©゙doubtnut

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

CONTINUITY AND DIFFERENTIABILITY

Single Correct Answer Type

1. If $f(x)=\left\{\left(\sin \left(\frac{2 x^{2}}{a}\right)+\cos \left(\frac{3 x}{b}\right)\right)^{a b / x^{2}}, x \neq 0 \& e^{3} a t x=0\right\}$ is continuous at $x=0 \forall b \in R$ then minimum value of a is $-1 / 8 \mathrm{~b} .-1 / 4$
c. $-1 / 2$ d. 0
A. $-1 / 8$
B. $-1 / 4$
C. $-1 / 2$
D. 0

- Watch Video Solution

2. Let $f: R \rightarrow R$ be any function. Also $g: R \rightarrow R$ is defined by $g(x)=|f(x)|$ for all x. Then g is
a. Onto if f is onto b . One-one if f is one-one c. Continuous if f is continuous d. None of these
A. onto if f is onto
B. one-one if f is one-one
C. continuous if f is continuous
D. None of these

Answer: C

3.

$f(x)=\left[\frac{1-\sin \pi x}{1+\cos 2 \pi x}, x<\frac{1}{2}\right.$ and $p, x=\frac{1}{2}$ and $\frac{\sqrt{2 x-1}}{\sqrt{4+\sqrt{2 x-1}-2}}$
.Determine the value of p, if possible, so that the function is continuous at $x=\frac{1}{2}$.
A. 1
B. $1 / 4$
C. 4
D. none of these

Answer: D

- Watch Video Solution

4. For which of the following functions $f(0)$ exists such that $f(x)$ is continuous at $f(x)=\frac{1}{(\log)_{e}|x|}$ b. $f(x)=\frac{1}{(\log)_{\mathrm{e}}|x|}$ c. $\mathrm{f}(\mathrm{x})=\mathrm{x} \operatorname{sinpi} / \mathrm{x} \mathrm{d}$. $f(x)=\frac{1}{1+2^{\cot x}}$
A. $f(x)=\frac{1}{\log _{e}|x|}$
B. $f(x)=\cos \left(\frac{|\sin x|}{x}\right)$
C. $f(x)=x \frac{\sin (\pi)}{x}$
D. $f(x)=(1)=\frac{1}{1+2^{\cot x}}$

Answer: C

- Watch Video Solution

5. Let $f(x)=x^{3}-x^{2}-3 x-1, g(x)=(x+1) a$ and $h(x)=\frac{f(x)}{g(x)}$ where h is a rational function such that
(i) It is continuous everywhere except when $x=-1$,
(ii) $\lim _{x \rightarrow-1} h(x)=\frac{1}{2}$.

The value of $h(1)$ is
A. $1 / 2$
B. $1 / 4$
C. $-1 / 2$
D. 1

Answer: C

- Watch Video Solution

6. If the function $f(x)=\frac{3 x^{2}+a x+a+3}{x^{2}+x-2}$ is continuous at $x=-2$, then the value of $f(-2)$ is
A. 0
B. -1
C. 1
D. 2

Answer: B

O
 Watch Video Solution

7. Let $f(x)=\left\{\begin{array}{ll}8^{\frac{1}{x}}, & x<0 \\ a[x], & a \in R-\{0\}, \quad x \geq 0\end{array}\right.$ (where [.] denotes the greatest integer function).

Then $f(x)$ is
A. continuous only at a finite number of points.
B. discontinuous at a finite number of points.
C. discontinuous at an infinite number of points.
D. discontinuous at $\mathrm{x}=0$.

Answer: C

- Watch Video Solution

8. Let $f(x)=(1-x)^{2} \sin ^{2} x+x^{2} \quad$ for all $\mathrm{x} \in \mathrm{R}$, and let $g(x)=\int\left(\frac{2(t-1)}{t+1}-\ln t\right) f(t) d t$ for $\mathrm{t} \in[1, \mathrm{x}]$ for all $\mathrm{x} \in(1, \infty)$. Which of the following is true ?
A. f is continuous at $x=\pi / 2$
B. f has an irremovable discontinuity at $x=\pi / 2$
C. f has a removable discontinuity at $x=\pi / 2$
D. none of these

Answer: B

- Watch Video Solution

9.

$$
f(x)=\left\{\sin \left(\frac{\pi}{2}\right)(x-[x]), x<55(b-1), x=5 \frac{a b^{2}\left|x^{2}-11 x+24\right|}{x-3}, x\right\rangle
$$ is continuous at $x=5, a, b \in R$ then ([.] denotes the greatest integer function) $a=\frac{25}{108}, b=\frac{6}{5}$ b. $a=\frac{6}{13}, b=\frac{17}{29}$ c. $a=\frac{1}{2}, b=\frac{25}{36}$ d. $a=\frac{23}{100}, b=\frac{6}{5}$

A. $a=\frac{25}{108}, b=\frac{6}{5}$
B. $a=\frac{6}{13}, b=\frac{17}{29}$
C. $a=\frac{1}{2}, b=\frac{25}{36}$
D. $a=(23),(100), b=\frac{6}{5}$

- Watch Video Solution

10. The function $f(x)$ is discontinuous only at $x=0$ such that $f^{2}(x)=1 \forall x \in R$. The total number of such functions is 2 b .3 c .6 d . none of these
A. 2
B. 3
C. 6
D. none of these

Answer: C

11. $f(x)=\left\{\left(x^{2}+e^{\frac{1}{2-x}}\right)^{-1} k, x=2, x \neq 2\right.$ is continuous from right at the point $x=2$, then k equals
a. 0
b. $1 / 4$
c. $-1 / 4$
d. none of these
A. 0
B. $1 \backslash 4$
C. $-1 / 4$
D. none of these

Answer: B

- Watch Video Solution

12. Let

$$
g(x)=f(f(x))
$$

where
$f(x)=\{1+x ; 0 \leq x \leq 2\}$ and $f(x)=\{3-x ; 2<x \leq 3\}$ then the
number of points of discontinuity of $g(x)$ in $[0,3]$ is:
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

13. If the function $f(x)=\frac{(128 a+a x)^{1 / 8}-2}{(32+b x)^{1 / 5}-2}$ is continuous at $x=0$, then the value of a / b is $\frac{3}{5} f(0)$ b. $2^{8 / 5} f(0)$ c. $\frac{64}{5} f(0)$ d. none of these
A. $\frac{3}{5} f(0)$
B. $2^{8 / 5} f(0)$
C. $\frac{64}{5} f(0)$
D. none of these

D Watch Video Solution

14. If $f(x)=\left\{\begin{array}{l}\frac{1-\cos \left(1-\frac{\cos x}{2}\right)}{2^{m} x^{n}} 1 x=0, x \neq 0 \text { is continous at } x=0\end{array}\right.$ then the value of $m+n$ is a. 2 b. 3 c. -3 d. 7
A. 2
B. 3
C. -3
D. 7

Answer: C

15. Let $f(x)=\left\{\begin{array}{ll}\frac{\alpha \cot x}{x}+\frac{\beta}{x^{2}} & 0<|x| \leq 1 \\ \frac{1}{3} & x=0\end{array}\right.$. If $f(x)$ is continuous at $x=0$ then the value of $\alpha^{2}+\beta^{2}$ is
A. 1
B. 2
C. 5
D. 9

Answer: B

- Watch Video Solution

16. Let $f(x)=\left\{\frac{2}{1+x^{2}}, \xi\right.$ srationalb, ξ srational has exactly two points of continuity then the value of b are $(0,3]$ b. $[0,1]$ c. $(0,2]$ d. φ
A. $(0,3]$
B. $[0,1]$
C. $(0,2]$
D. ϕ

Answer: C

- Watch Video Solution

17. If $f(x)$, $\begin{cases}\sin \left(\frac{a-x}{2}\right) \tan \left[\frac{\pi x}{2 a}\right] & \text { for } \quad x>a \\ \frac{\left[\cos \left(\frac{\pi x}{2 a}\right)\right]}{a-x} & \text { for } \quad x<a\end{cases}$
(where $[\mathrm{x}]$ is the greatest integer function of x) and a gt 0 , then
A. $f\left(a^{-}\right)<0$
B. f has a removable discontinuity at $\mathrm{x}=\mathrm{a}$
C. f has an irremovable discontinuity at $\mathrm{x}=\mathrm{a}$
D. $f\left(a^{+}\right)<0$

Answer: B

18. Let $f(x)=[\tan x[\cot x]], x\left[\frac{\pi}{12}, \frac{\pi}{12}\right]$, (where [.] denotes the greatest integer less than or equal to x). Then the number of points, where $f(x)$ is discontinuous is a. one b. zero c. three d. infinite
A. one
B. zero
C. three
D. infinite

Answer: C

- Watch Video Solution

19. Let $f:[a, b] \rightarrow R$ be any function which is such that $f(x)$ is rational for irrational x and that $f(x)$ is iirrational for rational x , then in $[\mathrm{a}, \mathrm{b}]$
A. f is discontinuous everywhere
B. f is discontinuous only at $x=0$ and discontinuous everywhere
C. f is continuous for all irrational x and discontinuous for rational x
D. f is continuous for rational x and discontinuous for irrational x

Answer: A

- Watch Video Solution

20. If $f(x)=[x](\sin k x)^{p}$ is continuous for real x , then (where [.] represents the greatest integer function)
A. $k \in[n \pi, n \in I], p>0$
B. $k \in\{2 n \pi, n \in I\}, p>0$
C. $k \in\{n \pi, n \in I\}, p \in R-\{0\}$
D. $k \in\{n \pi, n I, n \neq 0\}, p \in R-\{0\}$

Answer: A

- Watch Video Solution

21. Statement 1: Minimum number of points of discontinuity of the function $f(x)=(g(x)[2 x-1] \forall x \in(-3,-1)$, where [.] denotes the greatest integer function and $g(x)=a x^{3}=x^{2}+1$ is zero. Statement 2 : $f(x)$ can be continuous at a point of discontinuity, say $x=c_{1} o f[2 x-1]$ if $g\left(c_{1}\right)=0$. Statement 1 is True, Statement 2 is True, Statement 2 isa correct explanation for Statement 1 . Statement 1 is True, Statement 2 is True, Statement 2 is NOT a correct explanation for statement 1 . Statement 1 is True, Statement 2 is False Statement 1 is False, Statement 2 is True.
A. Statement 1 is True, Statement 2 is True, Statement 2 is a correct explaination for Statement 1.
B. Statement 1 is True, Statement 2 is True, Statement 2 is NOT a correct explanation for Statement 1/
C. Statement 1 is True, Statement 2 is False.
D. Statement 1 is False, Statement 2 is True.
22. Number of points of discontinuity of $f(x)=\left[\sin ^{-1} x\right]-[x]$ in its domain is equal to (where [.] denotes the greatest integer function) a. 0 b. 1 c. 2 d. 3
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

