©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

CONIC SECTIONS

Others

1. Given that $A(1,1)$ and $B(2,-3)$ are two points and D is a point on $A B$ produced such that $A D=3 A B$. Find the coordinates of D.

- Watch Video Solution

2. Find the coordinates of the point which divides the line segments joining the points $(6,3)$ and $(-4,5)$ in the ratio $3: 2$ (i) internally and
(ii) externally.
3. Four points $A(6,3), B(-3,5), C(4,-2)$ and $D(x, 2 x)$ are given in such a way that $\frac{(\text { Areaof } D B C)}{(\text { Areaof } A B C)}=\frac{1}{2}$.

- Watch Video Solution

4. If the points $(1,1):\left(0, \sec ^{2} \theta\right)$; and $\left(\operatorname{cosec}^{2} \theta, 0\right)$ are collinear, then find the value of θ

- Watch Video Solution

5. Given that $A_{1}, A_{2}, A_{3}, A_{n}$ are n points in a plane whose coordinates are $\left.x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{n}, y_{n}\right)$, respectively. $A_{1} A_{2}$ is bisected at the point $P_{1}, P_{1} A_{3}$ is divided in the ratio $A: 2$ at $P_{2}, P_{2} A_{4}$ is divided in the ratio 1:3 at $P_{3}, P_{3} A_{5}$ is divided in the ratio $1: 4$ at P_{4}, and so on until all n points are exhausted. Find the final point so obtained.
6. If P divides $O A$ internally in the ratio $\lambda_{1}: \lambda_{2}$ and Q divides $O A$ externally in the ratio $\lambda_{1} ; \lambda_{2}$, then prove that $O A$ is the harmonic mean of $O P$ and $O Q$.

- Watch Video Solution

7. Prove that the point $(-2,-1),(1,0),(4,3) \operatorname{and}(1,2)$ are the vertices of parallel-gram. Is it a rectangle?

- Watch Video Solution

8. Determine the ratio in which the line $3 x+y-9=0$ divides the segment joining the points $(1,3)$ and $(2,7)$.
9. Find the orthocentre of the triangle whose vertices are $(0,0),(3,0)$, and $(0,4)$.

- Watch Video Solution

10. If a vertex of a triangle is $(1,1)$, and the middle points of two sides passing through it are $-2,3)$ and $(5,2)$, then find the centroid of the triangle.

- Watch Video Solution

11. The vertices of a triangle are $A(-1,-7), B(5,1) \operatorname{and} C(1,4)$. If the internal angle bisector of $\angle B$ meets the side $A C$ in D, then find the length $A D$.

- Watch Video Solution

12.

$A\left(a \cos \theta_{1}, a \sin \theta_{1}\right), B\left(a \cos \theta_{2} a \sin \theta_{2}\right), a n d C\left(a \cos \theta_{3}, a \sin \theta_{3}\right)$ equilateral, then prove
$\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=0$.

- Watch Video Solution

13. If the point $(x,-1),(3, y),(-2,3)$, $\operatorname{and}(-3,-2)$ taken in order are the vertices of a parallelogram, then find the values of xandy.

- Watch Video Solution

14. If the midpoints of the sides of a triangle are
$(2,1),(-1,-3), \operatorname{and}(4,5)$, then find the coordinates of its vertices.

- Watch Video Solution

15. If the circumcenter of an acute-angled triangle lies at the origin and the centroid is the middle point of the line joining the points $\left(a^{2}+1, a^{2}+1\right)$ and $(2 a,-2 a)$, then find the orthocentre.

- Watch Video Solution

16. If a vertex, the circumcenter, and the centroid of a triangle are $(0,0)$, $(3,4)$, and (6,8), respectively, then the triangle must be (a) a right-angled triangle (b) an equilateral triangle (c) an isosceles triangle (d) a rightangled isosceles triangle

- Watch Video Solution

17. Orthocenter and circumcenter of a $\triangle A B C$ are $(a, b) \operatorname{and}(c, d)$, respectively. If the coordinates of the vertex A are $\left(x_{1}, y_{1}\right)$, then find the coordinates of the middle point of $B C$.
18. If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are the vertices of traingle ABC and $\quad x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2}=x_{3}^{2}+y_{3}^{2}$, then show that $x_{1} \sin 2 A+x_{2} \sin 2 B+x_{3} \sin 2 C=y_{1} \sin 2 A+y_{2} \sin 2 B+y_{3} \sin 2 C=0$

