn to the circle $x^{2}+y^{2}=4$. Then, the chords of contact pass through a fixed point. The slope of the chord of the circle having this fixed point as its midpoint is
A. $\frac{4}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. none of these

Answer: D

- Watch Video Solution

35. If tangent at $(1,2)$ to the circle $C_{1}: x^{2}+y^{2}=5$ intersects the circle $C_{2}: x^{2}+y^{2}=9$ at A and B and tangents at A and B to the second circle meet at point C, then the co- ordinates of C are given by
A. $(4,5)$
B. $\left(\frac{9}{15}, \frac{18}{5}\right)$
C. $(4,-5)$
D. $\left(\frac{9}{5}, \frac{18}{5}\right)$

Answer: D

36. $A B$ is a line segment of length 48 cm and C is its midpoint. If three semicircles are drawn at $A B, A C$ and $C B$ using as diameters, then radius of the circle inscribed in the space enclosed by three semicircles is
A. $3 \sqrt{2}$
B. 6
C. 8
D. 10

Answer: C

- Watch Video Solution

37. Consider circles
$C_{1}: x^{2}+y^{2}+2 x-2 y+p=0$
$C_{2}: x^{2}+y^{2}-2 x+2 y-p=0$
$C_{3}: x^{2}+y^{2}=p^{2}$
Statement-I: If the circle C_{3} intersects C_{1} orthogonally then C_{2} does not represent a circle

Statement-II: If the circle C_{3} intersects C_{2} orthogonally then C_{2} and C_{3} have equal radii Then which of the following is true?
A. statement II is false and statement I is true
B. statement I is false and statement II is true
C. both the statements are false
D. both the statements are true

- Watch Video Solution

38. Tangents drawn from point of intersection A of circles $x^{2}+y^{2}=4$ and $(x-\sqrt{3})^{2}+(y-3)^{2}=4$ cut the line joining their centres at B and C Then triangle $B A C$ is
A. equilateral triangle
B. right angle triangle
C. obtuse angle triangle
D. isosceles triangle and $\angle A B C=\frac{\pi}{6}$
39. Suppose that two circles C_{1} and C_{2} in a plane have no points in common. Then
A. there is no line tangent to both C_{1} and C_{2}
B. there are exactly four lines tangent to both C_{1} and
C_{2}
C. there are no lines tangent to both C_{1} and C_{2} or there are exactly two lines tangent to both C_{1} and C_{2}
D. there are no lines tangent to both C_{1} and C_{2} or there are exactly four lines tangent to both C_{1} and

Answer: D

D Watch Video Solution

40. A circle of radius 2 has its centre at $(2,0)$ and another circle of radius 1 has its centre at (5, 0). A line is tangent to the two circles at point in the first quadrant. The y intercept of the tangent line is
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $3 \sqrt{2}$
D. $4 \sqrt{2}$

- Watch Video Solution

41. Let circle $C_{1}: x^{2}+(y-4)^{2}=12$ intersects circle $C_{2}:(x-3)^{2}+y^{2}=13$ at A and B. A quadrilateral ACBD is formed by tangents at A and B to both circles. The diameter of circumcircle of quadrilateral $A C B D$ is
A. 4
B. 5
C. 6
D. 9.25

Answer: B
42. Transverse common tangents are drawn from O to the two circles C_{1}, C_{2} with 4,2 respectively. Then the ratio of the areas of triangles formed by the tangents drawn from O to the circles C_{1} and C_{2} and chord of contacts of O w.r.t the circles C_{1} and C_{2} respectively is
A. 3 units
B. 6 units
C. 4 units
D. 5 units

Answer: C

43. Equation of the straight line meeting the cirle with centre at origin and radius equal to 5 in two points at equal distances of 3 units from the point $(3,4)$ is

$$
\begin{aligned}
& \text { A. } 6 x+8 y=41 \\
& \text { В. } 6 x-8 y+41=0 \\
& \text { C. } 8 x+6 y+41=0 \\
& \text { D. } 8 x-6 y+41=0
\end{aligned}
$$