23. If $g(x)=(\lim)_{m \rightarrow} \frac{x^{m} f(x)+h(x)+3}{2 x^{m}+4 x+1}$ when $x \neq 1 \operatorname{and} g(1)=e^{3}$ such that $f(x), g(x) \operatorname{andh}(x)$ are continuous functions at $x=1$ then the value of $5 f(1)-2 h(1)$ is 7 b. 6 c. 9 d. 8
A. 7
B. 6
C. 9
D. 8

Answer: B

- Watch Video Solution

24. The number of points of discontinuity of $f x)=\left[2 x^{2}\right]-\{2 x 2\}^{2}$ (where [] denotes the greatest integer function and $\}$ is fractional part of $x)$ in the interval $(-2,2)$, is 1 b. 6 c. 2 d. 4
A. 1
B. 6
C. 2
D. 5

- Watch Video Solution

25. If $f(x)=\{(|x|-3$ when $x<1)$, and $(|x-2|+a$, when $x \geq 1)$ \& $g(x)=\{2-|x|$ when $x<2$ and $\operatorname{sgn}(x)-b$, when $x \geq 2$.
if $h(x)=f(x)+g(x)$ is discontinuous at exactly one point, then -
(a). $a=-3, b=0$
(b). $a=-3, b=-1$
(c) $a=2, b=1$
(d) $a=0, b=1$
A. $a=-3, b=0$
B. $a=0, b=1$
C. $a=2, b=1$
D. $a=-3, b=1$

Answer: D

26. The function $f(x)=\frac{x^{3}}{8}-s \in \pi x+4 \in[-4,4]$ does not take the value -4 b. 10 c. 18 d. 12
A. -4
B. 10
C. 18
D. 12

Answer: C

- Watch Video Solution

27. Let $f(x)$ be continuous functions $f: R \vec{R}$ satisfying $f(0)=1 \operatorname{and} f(2 x)-f(x)=x$. Then the value of $f(3)$ is 2 b. 3 c. 4 d. 5
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

28. about to only mathematics
A. $a=b=4$
B. $a=b=-4$
C. $a=4$ and $b=-4$
D. $a=-4$ and $b=4$

Answer: C

29. If $f(x)=\left\{\begin{array}{ll}{[x]+\sqrt{\{x\}},} & x<1 \\ \frac{1}{[x]+\{x\}^{2}}, & x \geq 1\end{array}\right.$, then
[where [.] and \{.\} represent the greatest integer and fractional part functions respectively]
A. $f(x)$ is continuous at $x=1$ but not differentiable
B. $f(x)$ is not continuous at $x=1$
C. $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=1$
D. $\lim _{x \rightarrow 1} f(x)$ does not exist

Answer: A

- Watch Video Solution

30. If is an even function such that $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$ has some fininte non-zero value, then
A. f is continuous and derivable at $x=0$
B. f is continuous but not differentiable at $x=0$
C. f may be discontinuous at $\mathrm{x}=0$
D. None of these

Answer: B

D Watch Video Solution

31. Let $f(x)$ be differentiable for real x such that
$f^{\prime}(x)>0 o n(-\infty,-4)$,

$$
f^{\prime}(x)<0 o n(-4,6),
$$

$f^{\prime}(x)>0 o n(6, \infty)$, If $g(x)=f(10-2 x)$, then the value of $g^{\prime}(2)$ is a.
1 b. 2 c. 0 d. 4
A. 1
B. 2
C. 0
D. 4

Answer: C

$f(x)=x^{2}-\left|x^{2}-1\right|+2| | x|-1|+2|x|-7$ is non-differentiable is a.
ob. 1 c. 2 d. 3
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

33. If $f(x)=|x-1| .([x]=[-x])$, then (where [.] represents greatest integer function)
A. $f(a)$ is continuous and differentiable at $x=1$
B. $f(x)$ is discontinuous at $x=1$
C. $f(x)$ is continuous at $x=2$
D. $f(x)$ is continuous but non-differentiable at $x=1$

Answer: D

- Watch Video Solution

34. Number of point where function $f(x)$ defined as $f:[0,2 \pi] \rightarrow R, f(x)=\left\{\begin{array}{ll}3-\left|\cos x-\frac{1}{\sqrt{2}}\right|, & |\sin x|<\frac{1}{\sqrt{2}} \\ 2+\left|\cos x+\frac{1}{\sqrt{2}}\right|, & |\sin x| \geq \frac{1}{\sqrt{2}}\end{array}\right.$ is non
differentiable is
A. 2
B. 4
C. 6
D. 0

Answer: B

D Watch Video Solution

35. Let $f(x)=\left\{\begin{array}{ll}{[x]} & x \notin I \\ x-1 & x \in I\end{array}\right.$ (where, [.] denotes the greatest integer function) and $g(x)=\left\{\begin{array}{ll}\sin x+\cos x, & x<0 \\ 1, & x \geq 0\end{array}\right.$ Then for $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ at $\mathrm{x}=0$
A. $\lim _{x \rightarrow 0} g(g(x))$ exists but not continuous
B. continuous but not differentiable at $\mathrm{x}=0$
C. differentiable at $\mathrm{x}=0$
D. $\lim _{x \rightarrow 0} f(g(x))$ does not exist

Answer: C

- Watch Video Solution

36.

$$
f(x)=\left\{s \in\left(\cos ^{-1} x\right)+\cos \left(\sin ^{-1} x\right), x \leq 0 s \in\left(\cos ^{-1} x\right)-\cos \left(\sin ^{-1} a\right.\right.
$$

. Then at $x=0 f(x)$ is continuous and differentiable $f(x)$ is continuous but not differentiable $f(x)$ not continuous but differentiable $f(x)$ is neither continuous nor differentiable
A. $f(x)$ is continuous and differentiable
B. $f(x)$ is continuous but not differentiable
C. $f(x)$ not continuous but differentiable
D. $f(x)$ is neither continuous nor differentiable

Answer: D

- Watch Video Solution

37. If $f(x)=\max \{\tan x, \sin x, \cos x\}$ where $x \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ then the number of points, where $f(x)$ is non -differentiable, is
A. 2
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

38. The number of points at which $g(x)=\frac{1}{1+\frac{2}{f(x)}}$ is not differentiable, where $f(x)=\frac{1}{1+\frac{1}{x}}$, is a. 1 b. 2 c. 3 d. 4
A. 1
B. 2
C. 3
D. 4

Answer: C

39. Let $f(x)=(\lim)_{n \rightarrow \infty} \sum_{r=0}^{n-1} \frac{x}{(r x+1)\{(r+1) x+1\}}$. Then (A) $f(x)$ is continuous but not differentiable at $x=0$ (B) $f(x)$ is both continuous but not differentiable at $x=0$ (C) $f(x)$ is neither continuous not differentiable at $x=0$ (D) $f(x)$ is a periodic function.
A. $f(x)$ is continuous but not differentiable at $x=0$
B. $f(x)$ is both continuous and differentiable at $x=0$
C. $f(x)$ is neither continuous not differentiable at $x=0$
D. $f(x)$ is a periodic function

Answer: C

- Watch Video Solution

40. Let the given function is differentiable at $\mathrm{x}=1$.
$f(x)= \begin{cases}\lim _{n \rightarrow \infty} \frac{a x(x-1)\left(\cot \frac{\pi x}{4}\right)^{n}+\left(p x^{2}+2\right)}{\left(\cot , \frac{\pi x}{4}\right)^{n}+1}, & x \in(0,1) \cup(1,2) \\ 0, & x=1\end{cases}$
Then the value of $|a+p|$ is
A. 4
B. 6
C. 8
D. 10

Answer: B

- Watch Video Solution

41. The value of p and q for which the function
$f(x)=\left\{\frac{\sin (p+1) x+\sin x}{x}, x<0 q, x=0 \frac{\sqrt{x+x^{2}}-\sqrt{x}}{x^{3 / 2}}, x>0\right\}$
is continuous for all x in R , are: (1) $p=\frac{1}{2}, q=-\frac{3}{2}$
$p=\frac{5}{2}, q=-\frac{1}{2}$ (3) $p=-\frac{3}{2}, q=\frac{1}{2}$ (4) $p=\frac{1}{2}, q=\frac{3}{2}$
A. $p=\frac{1}{2}, q=\frac{3}{2}$
B. $p=\frac{1}{2}, q=-\frac{3}{2}$
C. $p=\frac{5}{2}, q=\frac{1}{2}$
D. $p=-\frac{3}{2}, q=\frac{1}{2}$

Answer: D

- Watch Video Solution

42. If $f: R \rightarrow R$ is a function defined by $f(x)=[x] \cos \left(\frac{2 x-1}{2}\right) \pi$, where $[\mathrm{x}$] denotes the greatest integer function, then f is
A. continuous for every real x .
B. discontinuous only at $\mathrm{x}=0$.
C. discontinuous only at non-zero integral values of x .
D. continuous only at $\mathrm{x}=0$.