- Watch Video Solution

19. The points $(a, b),(c, d)$, and $\left(\frac{k c+l a}{k+l}, \frac{k d+l b}{k+l}\right)$ are (a) vertices of an equilateral triangle (b) vertices of an isosceles triangle (c) vertices of a right-angled triangle (d) collinear

- Watch Video Solution

20. The circumcenter of the triangle formed by the line $y=x, y=2 x$, and $y=3 x+4$ is
A. (a) $(6,8)$
B. (b) $(6,-8)$
C. (c) $(3,4)$
D. (d) $(-3,-4)$

Answer: null

- Watch Video Solution

21. The line joining $A(b \cos \alpha, b \sin \alpha)$ and $B(a \cos \beta, a \sin \beta)$ is produced to the point $M(x, y)$ so that $A M$ and $B M$ are in the ratio $b: a$. Then $x \cos \left(\frac{\alpha+\beta}{2}\right)+y \sin \left(\frac{\alpha+\beta}{2}\right)$

- Watch Video Solution

22. If the middle points of the sides of a triangle are $(-2,3),(4,-3), \operatorname{and}(4,5)$, then find the centroid of the triangle.

- Watch Video Solution

23. In what ratio does the x-axis divide the line segment joining the points $(2,-3)$ and $(5,6)$?

- Watch Video Solution

24. If $(1,4)$ is the centroid of a triangle and the coordinates of its any two vertices are $(4,-8)$ and $(-9,7)$, find the area of the triangle.

- Watch Video Solution

25. If $\left(x_{i}, y_{i}\right), i=1,2,3$, are the vertices of an equilateral triangle such that
$\left(x_{1}+2\right)^{2}+\left(y_{1}-3\right)^{2}=\left(x_{2}+2\right)^{2}+\left(y_{2}-3\right)^{2}=\left(x_{3}+2\right)^{2}+\left(y_{3}-3\right)^{2}$, then find the value of $\frac{x_{1}+x_{2}+x_{3}}{y_{1}+y_{2}+y_{3}}$.

- Watch Video Solution

26. A particle just clears a wall of height b at distance a and strikes the ground at a distance c from the point of projection. The angle of projection is (1) $\frac{\tan ^{-1} b}{a c}$ (2) 45° (3) $\frac{\tan ^{-1}(b c)}{a(c-a)}$ (4) $\frac{\tan ^{-1}(b c)}{a}$

- Watch Video Solution

27. Find the locus of a point, so that the join of $(-5,1)$ and $(3,2)$ subtends a right angle at the moving point.

- Watch Video Solution

28. The sum of the squares of the distances of a moving point from two fixed points $(a, 0)$ and $(-a, 0)$ is equal to a constant quantity $2 c^{2}$. Find the equation to its locus.

- Watch Video Solution

29. $A B$ is a variable line sliding between the coordinate axes in such a way that A lies on the x-axis and B lies on the y-axis. If P is a variable point on $A B$ such that $P A=b, P b=a$, and $A B=a+b$, find the equation of the locus of P.

- Watch Video Solution

30. A rod of length l slides with its ends on two perpendicular lines. Find the locus of its midpoint.

- Watch Video Solution

31. Find the locus of the point $\left(t^{2}-t+1, t^{2}+t+1\right), t \in R$.

- Watch Video Solution

32. Find the locus of a point such that the sum of its distance from the points $(2,2)$ and $(2,-2)$ is 6 .

- Watch Video Solution

33. Two points $\mathrm{P}(\mathrm{a}, 0)$ and $\mathrm{Q}(-\mathrm{a}, \mathrm{O})$ are given. R is a variable point on one side of the line $P Q$ such that $\angle R P Q-\angle R Q P$ is a positive constant 2α. Find the locus of the point R.

- Watch Video Solution

34. If the coordinates of a variable point P are $(a \cos \theta, b \sin \theta)$, where θ is a variable quantity, then find the locus of P.

- Watch Video Solution

35. Find the locus of a point whose distance from $(a, 0)$ is equal to its distance from the y-axis.

- Watch Video Solution

36. The coordinates of the point A and B are ($\mathrm{a}, 0$) and $(-a, 0)$, respectively. If a point P moves so that $P A^{2}-P B^{2}=2 k^{2}$, when k is constant, then find the equation to the locus of the point P.

- Watch Video Solution

37. The locus of the foot of perpendicular drawn from origin to a variable line passing through fixed points $(2,3)$ is a circle whose diameter is?