Answer: A

- Watch Video Solution

44. Two circle touch the x-axes and the line $y=m x$ they meet at $(9,6)$ and at one more point and the product of their radius is $\frac{117}{2}$ then the value of m is
A. $2 \sqrt{2}$
B. $\sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. none of these

Answer: A

D Watch Video Solution
45. Tangents drawn from $P(1,8)$ to the circle $x^{2}+y^{2}-6 x-4 y-11=0$ touches the circle at the points A and B, respectively. The radius of the circle which passes through the points of intersection of circles $x^{2}+y^{2}-2 x-6 y+6=0$ and $x^{2}+y^{2}-2 x-6 y+6=0$ the circumcircle of the and interse $\Delta P A B$ orthogonally is equal to
A. $\frac{\sqrt{73}}{4}$
B. $\frac{\sqrt{71}}{2}$
C. 3
D. 2

Answer: A
46. If the radius of the circle touching the pair of lines
$7 x^{2}-18 x y+7 y^{2}=0$ and the circle
$x^{2}+y^{2}-8 x-8 y=0$, and contained in the given circle is equal to k, then k^{2} is equal to
A. 10
B. 9
C. 8
D. 7

Answer: C

47. Equation of a circle having radius equal to twice the radius of the circle
$x^{2}+y^{2}+(2 p+3) x+(3-2 p) y+p-3=0$ and
touching it at the origin is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}+9 x-3 y=0 \\
& \text { B. } x^{2}+y^{2}-9 x+3 y=0 \\
& \text { C. } x^{2}+y^{2}+18 x+6 y=0 \\
& \text { D. } x^{2}+y^{2}+18 x-6 y=0
\end{aligned}
$$

Answer: D

48. Tangents $P T_{1}$, and $P T_{2}$, are drawn from a point P to the circle $x^{2}+y^{2}=a^{2}$. If the point P lies on the line $P x+q y+r=0$, then the locus of the centre of circumcircle of the triangle $P T_{1} T_{2}$ is
A. $p x+q y=r$
B. $(x-p)^{2}+(y-q)^{2}=r^{2}$
C. $p x+q y=\frac{r}{2}$
D. $2 p x+2 q y+r=0$

Answer: D

- Watch Video Solution

49. An isosceles triangle with base 24 and legs 15 each is inscribed in a circle with centre at $(-1,1)$. The locus of the centroid of that Δ is

$$
\begin{aligned}
& \text { A. } 4\left(x^{2}+y^{2}\right)+8 x-8 y-73=0 \\
& \text { B. } 2\left(x^{2}+y^{2}\right)+4 x-4 y-31=0 \\
& \text { C. } 2\left(x^{2}+y^{2}\right)+4 x-4 y-21=0 \\
& \text { D. } 4\left(x^{2}+y^{2}\right)+8 x-8 y-161=0
\end{aligned}
$$

Answer: D

- Watch Video Solution

50. $x^{2}+y^{2}=16$ and $x^{2}+y^{2}=36$ are two circles. If P and Q move respectively on these circles such that $P Q=4$ then the locus of mid-point of $P Q$ is a circle of radius
A. $\sqrt{20}$
B. $\sqrt{22}$
C. $\sqrt{30}$
D. $\sqrt{32}$

Answer: B
51. A variable line moves in such a way that the product of the perpendiculars from $(4,0)$ and $(0,0)$ is equal to 9 . The locus of the feet of the perpendicular from $(0,0)$ upon the variable line is a circle, the square of whose radius is
A. 13
B. 15
C. 19
D. 23

Answer: A

- Watch Video Solution

52. The locus of the mid-points of the chords of the circle of lines radiÂ's r which subtend an angle $\frac{\pi}{4}$ at any point on the circumference of the circle is a concentric circle with radius equal to (a) $\frac{r}{2}$ (b) $\frac{2 r}{3}$ (c) $\frac{r}{\sqrt{2}}$ (d) $\frac{r}{\sqrt{3}}$
A. $\frac{r}{2}$
B. $\frac{2 r}{3}$
C. $\frac{r}{\sqrt{2}}$
D. $\frac{r}{\sqrt{3}}$