Answer: A

- Watch Video Solution

43. If the function
$g(x)=\left\{\begin{array}{ll}k \sqrt{x+1} & 0 \leq x \leq 3 \\ m x+2 & 3<x \leq 5\end{array}\right.$ is differentiable, then the value of $\mathrm{k}+\mathrm{m}$ is
A. 2
B. $\frac{16}{5}$
C. $\frac{10}{3}$
D. 4

Answer: A

- Watch Video Solution

44. For $x \in R, f(x)=|\log 2-\sin x|$ and $g(x)=f(f(x))$, then
A. $g^{\prime}(0)=\cos \left(\log _{e} 2\right)$
B. $g^{\prime}(0)=-\cos \left(\log _{e} 2\right)$
C. g is differentiable at $\mathrm{x}=0$ and $\mathrm{g}^{\prime}(0)=-\sin \left(\log _{e} 2\right)$
D. g is not differentiable at $x=0$

Answer: A

- Watch Video Solution

45. Let $S=\left\{t \in R: f(x)=|x-\pi|\left(e^{|x|}-1\right) \sin |x| \quad\right.$ is not differentiable at t$\}$ Then the set S is equal to: (1) ϕ (2) $\{0\}$ (3) $\{\pi\}$ (4) $\{0, \pi\}$
A. $\{0, \pi\}$
B. ϕ (an empty set)
C. $\{0\}$
D. $\{\pi\}$

Answer: B

- Watch Video Solution

1. Which of the following functions is/are discontinuous at $x=1$?
$f(x)=\frac{1}{1+2^{\tan x}} \quad g(x)=(\lim)_{x \rightarrow} \frac{1}{1+n \in s^{2}(\pi x)}$
$h(x)=2^{-2 \wedge}\left(\left(\left(\frac{1}{1-x}\right)\right)\right), x \neq 1 \operatorname{andh}(1)=1$
$\varphi(x)=\frac{x-1}{|x-1|+2(x-1)^{2}}, x=\operatorname{1and} \varphi(1)=1$
A. $f(x)=\frac{1}{1+2^{\tan x}}$
B. $g(x)=\lim _{n \rightarrow \infty} \frac{1}{1+n \sin ^{2}(\pi x)}$
C. $h(x)=2^{-2^{\left(\frac{1}{1-X}\right)}}, x \neq 1$ and $h(1)=1$
D. $\phi(x)=\frac{x-1}{|x-1|+2(x-1)^{2}}, x \neq 1$ and $\phi(1)=1$

Answer: A

- Watch Video Solution

2. f is a continous function in $[a, b]$; g is a continuous function in $[\mathrm{b}, \mathrm{c}]$. A
$h(x)=f(x) f$ or $x \in[a, b), g(x) f$ or $x \in(b, c]$ if $f(\mathrm{~b})=\mathrm{g}(\mathrm{b})$ then
A. $h(x)$ may or may not be continuous in [a, c]
B. $h\left(b^{+}\right)=g\left(b^{-}\right)$and $h\left(b^{-}\right)=f\left(b^{+}\right)$
C. $h\left(b^{-}\right)=g\left(b^{+}\right)$and $h\left(b^{+}\right)=f\left(b^{-}\right)$
D. $\mathrm{h}(\mathrm{x})$ has a removable discontinuity at $\mathrm{x}=\mathrm{b}$

Answer: C::D

- Watch Video Solution

3. If the function $f(x)$ defined as $f(x)$ defined as $f(x)=\left\{3, x=0\left(1+\frac{a x+b x^{3}}{x^{2}}\right), x>0\right.$ is continuous at $x=0$, then $a=0$ b. $b=e^{3}$ c. $a=1$ d. $b=(\log)_{e} 3$
A. $a=0$
B. $b=e^{3}$
C. $a=1$
D. $b=\log _{e} 3$

Answer: A::D

- Watch Video Solution

4.

Given
$f(x)=\left\{3-\left[\cot ^{-1}\left(\frac{2 x^{3}-3}{x^{2}}\right)\right] f\right.$ or $x>0$ and $\left\{x^{2}\right\} \cos \left(e^{\frac{1}{x}}\right) f$ or $x<$
(where $\}$ and [] denotes the fractional part and the integral part
functions respectively). Then which of the following statements do/does not hold good?
A. $f\left(0^{-}\right)=0$
B. $f\left(0^{+}\right)=3$
C. If $f(0)=0$, then $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
D. Irremovable discontinuity of f at $x=0$

Answer: B::D

5. Let $f(x)=\left\{\begin{array}{lll}x\left[\frac{1}{x}\right]+x[x] & \text { if } & x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right.$ (where $[\mathrm{x}]$ denotes the greatest integer function). Then the correct statement is/are
A. Limit exists for $x=-1$.
B. $f(x)$ has a removable discontinuity at $x=1$.
C. $f(x)$ has a non removable discontinuity at $x=2$.
D. $f(x)$ is discontinuous at all positive integers.

Answer: A::B::C::D

- Watch Video Solution

6. A function $f: R \vec{R}$ is defined as
$f(x)=(\lim)_{n \rightarrow} \frac{a x^{2}+b x+c+e^{n x}}{1+\cdot e^{n x}}$ is continuous on then Point lies on the space Point represents the 2-dimensional Cartesian plane Locus of
point $(a, c) \operatorname{and}(c, b)$ intersect at one point Point (a, b, c) lies on the plane in space
A. point (a, b, c) lies on line in space
B. point (a, b) represents the 2-dimensional Cartesian plane
C. Locus of point (a, c) and (c, b) intersect at one point
D. point (a, b, c) lies on the plane in space

Answer: A: B::C

- Watch Video Solution

7. Let f be a function with continuous second derivative and $f(0)=f^{\prime}(0)=0 . \quad$ Determine a function g by $g(x)=\left\{\frac{f(x)}{x}, x \neq 00, x=0\right.$ Then which of the following statements is correct? g has a continuous first derivative g has a first derivative g is continuous but g fails to have a derivative g has a first derivative but the first derivative is not continuous
A. g has a continuous first derivative
B. g has a first derivative
C. g is continuous but g fails to have a derivative
D. g has a first derivative but the first derivative is not continuous

Answer: A: B

D Watch Video Solution

8. Let $f(x)$ be a function defined on $(-a, a)$ with $a>0$. Assume that

$$
f(x) \quad \text { is }
$$

continuous at
$x=0 \operatorname{and}(\lim)_{x 0} \frac{f(x)-f(k x)}{x}=\alpha$, where $k \in(0,1) \quad$ then $f^{\prime}\left(0^{+}\right)=0$ b. $f^{\prime}\left(0^{-}\right)=\frac{\alpha}{1-k}$ c. $f(x)$ is differentiable at $x=0 \mathrm{~d}$. $f(x)$ is non-differentiable at $x=0$
A. $f^{\prime}\left(0^{+}\right)=0$
B. $f^{\prime}\left(0^{-}\right)=\frac{\alpha}{1-k}$
C. $f(x)$ is defferentiable at $x=0$
D. $f(x)$ is non-differentiable at $x=0$

Answer: B::C::D

- Watch Video Solution

9. If $f(x)=x^{1 / 3}(x-2)^{2 / 3}$ for all x, then the domain of f^{\prime} is a.
$x \in R-\{0\}$ b. $\{x \mid x>0\}$ c. $x \in R-\{0,2\}$ d. $x \in R$
A. $x \in R-\{0\}$
B. $\{x \mid x>0\}$
C. $x \in R-\{0,2\}$
D. $x \in R$

Answer: C

- Watch Video Solution

Comprehension Type

1. Consider two function $y=f(x)$ and $y=g(x)$ defined as
$f(x)= \begin{cases}a x^{2}+b & 0 \leq x \leq 1 \\ b x+2 b & 1<x \leq 3 \\ (a-1) x+2 c-3 & 3<x \leq 4\end{cases}$
and $\quad g(x)= \begin{cases}c x+d & 0 \leq x \leq 2 \\ a x+3-c & 2<x<3 \\ x^{2}+b+1 & 3 \geq x \leq 4\end{cases}$
$\lim _{x \rightarrow 2} \frac{f(x)}{|g(x)|+1}$ exists and f is differentiable at $\mathrm{x}=1$. The value of limit will be
A. $k \in(-1,0)$
B. $k \in(\infty, 0)$
C. $k \in(1,5)$
D. $k \in(-1,1)$

Answer: A

2. Consider two function $y=f(x)$ and $y=g(x)$ defined as
$f(x)= \begin{cases}a x^{2}+b & 0 \leq x \leq 1 \\ b x+2 b & 1<x \leq 3 \\ (a-1) x+2 c-3 & 3<x \leq 4\end{cases}$
and $\quad g(x)= \begin{cases}c x+d & 0 \leq x \leq 2 \\ a x+3-c & 2<x<3 \\ x^{2}+b+1 & 3 \geq x \leq 4\end{cases}$
$\lim _{x \rightarrow 2} \frac{f(x)}{|g(x)|+1}$ exists and f is differentiable at $\mathrm{x}=1$. The value of limit will be
A. -2
B. -1
C. 0
D. 2

Answer: C

- Watch Video Solution

1. Which of the following functions have finite number of points of discontinuity in R (where, $[\cdot]$ represents greatest integer function) ?
A. $\tan x$
B. $x[x]$
C. $\frac{|x|}{x}$
D. $\sin [\pi x]$

Answer: C

- Watch Video Solution

Single Correct Answer Type

1. The function $f(x)=\frac{4-x^{2}}{4 x-x^{3}}$ is
A. discontinuious at only point
B. discontinuous exaclty at two points
C. discontinous exactly at three points
D. none of these

Answer: C

- Watch Video Solution

2. If $f(x)=\frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x}$ for $x \neq \frac{\pi}{4}$, find the value which can be assigned to $f(x)$ at $x=\frac{\pi}{4}$ so that the function $f(x)$ becomes continuous every where in $\left[0, \frac{\pi}{2}\right]$.
A. 1
B. 43467
C. 43468
D. -1

Answer: B

3. If the function $f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$ is continuous at each point of its domain, then the value of $f(0)$ (a) 2 (b) $\frac{1}{3}$ (c) $-\frac{1}{3}$ (d) $\frac{2}{3}$
A. 2
B. 43468
C. 43499
D. $-\frac{1}{3}$

Answer: B

- Watch Video Solution

4. The function $f(x)=\frac{\left(3^{x}-1\right)^{2}}{\sin x \cdot \ln (1+x)}, x \neq 0$, is continuous at $x=0$, Then the value of $f(0)$ is
A. $2 \log _{e} 3$
B. $\left(\log _{e} 3\right)^{2}$
C. $\log _{e} 6$
D. none of these

Answer: B

- Watch Video Solution

5. If $f(x)=\frac{x-e^{x}+\cos 2 x}{x^{2}}, x \neq 0$ is continuous at $\mathrm{x}=0$, then
A. $f(0)=5 / 2$
B. $[f(0)]=-2$
C. $\{f(0)=0$
D. $[f(0)]\{f(0)\}=-1.5$

Answer: D

6. if $f(x)= \begin{cases}\frac{8^{x}-4^{x}-2^{x}+1}{x^{2}} & x>0 \\ x^{2} & x \leq 0\end{cases}$
is continuous at $\mathrm{x}=0$, then the value of λ is
A. $4 \log _{e} 2$
B. $2 \log _{e} 2$
C. $\log _{e} 2$
D. none of these

Answer: C

- Watch Video Solution

7. If $f(x)=\frac{a \cos x-\cos b x}{x^{2}}, x \neq 0 \operatorname{and} f(0)=4$ is continous at $x=0$, then the ordered pair (a, b) is $(\pm 1,3)$ b. $(1, \pm 3)$ c. $(-1,-3) \mathrm{d}$. $(-1,3)$
A. $\pm 1,3$)
B. $(1, \pm 3)$
C. $(-1,-3)$
D. $(1,3)$