- Watch Video Solution

38. A variable line through the point $P(2,1)$ meets the axes at A an d B . Find the locus of the centroid of triangle $O A B$ (where O is the origin).

- Watch Video Solution

39. If $A(\cos \alpha, \sin \alpha), B(\sin \alpha,-\cos \alpha), C(1,2)$ are the vertices of $A B C$, then as α varies, find the locus of its centroid.

- Watch Video Solution

40. Let $A(2,-3)$ and $B(-2,1)$ be the vertices of $\triangle A B C$. If the centroid of the triangle moves on the line $2 x+3 y=1$, then find the locus of the vertex C.

- Watch Video Solution

41. Convert the following points from polar coordinates to the corresponding Cartesian coordinates.

$$
\begin{align*}
& (i i)(i i i)\left((i v)(v) 2,(v i) \frac{\pi}{v i i} 3(v i i i)(i x)(x)\right)(x i) \tag{xii}\\
& (x i i i)(\xi v)\left((x v)(x v i) 0,(x v i i) \frac{\pi}{x v i i i} 2(x i x)(\times)(\times i)\right)(x x i i) \quad(x x i i) \text { (iii) } \tag{ii}\\
& (x x i v)(\times v)\left((x x v i)(\times v i i)-\sqrt{(x x v i i i) 2(x x i x)}(x x x),(\times \xi) \frac{\pi}{x x x i i} 4(x\right.
\end{align*}
$$ (xxxvii)

- Watch Video Solution

42. A straight line is drawn through $P(3,4)$ to meet the axis of x and y at AandB , respectively. If the rectangle $O A C B$ is completed, then find the locus of C.

- Watch Video Solution

43. A variable line passing through point $P(2,1)$ meets the axes at A and B. Find the locus of the circumcenter of triangle $O A B$ (where O is the origin).

Watch Video Solution

44. A point moves such that the area of the triangle formed by it with the points $(1,5)$ and $(3,-7) i s 21$ squinits. Then, find the locus of the point.

- Watch Video Solution

45. Find the locus of the point of intersection of lines $x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=b(\alpha$ is a variable).

- Watch Video Solution

46. Find the locus of the middle point of the portion of the line $x \cos \alpha+y \sin \alpha=p$ which is intercepted between the axes, given that p remains constant.

- Watch Video Solution

47. Q is a variable point whose locus is $2 x+3 y+4=0$; corresponding to a particular position of Q, P is the point of section of $O Q, O$ being the origin, such that $O P: P Q=3: 1$. Find the locus of P.

- Watch Video Solution

48. Convert $y=10$ into a polar equation.

- Watch Video Solution

49. Convert the following Cartesian coordinates to the corresponding polar coordinates using positive r and negative r.
$(i i)(i i i)((i v)(v)-1,1(v i))(v i i)$ (viii)
$(i x)(x)((x i)(\xi i) 2,-3(x i i i))(x i v)(x v)$

- Watch Video Solution

50. Find the minimum distance of any point on the line $3 x+4 y-10=0$ from the origin using polar coordinates.

- Watch Video Solution

51. If the difference between the roots of the equation $x^{2}+a x+1=0$ is less than $\sqrt{5}$, then the set of possible values of a is (1) $(-3,3)$ (2)
$(-3, \infty)(3)(3, \infty)(4)(-\infty,-3)$

- Watch Video Solution

52. Express the polar equation $r=2 \cos \theta$ in rectangular coordinates.

- Watch Video Solution

53. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angles α with the positive x -axis, then cos
α equals

- Watch Video Solution

54. Convert $r \sin \theta=r \cos \theta+4$ into its equivalent Cartesian equation.

- Watch Video Solution

55. Convert $r=\cos e c \theta e^{r \cos \theta}$ into its equivalent Cartesian equation.

- Watch Video Solution

56. A particle just clears a wall of height b at distance a and strikes the ground at a distance c from the point of projection. The angle of projection is (1) $\frac{\tan ^{-1} b}{a c}$ (2) 45° (3) $\frac{\tan ^{-1}(b c)}{a(c-a)}$ (4) $\frac{\tan ^{-1}(b c)}{a}$