Answer: C

53. Tangents $P A$ and $P B$ are drawn to $x^{2}+y^{2}=9$ from any arbitrary point P on the line $x+y=25$. The locus of the midpoint of chord $A B$ is $25\left(x^{2}+y^{2}\right)=9(x+y)$ $25\left(x^{2}+y^{2}\right)=3(x+y)$ $5\left(x^{2}+y^{2}\right)=3(x+y)$ noneofthese

$$
\text { A. } x^{2}+y^{2}-2 x-2 y=0
$$

B. $x^{2}+y^{2}+2 x+2 y=0$
C. $x^{2}+y^{2}-2 x+2 y=0$
D. $x^{2}+y^{2}+2 x-2 y=0$

Answer: A
54. The locus of the centre of a circle which cuts a given circle orthogonally and also touches a given straight line is (a) circle (c) parabola (b) line (d) ellipse
A. circle
B. line
C. parabola
D. ellipse

Answer: C

- Watch Video Solution

55. A circle with radius $|a|$ and center on the y -axis slied along it and a variable line through ($a, 0$) cuts the circle at
points PandQ . The region in which the point of intersection of the tangents to the circle at points P and
Q lies is represented by $y^{2} \geq 4\left(a x-a^{2}\right)$

$$
\begin{equation*}
y^{2} \leq 4\left(a x-a^{2}\right) y \geq 4\left(a x-a^{2}\right) \text { (d) } y \leq 4\left(a x-a^{2}\right) \tag{b}
\end{equation*}
$$

A. $y^{2} \geq 4 a(x-a)$
B. $y^{2} \leq 4 a x$
C. $x^{2}+y^{2} \leq 4 a^{2}$
D. $x^{2}-y^{2} \geq a^{2}$

Answer: A

- Watch Video Solution

56. The locus of the point at which two given unequal circles subtend equal angles is: (A) a straight line(B) a circle (C) a parabola (D) an ellipse
A. a straihght line
B. a circle
C. a parabola
D. none of these

Answer: B

- Watch Video Solution

57. The locus of the centre of the circle which bisects the circumferences of the circles
$x^{2}+y^{2}=4 \& x^{2}+y^{2}-2 x+6 y+1=0$ is :
A. $2 x-6 y-15=0$
B. $2 x+6 y+15=0$
C. $2 x-6 y+15=0$
D. $2 x+6 y-15=0$

Answer: A

D Watch Video Solution
58. The centre of family of circles cutting the family of circles
$x^{2}+y^{2}+4 x\left(\lambda-\frac{3}{2}\right)+3 y\left(\lambda-\frac{4}{3}\right)-6(\lambda+2)=0$ orthogonally, lies on

$$
\text { A. } x-y-1=0
$$

B. $4 x+3 y-6=0$
C. $4 x+3 y+7=0$
D. $3 x-4 y-1=0$

Answer: B

- Watch Video Solution

1. Line $3 x+6 y=k$ intersect the curve
$2 x^{2}+3 y^{2}+2 x y=1$ at points A and B. Thecircle on $A B$ as
diameter passes through origin,then sum of all possible
values of ' k ' is
A. 3
B. 4
C. -4
D. -3

Answer: A::D

- Watch Video Solution

2. Consider the circle $x^{2}+y^{2}-8 x-18 y+93=0$ with the center C and a point $P(2,5)$ out side it. From P a pair of tangents $P Q$ and $P R$ are drawn to the circle with S as mid point of $Q R$. The line joining P to C intersects the given circle at A and B. Which of the following hold (s)
A. $C P$ is the arithmetic mean of $A P$ and $B P$
B. PR is the geometric mean of PS and PC
C. PS is the harmonic mean of PA and PB
D. The angle between the two tangents from P is

$$
\tan ^{-1}\left(\frac{4}{3}\right)
$$

Answer: A::B::C::D
3. Consider two circles $C_{1}: x^{2}+y^{2}-1=0$ and $C_{2}: x^{2}+y^{2}-2=0$. Let $\mathrm{A}(1,0)$ be a fixed point on the circle C_{1} and B be any variable point on the circle C_{2}. The line BA meets the curve C_{2} again at C . Which of the following alternative(s) is/are correct?
A. $O A^{2}+O B^{2}+B C^{2} \in[7,11]$, where O is the origin
B. $O A^{2}+O B^{2}+B C^{2} \in[4,7]$, where O is the origin
C. Locus of midpoint of $A B$ is a circle of radius $\frac{1}{\sqrt{2}}$
D. Locus of midpoint of $A B$ is a circle of area $\frac{\pi}{2}$