Answer: B

- Watch Video Solution

8. Let f be a continuous function on R. If $f\left(1 / 4^{n}\right)=\left(\sin e^{n}\right) e^{-n^{2}}+\frac{n^{2}}{n^{2}+1}$, then $\mathrm{f}(0)$ is
A. 1
B. $1 / 2$
C. 0
D. none of these

Answer: A

9. If $f(x)=\frac{x^{2}-b x+25}{x^{2}-7 x+10}$ for $x \neq 5$ and f is continuous at $x=5$ then $f(5)=$
A. 0
B. 5
C. 10
D. 25

Answer: A

D Watch Video Solution

10. The function $f(x)=\frac{\tan |\pi[x-\pi]|}{1+[x]^{2}}$, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x, is
A. $f(x)$ is discontinuous at some x
B. $f(x)$ is continuous at all x, but the derivative $f^{\prime}(x)$ does not exist for
C. $f^{\prime}(x)$ exists for all x , but $\mathrm{f}^{\prime \prime}(\mathrm{x})$ does not exist for some x
D. $f^{\prime}(x)$ exists for all x

Answer: D

D Watch Video Solution

11. if $f(x)=\left\{\begin{array}{ll}\frac{1-|x|}{1+x} & x \neq-1 \\ 1 & x=-1\end{array}\right.$ then $\mathrm{f}([2 \mathrm{x}])$, where [.] represents the greatest integer function, is
A. discontinuous at $x=-1$
B. continuous at $x=0$
C. continuous at $x=1 / 2$
D. continuous at $x=1$

Answer: B

12. Let $f(x)=\left\{\frac{x-4}{|x-4|}+a, x<4 a+b, \frac{x-4}{|x-4|}+b, x>4\right.$ Then
$f(x)$ is continous at $x=4$ when $a=0, b=0$
b. $a=1, b=1$
c.
$a=-1, b=1$ d. $a=-1, b=-1$
A. $a=0, b=0$
B. $a=1, b=1$
C. $a=-1, b=1$
D. $a=1, b=-1$

Answer: D

13. Which of the following is true about
$\operatorname{Let} f(x)=\left\{\begin{array}{ll}\frac{x-2}{|x-2|}\left(\frac{x^{2}-1}{x^{2}+1}\right) & x \neq 2 \\ \frac{3}{5} & x=2\end{array} ?\right.$
A. $f(X)$ is continuous at $x=2$
B. $f(x)$ has removable discontinuity ata $x=2$.
C. $f(x)$ has non-removable discontinuity at $x=2$.
D. Discontiuity at $x=2$ can be removed by redefining the function at $\mathrm{x}=2$.

Answer: C

D Watch Video Solution

14. if $f(x)= \begin{cases}x+2 & \text { if } x<0 \\ -x^{2}-2 & \text { if } 0 \leq x<1 \\ x & \text { if } x \geq 1\end{cases}$ then the number of points of discontinuity of $|f(x)|$ is (a) 1 (b) 2 (c) 3 (d) none of these
A. 1
B. 2
C. 3
D. none of these

D Watch Video Solution

15. Which of the following statements is always true? ([.] represents the greatest integer function. a) If $\mathrm{f}(\mathrm{x})$ is discontinuous then $|f(x)|$ is discontinuous b) If $f(x)$ is discontinuous then $\mathrm{f}(|\mathrm{x}|)$ is discontinuous c) $f(x)=[g(x)]$ is discontinous when ${ }^{\prime} g(x)$ is an integer $\left.d\right)$ none of these
A. if $f(x)$ is discontinuous then $|f(x)|$ is discontinuous
B. if $f(x)$ is discontinuous, then $f(|x|)$ is discontinuous .
C. $f(x)=[g(x)]$ is discontinuous, when $g(x)$ is an integer
D. none of these

Answer: D

- Watch Video Solution

16. The number of point $f(x)=\left\{\begin{array}{ll}{[\cos \pi x]} & 0 \leq x<1 \\ |2 x-3|[x-2] & 1<x \leq 2\end{array}\right.$ is discontinuous at is ([.] denotes the greatest intgreal function)
A. two
B. three
C. four
D. zero

Answer: B

- Watch Video Solution

17. A point where function $f(x)=[\sin [x]]$ is not continuous in $(0,2 \pi)$ [.] denotes the greatest integer $\leq x$, is
A. $(3,0)$
B. $(2,0)$
C. $(1,0)$
D. none of these

Answer: D

- Watch Video Solution

18. The function $f(x)=\{x\} \sin (\pi[x])$, where [.] denotes the greatest integer function and $\{$.$\} is the fraction part function, is discontinuous at$
A. all x
B. all integer points
C. no x
D. x which is not an integer

Answer: C

- Watch Video Solution

19. The function $\mathrm{f}(\mathrm{x})$ is defined by $f(x)=\left\{\log _{4 x-3}\left(x^{2}-2 x+5\right)\right.$ if $3 / 4<$ $x<1 \& x>1$

4 when $\mathrm{x}=1$ \}
A. is continuous at $\mathrm{x}=1$
B. is discontinous at $\mathrm{x}==1$ since $f\left(1^{+}\right)$does not exist though $f\left(1^{-}\right)$ exsits
C. is disccontinous at $\mathrm{x}=1$ since $f\left(1^{-}\right)$odes not exsits though $f\left(1^{+}\right)$ exsits
D. is discontinuous at $\mathrm{x}=1$ since neither $f\left(1^{+}\right) n$ or $f^{1^{-}}$exists.

Answer: D

- Watch Video Solution

20. $f(x)=\left[x^{2}\right]-\{x\}^{2}$, where [.] and \{.\} denote the greatest integer function and the fractional part function, respectively , is
A. continuous at $x=1,-1$
B. continuous at $x=-1$ but not at $x=1$
C. continuous at $x=1$ but not at $x=1$
D. discontinuous at $x=1$ and $x=-1$

Answer: D

- Watch Video Solution

21. if $f(x)=\left\{x^{2}\right\}$, where $\{x\}$ denotes the fractional part of x , then
A. $f(X)$ is continuous at $x=-2$ but not at $x=2$
B. $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=2$ but not at $\mathrm{x}=-2$
C. $f(x)$ is continuous at $x=2$ and $x=-2$
D. $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=-2$ and at $\mathrm{x}=2$

Answer: B

$f(x)=\left\{3-\left[\cot ^{-1}\left(\frac{2 x^{3}-3}{x^{2}}\right)\right] f\right.$ or $x>0$ and $\left\{x^{2}\right\} \cos \left(e^{\frac{1}{x}}\right) f$ or $x<$ (where $\}$ and [] denotes the fractional part and the integral part functions respectively). Then which of the following statements do/does not hold good?
A. 0
B. 1
C. -1
D. none of these

Answer: A

23. Let $f(x)$ be defined in the interval $[0,4]$ such that
$f(x)=\left\{\begin{array}{ll}1-x & 0 \leq x \leq 1 \\ x+2 & 1<x<2 \\ 4-x & 2 \leq x \leq 4\end{array}\right.$, then the number of points where $\mathrm{f}(\mathrm{x})$ is discontinuous is (a) 1 (b) 2 (c) 3 (d) none of these
A. 1
B. 2
C. 3
D. none of these

Answer: B

- Watch Video Solution

24. The function defined by $f(x)=(-1)^{\left[x^{3}\right]}$ ([.] denotes the greatest integer function) satidfies
A. discontinuous for $x=n^{1 / 3}$ wheren is any integer
B. $f(3 / 2)=1$
C. $\mathrm{f}^{\prime}(\mathrm{x})=1$ for $-1<x<1$
D. none of these

Answer: A

- Watch Video Solution

25. $f(x)=\lim _{n \rightarrow \infty} \frac{(x-1)^{2 n}-1}{(x-1)^{2 n}+1}$ is discontinuous at (A) $\mathrm{x}=0$ only (B) $\mathrm{x}=2$ only (C) $x=0$ and 2 (D) none of these
A. $x=0$ only
B. $x=2$ only
C. $x=0$ and 2
D. none of these

Answer: C

26. Let
$f: R \rightarrow R$
be
given
$f(x)=\left\{5 \mathrm{x}\right.$, if x in $\mathrm{Q}, \mathrm{x}^{\wedge} 2+6, \quad$ if $x \in R-Q$ then
A. f is continuous at $x=2$ and $x=3$
B. f is not continuous at $x=2$ and $x=3$
C. f is continuous at $x=2$ but not at $x=3$
D. f is continuous at $x=3$ but not at $x=2$

Answer: A

- Watch Video Solution

27. Let $f(x)=\lim _{n \rightarrow \infty}(\sin x)^{2 n}$
A. Discontinuous at infinite number of points
B. discontinuous at $x=\frac{\pi}{2}$
C. Discontinuous at $x=-\frac{\pi}{2}$
D. none of these

Answer: D

- Watch Video Solution

28. If $f(x)=\{(\sin x ; x$ rational $)(\cos x ; x$ is irrational) then the function is
A. $x=n \pi+\pi / 4, n \in I$
B. $x=n \pi+\pi / 8, n \in I$
C. $x=n \pi+\pi / 6, n \in I$
D. $x=n \pi+\pi / 3, n \in I$

Answer: A

- Watch Video Solution

29. Let $f(x) \lim _{x \rightarrow \infty} \frac{\log ,(2+x)-x^{2 x} \sin x}{1+x^{2 n}}$ then:
A. f is continuous at $x=1$
B. $\lim _{x \rightarrow 1^{+}} f(x)=\log 3$

$$
x \rightarrow 1^{+}
$$

C. $\lim _{x \rightarrow 1^{+}} f(x)=-\sin 1$ $x \rightarrow 1^{+}$
D. $\lim _{x \rightarrow 1^{-}} f(x)$ does not exist $x \rightarrow 1^{-}$

Answer: C

- Watch Video Solution

30. $f(x)=\lim _{n \rightarrow \infty} \sin ^{2 n}(\pi x)+\left[x+\frac{1}{2}\right]$, where [.] denotes the greatest integer function, is
A. continuous ar $\mathrm{x}=1$ but discontinuous at $\mathrm{x}=3 / 2$
B. cotinuous at $x=1$ but $x=3 / / 2$
C. discontinuous at $\mathrm{x}=1$ and $\mathrm{x}=3 / 2$
D. $c=d i s c o n t i n o u s$ at $x=1$ but continuous at $=3 / 2$

Answer: A

- Watch Video Solution

31. If $f(x)=\operatorname{sgn}\left(\sin ^{2} x-\sin x-1\right)$ has exactly four points of discontinuity for $x \in(0, n \pi), n \in N$, then
A. minimum value of n is 5
B. maximum value of n is 6
C. there are exaclty two posoible values of n
D. none of these