- Watch Video Solution

57. Convert the following polar coordinates to its equivalent Cartesian coordinates.
$(i i)(i i i) 2, \pi)(i v)$
(v)
$(v i)(v i i)\left((v i i i)(i x) \sqrt{(x) 2(x i)}(x i i),(\xi i i) \frac{\pi}{x i v} 6(x v)(x v i)(x v i i)\right)(x v i i i)$ (xix)
$(x x)(\times i)\left((x x i i)(\times i i i)-3,-(x x i v) \frac{\pi}{x x v} 6(x x v i)(\times v i i)(\times v i i i)\right)(x:$ (xxx)

- Watch Video Solution

58. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the other end of the diameter are (1) $(4,9,-3)(2)(4,-3,3)(3)(4,3,5)$
(4) $(4,3,-3)$

- Watch Video Solution

59. Convert $r=4 \tan \theta \sec \theta$ into its equivalent Cartesian equation.
60. Given the equation $4 x^{2}+2 \sqrt{3} x y+2 y^{2}=1$. Through what angle should the axes be rotated so that the term $x y$ is removed from the transformed equation.

- Watch Video Solution

61. The equation of a curve referred to a given system of axes is $3 x^{2}+2 x y+3 y^{2}=10$. Find its equation if the axes are rotated through an angle 45°, the origin remaining unchanged.

- Watch Video Solution

62. Determine x so that the line passing through $(3,4)$ and $(x, 5)$ makes an angle of 135^{0} with the positive direction of the x-axis.

- Watch Video Solution

63. What does the equation $2 x^{2}+4 x y-5 y^{2}+20 x-22 y-14=0$ become when referred to the rectangular axes through the point $(-2,-3)$, the new axes being inclined at an angle at 45^{0} with the old axes?

- Watch Video Solution

64. Shift the origin to a suitable point so that the equation $y^{2}+4 y+8 x-2=0$ will not contain a term in y and the constant term.

- Watch Video Solution

65. At what point should the origin be shifted if the coordinates of a point $(4,5)$ become $(-3,9)$?

- Watch Video Solution

66. Find the equation to which the equation $x^{2}+7 x y-2 y^{2}+17 x-26 y-60=0$ is transformed if the origin is shifted to the point $(2,-3)$, the axes remaining parallel to the original axies.

- Watch Video Solution

67. The equation of curve referred to the new axes, axes retaining their directions, and origin $(4,5)$ is $X^{2}+Y^{2}=36$. Find the equation referred to the original axes.

- Watch Video Solution

68. If the point $(2,3),(1,1)$, and $(x, 3 x)$ are collinear, then find the value of x,using slope method.

- Watch Video Solution

69. Which line is having the greatest inclination with the positive direction of the x-axis?
(i) Line joining the points $(1,3)$ and $(4,7)$
(ii)Line $3 x-4 y+3=0$

Watch Video Solution

70. Find the orthocentre of $\triangle A B C$ with vertices $A(1,0), B(-2,1)$, and $C(5,2)$

- Watch Video Solution

71. The angle between the line joining the points $(1,-2),(3,2)$ and the line $x+2 y-7=0$ is
72. The line joining the points $A(2,1)$ and $B(3,2)$ is perpendicular to the line $\left(a^{2}\right) x+(a+2) y+2=0$. Find the values of a.

- Watch Video Solution

73. For what value of k are the points $(k, 2-2 k)(-k+1,2 k) \operatorname{and}(-4-k, 6,6-2 k)$ are collinear?

- Watch Video Solution

74. Find the area of the quadrilateral $A B C D$ having vertices $A(1,1), B(7,-3), C(12,2)$, and $D(7,21)$.

- Watch Video Solution

75. Given that $P(3,1), Q(6.5)$, and $R(x, y)$ are three points such that the angle $P Q R$ is a right angle and the area of $R Q P$ is 7 , find the value
of $4 x-3 y+5$

- Watch Video Solution

76. If O is the origin and if the coordinates of any two points Q_{1} and Q_{2} are $\quad\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right), \quad$ respectively, prove that
$O Q_{1} . O Q_{2} \cos \angle Q_{1} O Q_{2}=x_{1} x_{2}+y_{1} y_{2}$.

- Watch Video Solution

77. Prove that the area of the triangle whose vertices are $(t, t-2),(t+2, t+2)$, and $(t+3, t)$ is independent of t.

- Watch Video Solution

78. Find the area of a triangle having vertices $A(3,2), B(11,8)$ and $C(8,12)$.
79. In $A B C$ Prove that $A B^{2}+A C^{2}=2\left(A O^{2}+B O^{2}\right)$, where O is the middle point of $B C$

- Watch Video Solution

80. Two points $O(0,0)$ and $A(3, \sqrt{3})$ with another point P form an equilateral triangle. Find the coordinates of P.