Answer: A:C

- Watch Video Solution

4. The real numbers a and b are distinct. Consider the circles
$\omega_{1}:(x-a)^{2}+(y-b)^{2}=a^{2}+b^{2}$ and
$\omega_{2}:(x-b)^{2}+(y-a)^{2}=a^{2}+b^{2}$
Which of the following is (are) true?
A. The line $y=x$ is an axis of symmetry for the circles
B. The circles intersect at the origin and a point, $\mathrm{P}($ say $)$,
which lies on the line $y=x$
C. The line $y=x$ is the radical axis of the pair of circles.
D. The circles are orthogonal for all $a \neq b$.

- Watch Video Solution

$\begin{array}{ccc}\text { 5. } & \text { Consider } & \text { two } \\ S, & =x^{2}+y^{2}+8 x=0\end{array}$ and $S_{2}=x^{2}+y^{2}-2 x=0 . ~ \$$
Let $\triangle P O R$ be formed by the common tangents to circles
S_{1} and S_{2}, Then which of the following hold(s) good?
A. Incentre of $\triangle P Q R$ is $(1,0)$
B. The equation of radical axis of circles S_{1} and S_{2} is
$y=0$
C. Product of slope of direct common tangents is $\frac{16}{9}$
D. If transverse common tangent intersects direct common tangents at points A and B , then AB equals 4.

- Watch Video Solution

6. A circle touching the line $x+y-2=0$ at (1,1) and cuts the circle $x^{2}+y^{2}+4 x+5 y-6=0$ at P and Q . Then
A. PQ can never be parallel to the given line

$$
x+y-2=0
$$

B. PQ can never be perpendicular to the given line

$$
x+y-2=0
$$

C. PQ always passes through $(6,-4)$
D. PQ always passes through $(-6,4)$

D Watch Video Solution

7. A circle $S=0$ passes through the common points of family of circles $x^{2}+y^{2}+\lambda x-4 y+3=0$ and $(\lambda \varepsilon R)$ has minimum area then
A. area of $S=0$ is π sq. units
B. radius of director circle of $S=0$ is $\sqrt{2}$
C. radius of director circle of $S=0$ is 1 unit
D. $S=0$ never cuts $|2 x|=1$
8. Q is any point on the circle $x^{2}+y^{2}=9 . Q N$ is perpendicular from Q to the x-axis. Locus of the point of trisection of QN is
A. $4 x^{2}+9 y^{2}=36$
B. $9 x^{2}+4 y^{2}=36$
C. $9 x^{2}+y^{2}=9$
D. $x^{2}+9 y^{2}=9$

Answer: A::D

- Watch Video Solution

9. Locus of the intersection of the two straight lines passing through $(1,0)$ and $(-1,0)$ respectively and including an angle of 45° can be a circle with (a) centre $(1,0)$ and radius $\sqrt{2}$ (b) centre $(1,0)$ and radius 2 (c) centre $(0,1)$ and radius $\sqrt{2}(\mathrm{~d})$ centre $(0,-1)$ and radius $\sqrt{2}$
A. curve $(1,0)$ and radius $\sqrt{2}$
B. centre $(1,0)$ and radius 2
C. centre $(0,1)$ and radius $\sqrt{2}$
D. centre $(0,-1)$ and radius $\sqrt{2}$

Answer: C::D

Comprehension Type

1.