Answer: C

- Watch Video Solution

32. if $f(x)=x^{2}-a x+3, x$ is rational and $f(x)=2-x, x$ is irrational is continuous at exactly two points, then the possible values of a
A. $(2, \infty)$
B. $(-\infty, 3)$
C. $(-\infty,-1), \cup(3, \infty)$
D. none of these

Answer: C

- Watch Video Solution

33. If $f(x)=[x] \sin \left(\frac{\pi}{[x+1]}\right)$, where [.] denotes the greatest integer function, then the set of point of discontiuity of f in its domain is
A. all $x \in I-\{-1\}$
B. all $x \in I-\{0\}$
C. allx $\in I$
D. allx $\in I-\{-1,0\}$

Answer: A

- Watch Video Solution

34. $f(x)=\left\{\begin{array}{ll}\frac{x}{2 x^{2}+|x|} & x \neq 0 \\ 1 & x=0\end{array}\right.$ then $\mathrm{f}(\mathrm{x})$ is
A. continuous but non- differentiable at $\mathrm{x}=0$
B. differentiable at $x=0$
C. discontinuous at $\mathrm{x}=0$
D. none of these

Answer: C

35. Let a function $\mathrm{f}(\mathrm{x})$ be definded by $f(x)=\frac{x-|x-1|}{x}$
which of the following is not true?
A. Discontinuous at $x=0$
B. Discontinuous at $x=1$
C. Not differentiable at $x=0$
D. Not differentiable at $x=1$

Answer: B

- Watch Video Solution

36. Let $f(x)=\left\{\begin{array}{ll}\min \left(x, x^{2}\right) & x \geq 0 \\ \max (2 x, x-1) & x<0\end{array}\right.$, then which of the following is not true?
A. $f(x)$ is continuous at $x=0$
B. $f(x)$ is not differentiable at $x=1$
C. $f(x)$ is not differentiable at exactly three points
D. none of these

Answer: D

- Watch Video Solution

37. The function $f(x)=\sin ^{-1}(\cos x)$ is
A. not different at $x=\frac{\pi}{2}$
B. differentiable at $\frac{3 \pi}{2}$
C. differentiable at $\mathrm{x}=0$
D. differentiable at $x=2 \pi$

Answer: B

38. Let $[\mathrm{x}]$ denotes the greatest integer less than or equal to x and $f(x)=\left[\tan ^{2} x\right]$. Then
A. $\lim _{x \rightarrow 0} f(x)$ does not exist
B. $f(x)$ is continuous at $x=0$
C. $f(x)$ is not differentiable at $x=0$
D. $f^{\prime}(0)=1$

Answer: B

- Watch Video Solution

39. if $f(x)=\left\{\begin{array}{ll}2 x-[x]+x \sin (x-[x]) & x \neq 0 \\ 0 & x=0\end{array}\right.$ where [.]
denotes the greatest integer function then
A. $f(X)$ is differentiable at $x=0$
B. $f(x)$ is differentiable at $x=2$
C. $f(x)$ is continuous but not differentiable at $x=0$
D. none of these

Answer: D

- Watch Video Solution

40. Which of the following function is non- differentiable?
A. $f(x)=\left(e^{x}-1\right)\left|e^{2 x}-1\right| \operatorname{in} R$
B. $f(x)=\frac{x-1}{x^{2}+1} i n R$
C. $f(x)= \begin{cases}||x-3|-1| & x<3 \\ \frac{x}{3}[x]-2 & x \geq 3\end{cases}$
where [.] represents the greatest integer function
D. $f(x)=3(x-2)^{\frac{3}{4}}+3 i n R$

Answer: D

- Watch Video Solution

41. The number of value of $x \in[0,2]$ at which $f(x)=\left|x-\frac{1}{2}\right|+|x-1|+\tan x$ is not differentiable at (a) 0 (b) 1 (c) 3 (d) none of these
A. 0
B. 1
C. 3
D. none of these

Answer: C

- Watch Video Solution

42. Which of the following fiunction is not differentiable at $x=1$?
A. $f(x)=\left(x^{2}-1\right)|(x-1)(x-2)|$
B. $f(x)=\sin (|x-1|)-|x-1|$
C. $f(x)=\tan (|x-1|)+|x-1|$
D. none of these

Answer: C

- Watch Video Solution

43. $f(x)=\left\{\begin{array}{ll}x e^{-\left(\frac{1}{x}+\frac{1}{|x|}\right)} & x \neq 0 \\ a & x=0\end{array}\right.$ the value of a , such that $\mathrm{f}(\mathrm{x})$ is differentiable at $x=0$, is equal to
A. 1
B. -1
C. 0
D. none of these

Answer: D

44. about to only mathematics
A. $a=b=c=0$
B. $a=0, b=0, c \in R$
C. $b=c=0, a \in R$
D. $c=0, a=0, b \in R$

Answer: B

- Watch Video Solution

45. Let $f(x)=\left\{\begin{array}{ll}\sin 2 x & \text { if } 0 \leq x \leq \frac{\pi}{6} \\ a x+b & \text { if } \frac{\pi}{6}<x<1\end{array}\right.$ If $f(x)$ and $f^{\prime}(x)$ are continuous then $a \quad \& \quad b \quad$ are (A) $a=1, b=\frac{1}{\sqrt{2}}+\frac{\pi}{6}$
$a=\frac{1}{\sqrt{2}}, b=\frac{1}{\sqrt{2}}$ (C) $a=1, b=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$ (D) None of these
A. $a=1, b=\frac{1}{\sqrt{2}}+\frac{\pi}{6}$
B. $a=\frac{1}{\sqrt{2}}, b=\frac{1}{\sqrt{2}}$
C. $a=1, b=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$
D. none of these

Answer: C

- Watch Video Solution

46. If $f(x)=\left\{x^{3}\right.$, if $x^{2}<1$ and x, if $x^{2} \geq 1$ then $f(x)$ is differentiable at (a) $(-\infty, \infty)-\{1\}$
(b) $(-\infty, \infty)-\{1,-1\}$ (c)
$(-\infty, \infty)-\{1,-1,0\}$ (d) $(-\infty, \infty)-\{-1\}$
A. $(-\infty, \infty)-\{1\}$
B. $(-\infty, \infty)-\{1-1\}$
C. $(-\infty, \infty)-\{1-1,0\}$
D. $(-\infty, \infty)-\{-1\}$

Answer: B

47. if $f(x)=\left(x^{2}-4\right)\left|\left(x^{3}-6 x^{2}+11 x-6\right)\right|+\frac{x}{1+|x|}$ then set of points at which the function if non differentiable is
A. $\{-2,2,1,3\}$
B. $\{-2,0,3\}$
C. $\{-2,2,0\}$
D. $\{1,3\}$

Answer: D

- Watch Video Solution

48. if $f(x)=\cos \pi(|x|+[x])$, where [.] denotes the greatest integer , function then which is not true ?
A. continuous at $\mathrm{x}=1 / 2$
B. continuous at $\mathrm{x}=0$
C. Differentiable in $(-1,0)$
D. Differentiable in $(0,1)$

Answer: B

- Watch Video Solution

49. If $f(x)=\left\{\begin{array}{ll}e^{x^{2}+x} & x>0 \\ a x+b & x \leq 0\end{array}\right.$ is differentiable at $x=0$, then (a)
$a=1, b=-1$
(b) $\quad a=-1, b=1$
(c) $\quad a=1, b=1$
$a=-1, b=-1$
A. $a=1, b=-1$
B. $a=-1, b=1$
C. $a=1, b=1$
D. $a=-1, b=-1$

Answer: C

50. if $f(x)=\left\{\begin{array}{ll}x-1 & x<0 \\ x^{2}-2 x & x \geq 0\end{array}\right.$,then
A. $f(|x|)$ is discontinuous at $x=0$
B. $\mathrm{f}(\mathrm{x}) \mid$ is differerntiavble at $\mathrm{x}=0$
C. $|f(x)|$ is non - differentiable at $=0,2$
D. $|f(x)|$ is comtinuous at $x=0$

Answer: C

- Watch Video Solution

51. If $f(x)=\left\{\left|1-4 x^{2}\right|, 0 \leq x<1\right.$ and $\left[x^{2}-2 x\right], 1 \leq x<2$ where [.] denotes the greatest integer function, then
A. differentiable for all x
B. continnous at $\mathrm{x}=1$
C. non- differntiable at $\mathrm{x}=1$
D. none of these

Answer: C

- Watch Video Solution

52. Show that the function $f(x)=\left\{x^{m} \sin \left(\frac{1}{x}\right), \quad x \neq 0,0 x=0\right.$ is continuous but not differentiable at $x=0$, if $(0<m<1)$
A. $a \in(-1,0)$
B. $a \in(0,2]$
C. $a \in(0,1]$
D. $a \in[1,2\}$

Answer: C

- Watch Video Solution

53. If $x+4|y|=6 y$, then y as a function of x is
A. continuous at $\mathrm{x}=0$
B. derivable at $\mathrm{x}=0$
C. $\frac{d y}{d x}=\frac{1}{2}$ for all x
D. none of these

Answer: A

- Watch Video Solution

54. Let $g(x)$ be a polynomial of degree one and $f(x)$ be defined by
$f(x)=-g(x), x \leq 0$ and $|x|^{\sin x}, x>0$ If $\mathrm{f}(\mathrm{x})$ is continuous satisfying
$f^{\prime}(1)=f(-1)$, then $\mathrm{g}(\mathrm{x})$ is
A. $(1+\sin 1) x+1$
B. $(1-\sin 1) x+1$
C. $(\sin 1-1) x-1$
D. none of these

Answer: B

- Watch Video Solution

55. If $f(x)=|1-x|$, then the points where $\sin ^{-1}(f|x|)$ is nondifferentiable are
A. $\{0,1\}$
B. $\{0,-1\}$
C. $\{0,1,-1\}$
D. none of these

Answer: C

- Watch Video Solution

56. Given that $f(x)=x g(x) /|x| g(0)=g^{\prime}(0)=0$ and $f(x)$ is continuous at $x=0$ then the value of $f^{\prime}(0)$
A. does not exist
B. is-1
C. is 1
D. is 0

Answer: D

- Watch Video Solution

57. If $f(x)=\{\sin x, x<0$ and $\cos x-|x-1|, x \leq 0 \quad$ then $g(x)=f(|x|)$ is non-differentiable for
A. no value of x
B. exctly one value of x
C. exactly three values of x
D. none of these