- Watch Video Solution

81. Find the coordinate of the circumcenter of the triangle whose vertices are $A(5,-1), B(-1,5)$, and $C(6,6)^{\prime}$. Find its radius also.

- Watch Video Solution

82. Find the orthocentre of $\triangle A B C$ with vertices $A(1,0), B(-2,1)$, and $C(5,2)$

- Watch Video Solution

83. If $\left(b_{2}-b_{1}\right)\left(b_{3}-b_{1}\right)+\left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right)=0$, then prove that the circumcenter of the triangle having vertices $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ and $\left(a_{3}, b_{3}\right)$ is $\left(\frac{a_{2+a_{3}}}{2}, \frac{b_{2+} b_{3}}{2}\right)$

- Watch Video Solution

84. If line $3 x-a y-1=0$ is parallel to the line $(a+2) x-y+3=0$ then find the value of a.

- Watch Video Solution

85. If $A(2,-1) \operatorname{and} B(6,5)$ are two points, then find the ratio in which the food of the perpendicular from $(4,1)$ to $A B$ divides it.

- Watch Video Solution

86. Angle of a line with the positive direction of the x-axis is θ. The line is rotated about some point on it in anticlockwise direction by angle 45^{0} and its slope becomes 3 . Find the angle θ.

- Watch Video Solution

87. Let $A(6,4) \operatorname{and} B(2,12)$ be two given point. Find the slope of a line perpendicular to $A B$.

- Watch Video Solution

88. If the points $(a, 0),(b, 0),(0, c)$, and $(0, d)$ are concyclic $(a, b, c, d>0)$, then prove that $a b=c d$.

Watch Video Solution

89. If $A(-2,1), B(2,3) \operatorname{and} C(-2,-4)$ are three points, find the angle between $B A a n d B C$.

- Watch Video Solution

90. The line joining the points $(x, 2 x) \operatorname{and}(3,5)$ makes an obtuse angle with the positive direction of the x-axis. Then find the values of x.

- Watch Video Solution

91. If the line passing through $(4,3) \operatorname{and}(2, k)$ is parallel to the line $y=2 x+3$, then find the value of k.
92. Find the area of the pentagon whose vertices are $A(1,1), B(7,21), C(7,-3), D(12,2)$, and $E(0,-3)$

- Watch Video Solution

93. Let $A=(3,4)$ and B is a variable point on the lines $|x|=6$. IF $A B \leq 4$, then find the number of position of B with integral coordinates.

- Watch Video Solution

94. The three points $(-2,2)(8,-2), \operatorname{and}(-4,-3)$ are the vertices of (a) an isosceles triangle (b) an equilateral triangle (c) a right-angled triangle (d) none of these

- Watch Video Solution

95. The points $(-a,-b),(a, b),\left(a^{2}, a b\right)$ are (a) vertices of an equilateral triangle (b) vertices of a right angled triangle (c) vertices of an isosceles triangle (d) collinear

- Watch Video Solution

96. The distance between the point ($a \cos \alpha, a \sin \alpha$) and ($a \cos \beta, a \sin \beta$) is

- Watch Video Solution

97. Find the length of altitude through A of the triangle $A B C$, where
$A \equiv(-3,0) B \equiv(4,-1), C \equiv(5,2)$

- Watch Video Solution

98. If the coordinates of two points A and B are $(3,4)$ and $(5,-2)$, respectively, find the coordinates of any point P if $P A=P B$. Area of
$P A B$ is 10 sq. units.

- Watch Video Solution

99. If the point $(0,0),(2,2 \sqrt{3})$, and (p, q) are the vertices of an equilateral triangle, then (p, q) is
A. (a) $(0,-4)$
B. (b) $(4,4)$
C. (c) $(4,0)$
D. (d) $(5,0)$

Answer: null

- Watch Video Solution

100. Given points $P(2,3), Q(4,-2)$, $\operatorname{and} R(\alpha, 0)$ (i) Find the value of (ii) $\alpha($ (iii) (iv) if $(v)(v i) P R+r Q(v i i)$ (viii) is minimum (ix) Find the value
of $(x) \alpha(x i)$ (xii) if $(x i i i)(\xi v)|(x v) P R-R Q|(x v i)$ (xvii) is maximum

- Watch Video Solution

101. If the vertices of a triangle have rational coordinates, then prove that the triangle cannot be equilateral.

- Watch Video Solution