In the diagram as shown, a circle is drawn with centre
$C(1,1)$ and radius 1 and a line L . The line L is tangent to the circle at Q. Further L meets the y-axis at R and the x axis at P in such a way that the angle OPQ equals θ where $0<\theta<\frac{\pi}{2}$.

Area of triangle OPR when $\theta=\pi / 4$ is
A. $(1+\cos \theta, 1+\sin \theta)$
B. $(\sin \theta, \cos \theta)$
C. $(1+\sin \theta, \cos \theta)$
D. $(1+\sin \theta, 1+\cos \theta)$

Answer: D

- Watch Video Solution

2.

In the diagram as shown, a circle is drawn with centre
$C(1,1)$ and radius 1 and a line L . The line L is tangent to the circle at Q. Further L meets the y-axis at R and the x axis at P in such a way that the angle OPQ equals θ where $0<\theta<\frac{\pi}{2}$.

Equation of the line PR is
A. $x \cos \theta+y \sin \theta=\sin \theta+\cos \theta+1$
B. $x \sin \theta+y \cos \theta=\cos \theta+\sin \theta-1$
C. $x \sin \theta+y \cos \theta=\cos \theta+\sin \theta+1$
D. $x \tan \theta+y=1+\cot \left(\frac{\theta}{2}\right)$

Answer: C

D Watch Video Solution

3.

In the diagram as shown, a circle is drawn with centre
$C(1,1)$ and radius 1 and a line L . The line L is tangent to the circle at Q. Further L meets the y-axis at R and the x axis at P in such a way that the angle OPQ equals θ where $0<\theta<\frac{\pi}{2}$.

Area of triangle OPR when $\theta=\pi / 4$ is
A. $(3-2 \sqrt{2})$
B. $(3+2 \sqrt{2})$
C. $(6+4 \sqrt{2})$
D. none of these

Answer: B

- Watch Video Solution

4. Let $P(\alpha, \beta)$ be a point in the first quadrant. Circles are drawn through P touching the coordinate axes. Radius of one of the circles is
A. $(\sqrt{a}-\sqrt{\beta})^{2}$
B. $(\sqrt{\alpha}+\sqrt{\beta})^{2}$
C. $\alpha+\beta-\sqrt{\alpha \beta}$
D. $\alpha+\beta-\sqrt{2 \alpha \beta}$

Answer: D
5. $P(\alpha, \beta)$ is a point in first quadrant. If two circles which passes through point P and touches both the coordinate axis, intersect each other orthogonally, then
A. $\alpha^{2}+\beta^{2}=4 \alpha \beta$
B. $(\alpha+\beta)^{2}=4 \alpha \beta$
C. $\alpha^{2}+\beta^{2}=\alpha \beta$
D. $\alpha^{2}+\beta^{2}=2 \alpha \beta$

Answer: A

- Watch Video Solution

6. Let $P(\alpha, \beta)$ be a point in the first quadrant. Circles are drawn through P touching the coordinate axes.

Equation of common chord of two circles is
A. $x+y=\alpha-\beta$
B. $x+y=2 \sqrt{\alpha \beta}$
C. $x+y=\alpha+\beta$
D. $\alpha^{2}-\beta^{2}=4 \alpha \beta$

Answer: C
7. $P(a, 5 a)$ and $Q(4 a, a)$ are two points. Two circles are drawn through these points touching the axis of y.

Centre of these circles are at
A. $(a, a),(2 a, 3 a)$
B. $\left(\frac{205 a}{18}, \frac{29 a}{3}\right),\left(\frac{5 a}{2}, 3 a\right)$
c. $\left(3 a, \frac{29 a}{3}\right),\left(\frac{205 a}{9}, \frac{29 a}{18}\right)$
D. None of these

Answer: B

- Watch Video Solution

8. Two circles are drawn through the points $(a, 5 a)$ and $(4 a, a)$ to touch the y -axis. Prove that they intersect at angle $\tan ^{-1}\left(\frac{40}{9}\right)$.
A. $\tan ^{-1}(4 / 3)$
B. $\tan ^{-1}(40 / 9)$
C. $\tan ^{-1}(84 / 187)$
D. $\pi / 4$

Answer: B