Answer: C

- Watch Video Solution

58. $f(x)=\max \left\{\frac{x}{n},|\sin \pi x|\right\}, n \in N$. has maximum points of nondifferentiability for $x \in(0,4)$, Then n cannot be (A) 4 (B) 2 (C) 5 (D) 6
A. 4
B. 2
C. 5
D. 6

Answer: B

- Watch Video Solution

59. $f(x)= \begin{cases}1-\sqrt{1-x^{2}} & \text { if }-1 \leq x \leq 1 \\ 1+\log \frac{1}{x} & \text { if } x>1\end{cases}$
(a) continuous and differentiable at $x=1$ (b) continuous but not differentiable at $x=1$ (c) neither continuous nor differentiable at $x=1$ (d) none of these
A. continuous and differentibable at $\mathrm{x}=1$
B. continuous but not differentiable at $\mathrm{x}=1$
C. neither continuous nor differentiable at $=1$
D. none of these

Answer: B

- Watch Video Solution

60. The set of all points where $f(x)=\sqrt[3]{x^{2}|x|}-|x|-1$ is not differentiable is
A. $\{0\}$
B. $(-1,0,1\}$
C. $\{0,1\}$
D. none of these

Answer: D

- Watch Video Solution

61. Let $\mathrm{f}(\mathrm{x})$ be a continuous function for all $x \in R$ and $f^{\prime}(0)=1$ then $g(x)=f(|x|)-\sqrt{\frac{1-\cos 2 x}{2}}$, atx $=0$,
A. is differentiable at $\mathrm{x}=0$ and its value is 1
B. is disfferentiable at $\mathrm{x}=0$ and its value is 0
C. is non-differentaible at $\mathrm{x}=0$ as its graph has sharp turn at $\mathrm{x}=\mathrm{o}$
D. is non - differentiable at $\mathrm{x}=0$ as its graph has veritical tanent at $\mathrm{x}=0$

Answer: B

62. If $f(x)=\left\{\begin{array}{cl}x\left(\frac{e^{1 / x}-e^{-1 / x}}{e^{1 / x}+e^{1 / x}}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$, then at $\mathrm{x}=0 \mathrm{f}(\mathrm{x})$ is
A. $f(x)$ is discontinuous at $x=0$
B. $f(x)$ is continuous but non- differentiable at $x=0$
C. $f(x)$ is differtiable at $x=0$
D. $f^{\prime}(0)=2$

Answer: C

- Watch Video Solution

63. Let $y=f(x)=\left\{\begin{array}{ll}e^{\frac{1}{x^{2}}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ then which of the following can best represent the graph of $y=f(x)$?

A.
B.

C.

D.

Answer: C

- Watch Video Solution

64. If $f(2+x)=f(-x)$ for all $x \in R$ then differentiability at $\mathrm{x}=4$ implies differentiability at (a) $x=1$ (b) $x=-1$ (c) $x=-2$ (d) cannot say anything
B. $x=-1$
C. $x=-2$
D. cannot say anything

Answer: C

D Watch Video Solution

65. Number of points where the function
$f(x)= \begin{cases}1+\left[\cos \frac{\pi x}{2}\right] & 1<x \leq 2 \\ 1-\{x\} & 0 \leq x<1 \\ |\sin \pi x| & -1 \leq x<0\end{cases}$
and $f(1)=0$ is continuous but non differentiable :
(where [.] denotes greatest integer function and \{.\} denotes fractional part function)
A. 0
B. 1
C. 2
D. none of these

Answer: B

- Watch Video Solution

66. Let $\lim _{n \rightarrow \infty} \frac{\left(x^{2}+2 x+3+\sin \pi x\right)^{n}-1}{\left(x^{2}+2 x+3+\sin \pi x\right)^{n}+1}$.then
A. $\mathrm{f}(\mathrm{x})$ is continuous and differentiable for all $x \in R$
B. $\mathrm{f}(\mathrm{X})$ is continuous but not differentiable for all $x \in R$
C. $f(x)$ is discontinuous at infinite number of points
D. $f(x)$ is discontinuous at finite number of points

Answer: A

- Watch Video Solution

1. Which of the statement(s) is / are incorrect ?
A. if $f+g$ is continuous at $x=a$, then f and g are continuous at $x=a$.
B. if $\lim _{x \rightarrow a}(f g)$ exists, then both $\lim _{x \rightarrow a} f$ and $\lim _{x \rightarrow a}$ g exist
C. Discontinuity at $x=a \Rightarrow$ non-existence of limit.
D. All function definfed on a closed interval attain a maximum or minimum value in that interval.

Answer: A::B::C::D

D Watch Video Solution

2. A function f is defined on an interval $[a, b]$. Which of the following statement(s) is are incorrect? (A) If $f(a)$ and $f(b)$ have opposite signs, then there must be a point $c \in(a, b)$ such that $\mathrm{f}(\mathrm{c})=0$.
A. if $f(a)$ and $f(b)$ have opposite sings then there must be a point

$$
c \in(a, b) \text { such that } f(c)=0
$$

B. if f is continuous on $[a, b], f(a)<0$, and $f(b)>0$, then there must be point $c \in(a, b)$ such that $\mathrm{f}(\mathrm{c})=0$.
C. if f is continuous on $[a, b]$, and there is point c in (a, b) such that $f(c)$
-0 , then $f(a)$ and $f(b)$ have opposite signs
D. if f has no zeros on $[a, b]$ then $f(a)$ and $f(b)$ have the same sign.

Answer: A::C::D

- Watch Video Solution

3. Which of the following function has / have a removable discontinuity at the indicated point?
A. $f(x)=\frac{x^{2}-2 x-8}{x+2}$ at $\mathrm{x}=-2$
B. $f(x)=\frac{x-7}{|x-7|}$ at $\mathrm{x}=7$
C. $f(x)=\frac{x^{3}+64}{|x+4|}$ at $x=-4$
D. $f(x)=\frac{3-\sqrt{x}}{9-x}$ at $\mathrm{x}=9$

- Watch Video Solution

4. Which of the following function (s) has/have removable discontinuity
at $x=1$ (A) $f(x)=\frac{1}{\ln (|x|)}$
(B) $f(x)=\frac{x^{2}-1}{x^{3}-1}$
(c) $f(x)=2^{-2^{\frac{1}{1-x}}}$
$f(x)=\frac{\sqrt{x+1}-\sqrt{2 x}}{x^{2}-x}$
A. $f(x)=\frac{1}{\operatorname{in}|x|}$
B. $f(x)=\frac{x^{2}-1}{x^{3}-1}$
C. $f(x)=2^{-2^{\frac{1}{1-x}}}$
D. $f(x)=\frac{\sqrt{x+1}-\sqrt{2 x}}{x^{2}-x}$

Answer: A::B::C::D

- Watch Video Solution

5. If $f(x)=[|x|]$ where [.] denotes the greatest integer function , then which of the following is not true?
A. $\mathrm{f}(\mathrm{x})$ is continuous $\forall x \in R$
B. $\mathrm{f}(\mathrm{x})$ is continuous from right and discontinuous from left $\forall s \in N$
C. $\mathrm{f}(\mathrm{x})$ is conttinuous from left and discontinuous from right $\forall x \in I$
D. $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$

Answer: B::D

- Watch Video Solution

6. $f(x)=\operatorname{sgn}\left(x^{2}-a x+1\right)$ has maximum number of points of discontinuity then
A. $a \in(2, \infty)$
B. $a \in(-\infty,-2)$
C. $a \in(-2,2)$
D. none of these

Answer: A::B

- Watch Video Solution

7. A function is defined as $f(x)=\lim _{x \rightarrow \infty}\left[\cos ^{2 n} x\right.$, if $\left.x<0\right)$, $n \sqrt{\sqrt{1+x^{n}},}$ if $\left.0 \leq x,+1\right), \frac{1}{1+x^{n}}$, if $x>1$ which of the following does not hold good?
A. continuous at $x=0$ but discontinuous at $x=1$
B. continuous at $x=1$ but discontinuous at $x=0$
C. continuous both as $x=1$ and $x=0$
D. discontinuous both at $x=1$ and $x=0$

Answer: A::B::C

D Watch Video Solution

8.

(a)

Draw
the
graph
$f(x)= \begin{cases}1, & |x| \geq 1 \\ \frac{1}{n^{2}}, & \frac{1}{n}<|x|<\frac{1}{n-1}, n=2,3, \ldots \\ 0, & x=0\end{cases}$
(b) Sketch the region $y \leq-1$.
(c) Sketch the region $|x|<3$.
A. is discontinuous at infinte points
B. is continuous everywhere
C. is discontinuous only at $x=\frac{1}{n}, n \in Z-\{0\}$
D. none of these

Answer: A: C

- Watch Video Solution

9. Let $f(x)=[x]$ and $g(x)=\left\{\begin{array}{ll}0, & x \in Z \\ x^{2}, & x \in R-Z\end{array}\right.$, then (where [.] denotes greatest integer function)
A. $\lim _{x \rightarrow 1} g(x)$ exists but $\mathrm{g}(\mathrm{x})$ oin not continuous at $\mathrm{x}=1$
B. $f(x)$ is not continuous at $x=1$
C. gof is continuous for all x
D. fog is continuous for all x

Answer: A::B::C

- Watch Video Solution

10. If $f(x)=\sum_{r=1}^{n} a_{r}|x|^{r}$, where a_{i} s are real constants, then $f(x)$ is
A. contionuous at $\mathrm{x}=1$ for all a_{1}
B. differentiable at x=0 for all $a_{2 k+1}=0$
C. differentaiable at $\mathrm{x}=0$ for all $a_{i} \in R$
D. none of these

Answer: A::B

11. If $f(x)=\{(|x|-3$ when $x<1)$, and $(|x-2|+a$, when $x \geq 1)$ \& $g(x)=\{2-|x|$ when $x<2$ and $\operatorname{sgn}(x)-b$, when $x \geq 2$.
if $h(x)=f(x)+g(x)$ is discontinuous at exactly one point, then -
(a). $a=-3, b=0$
(b). $a=-3, b=-1$
(c) $a=2, b=1$
(d) $a=0, b=1$
A. $a=-3, b=0$
B. $a=2, b=1$
C. $a=2, b=0$
D. $a=-3, b=1$

Answer: A::B

12. $f(x)=\left\{\begin{array}{ll}\left(\frac{3}{2}\right)^{\frac{\cot 3 x}{\cot 2 x}} & 0 \leq x<\frac{\pi}{2} \\ b+3 & x=\frac{\pi}{2} \\ (1+|\cot x|)^{\frac{a \tan x \mid}{b}} & \frac{\pi}{2}<x<\pi\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then
A. $a=0$
B. $a=2$
C. $b=-2$
D. $b=2$

Answer: A:C

Watch Video Solution

13. If $f(x)=\operatorname{sgn}(\cos 2 x-2 \sin x+3)$, where $\operatorname{sgn}()$ is the signum function, then $f(x)$
A. is continuous over its domin
B. has a missing point discontinuity
C. has isolated point discontiuity
D. removable discontinuity

Answer: C::D

(D) Watch Video Solution

14.

$f(x)=\left\{\frac{e^{x}-1+a x}{x^{2}}, x>0\right.$ and $b, x=0$ and $\frac{\sin \left(\frac{x}{2}\right)}{x}, x<0$ then
A. $\mathrm{f}(\mathrm{X})$ is continuous at $\mathrm{x}=0$ if $\mathrm{a}=-1, b=\frac{1}{2}$
B. $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=\mathrm{O}$ if $\mathrm{b} b \neq \frac{1}{2}$
C. $\mathrm{f}(\mathrm{x})$ has irremovable diisontinuity at $\mathrm{x}-0$, if $a \neq-1$
D. $\mathrm{f}(\mathrm{x})$ has removable discontinuity at $x=0$ if $a \equiv-1, b \neq \frac{1}{2}$

- Watch Video Solution

15. Find the value of a, b if $f(x)=\left\{\begin{array}{ll}\frac{a e^{1 /|x+2|}-1}{2-e^{1 /|x+2|}} & ;-3<x<-2 \\ b & ; x=-2 \\ \sin \left(\frac{x^{4}-16}{x^{5}+32}\right) & ;-2<x<0\end{array} \quad\right.$ is continuous at $x=-2$.
A. $a=\sin \frac{2}{5}$
B. $b=-\sin \frac{2}{5}$
C. $a=-\sin \frac{1}{5}$
D. $b=\sin \frac{1}{5}$

Answer: A::B

16. The function $f(x)=\left\{\begin{array}{ll}5 x-4 & \text { for } 0<x \leq 1 \\ 4 x^{2}-3 x & \text { for } 1<x<2 \\ 3 x+4 & \text { for } x \geq 2\end{array}\right.$ is
A. continuous at $x-1$ and $x=2$
B. continuous at $\mathrm{x}=1$ but not derivable at $\mathrm{x}=2$
C. continuous at $\mathrm{x}=1$ and 2 but not derivable at $\mathrm{x}=1$
D. continuous at $\mathrm{x}=1$ and 2 but not derivable derivable at $\mathrm{x}=1$ and $\mathrm{x}=2$

Answer: A: B

- Watch Video Solution

17. Which of the following is true for $f(x)=\operatorname{sgn}(x) \times \sin x$
A. (a) Discontinuous no where
B. (b) An even function
C. (c) Discontinuous everywhere
D. (d) Continuous everywhere

D Watch Video Solution

18. $f(x)$ is differentiable function and $(f(x) \cdot g(x))$ is differentiable at $x=a$. Then (a) $g(x)$ must be differentiable at $x=a$ (b.) if $g(x)$ is discontinuous, then $f(a)=0$ (c.) if $f(a) \neq 0$, then $g(x)$ must be differentiable (d.) none of these
A. $g(X)$ must be differentiable at $x=a$
B. if $g(X)$ is discontinuous, then $f(a)=0$
C. if $f(a) \neq 0$, then $\mathrm{g}(\mathrm{x})$ must be differentiable
D. none of these

Answer: B::C

D Watch Video Solution

19. Let $f(x)=\left\{\begin{array}{ll}x e^{x} & x \leq 0 \\ x+x^{2}-x^{3} & x>0\end{array}\right.$ then the correct statement is (a) f is continuous and differentiable for all x (b) f is continuous but not differentiable at $x=0$ (c) f is continuous and differentiable for all x. (d) f ' is continuous but not differentiable at $x=0$
A. f is continuous and differentiable for all x,
B. f is continuous but not differentiable ata $x=0$
C. f is continuous and differentiable for all x .
D. f^{\prime} is continuous but not differentiable at $\mathrm{x}=0$.

Answer: A:C

- Watch Video Solution

20. Let $f(x)=\frac{[x]+1}{\{x\}+1}$ for $f:\left[0, \frac{5}{2}\right) \rightarrow\left(\frac{1}{2}, 3\right]$, where $[\cdot]$ represents the greatest integer function and $\{\cdot\}$ represents the fractional part of x. Draw the graph of $y=f(x)$. Prove that $y=f(x)$ is bijective. Also find the range of the function.
A. $f(x)$ is injective discontinuous funtion
B. $f(x) f(x)$ is surjective non-differntiable function .
C. $\min \left(\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)\right)=f(1)$.
D. max (x values of point of discontinuity function .

Answer: A::B::D

- Watch Video Solution

21. If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{x \log \cos x}{\log \left(1+x^{2}\right)} & x \neq 0 \\ 0 & x=0\end{array}\right.$ then
A. $f(X)$ is not continuous at $x=0$
B. $f(x)$ is continuous at $x=0$
C. $f(x)$ is continuous at $x=0$ but not differentiable at $x=0$
D. $f(x)$ is discontinuous at $x=0$

Answer: B::D

22. If $f(x)=x+|x|+\cos \left(\left[\pi^{2}\right] x\right)$ and $g(x)=\sin x$, where [.] denotes the greatest integer function, then
A. $f(x)+g(x)$ is continuous everywhere ,
B. $f(x)+g(x)$ is differentiable everywhere
C. $f(x) \times g(x)$ is differentiable everywhere
D. $f(x) \times g(x)$ is continuous but not differentiable at $\mathrm{x}=0$

Answer: A:C

- Watch Video Solution

23. Let $\mathrm{f}: R \rightarrow R$ be any function and $g(x)=\frac{1}{f(x)}$ then which of the following is / are not true? (a) g is onto of f is onto (b) g is one - one if f is onto (c) g is continuous if is continuous (d) g is differentiable if f is differentiable
A. g is onto of f is onto
B. g is one - one if f is onto
C. g is continuous if is continuous
D. g is differentiable if f is differentiable

Answer: A::C::D

- Watch Video Solution

24.

$f(x)=\left\{{ }^{\prime} x^{2}(\operatorname{sgn}[x])+\{x\}, 0 \leq x \leq 2^{\prime} \cdot \sin x+|x-3|, 2<x<4\right.$,
(where[.] \& \{.\} greatest integer function \& fractional part functiopn respectively), then -

Option 1. $f(x)$ is differentiable at $x=1$

Option 2. $f(x)$ is continuous but non-differentiable at x

Option 3. $f(x)$ is non-differentiable at $x=2$

Option 4. $f(x)$ is discontinuous at $x=2$
A. $f(x)$ is differentiable at $x=1$
B. $f(x)$ is continuous but non - differentiable at $x=1$
C. $f(x)$ is non-differnentiable at $x=2$
D. $f(x)$ is discontinuous at $x=2$

Answer: B::C::D

- Watch Video Solution

25. Which of the following function is thrice differentiable at $\mathrm{x}=0$?
A. $f(x)=\left|x^{3}\right|$
B. $f(x)=x^{3}|x|$
C. $f(x)=|x| \sin ^{3} x$
D. $f(x)=x\left|\tan ^{3} x\right|$

Answer: B::C::D

26. Let $\mathrm{f}(\mathrm{x})=\left[\sin ^{4} x\right]$ then (where [.] represents the greatest integer function).
A. (a) $f(x)$ is continuous at $x=0$
B. (b) $f(x)$ is differentiable at $x=0$
C. (c) $f(x)$ is non-differnentiable at $x=0$
D. (d) $f^{\prime}(0)=1$

Answer: A: B

- Watch Video Solution

27. $f:[0,1] \rightarrow R$ is defined as
$f(x) \begin{cases}x^{3}(1-x) \sin \left(\frac{1}{x^{2}}\right) & 0<x \leq 1 \\ 0 & x=0\end{cases}$
(a) f is continuous but not
derivable in $[0,1]$ (b) f is ontinuous in $[0,1]$ (c) f is bounded in $[0,1]$ (d) f^{\prime} is bounded in $[0,1]$
A. f is continuous but not derivable in $[0,1]$
B. f is ontinuous in $[0,1]$
C. f is bounded in $[0,1]$
D. f^{\prime} is bounded in $[0,1]$

Answer: B::C::D

- Watch Video Solution

28. Let $f(x)=\left[\begin{array}{ll}x^{2}+a & 0 \leq x<1 \\ 2 x+b & 1 \leq x \leq 2\end{array}\right.$ and $g(x)=\left[\begin{array}{ll}3 x+b & 0 \leq x<1 \\ x^{3} & 1 \leq x \leq 2\end{array}\right.$ If derivative of $f(x)$ w.r.t. $g(x)$ atx $=1$ exists and is equal to λ, then which of the followig is/are correct?
A. $a=-1$
B. $b=-2$
C. $\left(\frac{d f}{d g}\right)_{x=1}=2 / 3$
D. $a= \pm 1, b= \pm 2$

- Watch Video Solution

29. If $f(x)=\left\{\begin{array}{ll}\frac{a \cos x+b x \sin x+c e^{x}-2 x}{x^{2}} & x \neq 0 \\ 0 & x=0\end{array}\right.$ is differentiable at $x=0$, then (a) $a+b+c=2$ (b) $a+b=-4$ (c) $f^{\prime}(0)=\frac{1}{3}$ (d) $a-c=4$
A. $a+b+c=2$
B. $a+b=-4$
C. $f^{\prime}(0)=1 / 3$
D. $a-c=4$

Answer: B::C

- Watch Video Solution

1. Let $f(x)=\left\{\begin{array}{ll}\frac{a(1-x \sin x)+b \cos x+5}{x^{2}}, & x<0 \\ 3, & x=0 \\ {\left[1+\left(\frac{c x+d x^{3}}{x^{2}}\right)\right]^{1 / x},} & x>0\end{array}\right.$ If f is continuous at $\mathrm{x}=0$,
then $(a+b+c+d)$ is
A. [-10,10]
B. $[-5,5]$
C. [-12,12]
D. none of these

Answer: B

- Watch Video Solution

2. Let $f(x)=\left\{\begin{array}{ll}\frac{a(1-x \sin x)+b \cos x+5}{x^{2}}, & x<0 \\ 3, & x=0 \\ {\left[1+\left(\frac{c x+d x^{3}}{x^{2}}\right)\right]^{1 / x},} & x>0\end{array}\right.$ If f is continuous at $\mathrm{x}=0$, then $(a+b+c+d)$ is
A. $\log _{e} 9$
B. $\log _{e} 2$
C. 2
D. 1

Answer: A

- Watch Video Solution

3. Let $f(x)=\left\{\begin{array}{ll}\frac{a(1-x \sin x)+b \cos x+5}{x^{2}}, & x<0 \\ 3, & x=0 \\ {\left[1+\left(\frac{c x+d x^{3}}{x^{2}}\right)\right]^{1 / x},} & x>0\end{array}\right.$ If f is continuous at $\mathrm{x}=0$, then $(a+b+c+d)$ is
A. only one real , positive root
B. only one real , negative root
C. three real roots
D. none of these

Watch Video Solution

4.

$f(x)=x^{2}+a x+3$ and $g(x)=x+b$ and $F(x)=\lim _{n \rightarrow \infty} \frac{f(x)+x^{2 n} g(:}{1+x^{2 n}}$ If $\mathrm{F}(\mathrm{x})$ is continuous at $\mathrm{x}=-1$, then
A. $b=a+3$
B. $b=a-1$
C. $a=b-2$
D. none of these

Answer: A

- Watch Video Solution

5.

Consider

$f(x)=x^{2}+a x+3$ and $g(x)=x+b$ and $F(x)=\lim _{n \rightarrow \infty} \frac{f(x)+x^{2 n} g\left(f^{2 n}\right.}{1+x^{2 n}}$ If $\mathrm{F}(\mathrm{x})$ is continuous at $\mathrm{x}=-1$, then
A. $a+b=-2$
B. $a-b=3$
C. $a+b=5$
D. none of these

Answer: C

- Watch Video Solution

6.

$f(x)=x^{2}+a x+3$ and $g(x)=x+b$ and $F(x)=\lim _{n \rightarrow \infty} \frac{f(x)+x^{2 n} g(6}{1+x^{2 n}}$ If $F(x)$ is continuous at $x=-1$, then
A. imaginary roots
B. both the roots positive
C. both the roots negative
D. roots of oppostie signs

- Watch Video Solution

7. $\operatorname{Let} f(x)=\left\{\begin{array}{ll}x+2 & 0 \leq x<2 \\ 6-x & x \geq 2\end{array}, g(x)= \begin{cases}1+\tan x & 0 \leq x<\frac{\pi}{4} \\ 3-\cot x & \frac{\pi}{4} \leq x<\pi\end{cases}\right.$ $f(g(x))$ is
A. discontinuous at $x=\pi / 4$
B. differentiable at $x=\pi / 4$
C. continuous but non-differentiable $x=\pi / 4$
D. differentiable at $x=\pi / 4$, but derivative is not continuous

Answer: C

- Watch Video Solution

8. $\operatorname{Letf}(x)=\left\{\begin{array}{ll}x+2 & 0 \leq x<2 \\ 6-x & x \geq 2\end{array}, g(x)= \begin{cases}1+\tan x & 0 \leq x<\frac{\pi}{4} \\ 3-\cot x & \frac{\pi}{4} \leq x<\pi\end{cases}\right.$ $f(g(x))$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

9. $\operatorname{Let} f(x)=\left\{\begin{array}{ll}x+2 & 0 \leq x<2 \\ 6-x & x \geq 2\end{array}, g(x)= \begin{cases}1+\tan x & 0 \leq x<\frac{\pi}{4} \\ 3-\cot x & \frac{\pi}{4} \leq x<\pi\end{cases}\right.$
$f(g(x))$ is
A. $(-\infty, \infty)$
B. $(4, \infty)$
C. $(-\infty, 4]$
D. none of these

Answer: C

- Watch Video Solution

10.

$\operatorname{Letf}(x)=\left\{\begin{array}{ll}{[x]} & -2 \leq x \leq-\frac{1}{2} \\ 2 x^{2}-1 & -\frac{1}{2}<x \leq 2\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$,
where [.] represents the greatest integer function .
the number of point where $|f(x)|$ is non-differentiable is
A. 3
B. 4
C. 2
D. 5
11.
$\operatorname{Letf}(x)=\left\{\begin{array}{ll}{[x]} & -2 \leq x \leq-\frac{1}{2} \\ 2 x^{2}-1 & -\frac{1}{2}<x \leq 2\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$,
where [.] represents the greatest integer function.
the number of point where $g(x)$ is non - differentiable is
A. 4
B. 5
C. 2
D. 3

Answer: D

- Watch Video Solution

12.

$\operatorname{Let} f(x)=\left\{\begin{array}{ll}{[x]} & -2 \leq x \leq-\frac{1}{2} \\ 2 x^{2}-1 & -\frac{1}{2}<x \leq 2\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$, where [.] represents the greatest integer function . the number of point where $\mathrm{g}(\mathrm{x})$ is discontinuous is
A. 1
B. 2
C. 3
D. none of these

Answer: B

- Watch Video Solution

13. Given the continuous fuunction

$$
y=f(x)= \begin{cases}x^{2}+10 x+8 & x \leq-2 \\ a x^{2}+b x+c & -2<x<0, a \neq 0 \\ x^{2}+2 x & x \geq 0\end{cases}
$$

if a line L touches the graph of $y=f(x)$ at three points, then if $y=f(x)$ is differentiable at $x=0$, then the value of B
A. is -1
B. is 2
C. is 4
D. connot be determined

Answer: B

- Watch Video Solution

14. $f(x)=\left\{\begin{array}{ll}b \sin ^{-1}\left(\frac{x+c}{2}\right) & -\frac{1}{2}<x<0 \\ \frac{1}{2} & x=0 \\ \frac{e^{a x / 2}-1}{x} & 0<x<\frac{1}{2}\end{array} \quad\right.$ If $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$
and $|c|<\frac{1}{2}$, then find the values of a and prove that $64 b^{2}-\left(4-c^{2}\right)$
A. $1 / 2$
B. 1
C. $3 / 2$
D. 2

Answer: A

- Watch Video Solution

15. $f(x)=\left\{\begin{array}{ll}b \sin ^{-1}\left(\frac{x+c}{2}\right) & -\frac{1}{2}<x<0 \\ \frac{1}{2} & x=0 \\ \frac{e^{a x / 2}-1}{x} & 0<x<\frac{1}{2}\end{array} \quad\right.$ If $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$
and $|c|<\frac{1}{2}$, then find the values of a and prove that $64 b^{2}-\left(4-c^{2}\right)$
A. $16 b^{2}=4-c^{2}$
B. $16 b^{2}=1-4 c^{2}$
C. $64 b^{2}=4-c^{2}$
D. none of these

Answer: C

Numerical Value Type

1. The number of points of discontinuity for $\mathrm{f}(\mathrm{x})=\operatorname{sgn}(\sin \mathrm{x}), x \in[0,4 \pi]$ is

- Watch Video Solution

2. The number of points where $f(x)=\operatorname{sgn}\left(x^{2}-3 x+2\right)+[x-3], x \in[0,4], \quad$ is discontinuous is (where [.] denotes the greatest integer function) \qquad .

- Watch Video Solution

3. Number of points where $f(x)=\sqrt{x^{2}}+[x]^{2}, x \in[-2,2]$ is discontinuous is (where [.] re[presents the greatest interger function) \qquad .
4. Let $f(x) \lim _{x \rightarrow \infty} \frac{\log ,(2+x)-x^{2 x} \sin x}{1+x^{2 n}}$ then:

- Watch Video Solution

5.

Let
$f(x)=\left\{\frac{x}{2}-1,0 \leq x \leq 1 \frac{1}{2}, 1 \leq x \leq 2\right\} g(x)=(2 x+1)(x-k)+3,0$ then $g(f(x))$ is continuous at $\mathrm{x}=1$ if k equal to:

- Watch Video Solution

6. A differentiable function f is satifying the relation $f(x+y)=f(x)+f(y)+2 x y(x+y)-\frac{1}{3} \forall x, y \in R$ and $\lim _{h \rightarrow 0} \frac{3 f(h)-}{6 h}$
. Then the value of $[f(2)]$ is (where $[x]$ represents the greatest integer function) \qquad .
7. The least integral value of p for which $f^{\prime \prime}(x)$ is everywhere continuous where $f(x)=\left\{x^{p} \sin \left(\frac{1}{x}\right)+x|x|, x \neq 0\right.$ and $0, x=0$ is \qquad

(Watch Video Solution

8. The number of points where $f(x)=[x+1 / 3]+[x+2 / 3]$, [. $]$ denotes the greatest integer function, is discontinuous for $x \in(0,3)$ is
\qquad .

- Watch Video Solution

9. Letf(x) and $g(x)$ be two continuous function and $h(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n} \cdot f(x)+x^{2 m} \cdot g(x)}{\left(x^{2 n}+1\right)}$. if the limit of $\mathrm{h}(\mathrm{x})$ exists at $\mathrm{x}=1$, then one root of $f(x)-g(x)=0$ is \qquad .

- Watch Video Solution

10. Number of points of discontinuity of $f(x)=\left[x^{3}+3 x^{2}+7 x+2\right]$, where [.] represents the greatest integer function in $[0,1]$ is \qquad .

- Watch Video Solution

11. If $f(x)=\frac{x}{1+(\log x)(\log x) \ldots \infty}, \forall x \in[1,3]$ is non-differentiable at $\mathrm{x}=\mathrm{k}$. Then, the value of $\left[k^{2}\right]$, is (where $[\cdot]$ denotes greatest integer function).

- Watch Video Solution

12. If the function $f(x)=\frac{\tan (\tan x)-\sin (\sin x)}{\tan x-\sin x}(x \neq 0)$: is continuous at $x=0$,then find the value of $f(0)$

- Watch Video Solution

13. The number of points of non- differentiability of function $f(x)=\max$ $\left\{\sin ^{-1}|\sin x|, \cos ^{-1}|\sin x|\right\}, 0<x<2 \pi$, is \qquad .

Watch Video Solution

14. The function $f(x)$ is discontinuous only at $x=0$ such that $f^{2}(x)=1 \forall x \in R$. The total number of such functions is

- Watch Video Solution

Jee Advanced Previous Year

1. Let $f(x)=\left\{\begin{array}{ll}x^{2}\left|\cos \frac{\pi}{x}\right|, & x \neq 0, x \in R \\ 0, & x=0\end{array}\right.$, then f is
A. differentiable both at $\mathrm{x}=0$ at $\mathrm{x}=2$
B. differentiable at $\mathrm{x}=0$ but not differentiable at $\mathrm{x}=2$
C. not differentiable at $\mathrm{x}=0$ but differentiable at $\mathrm{x}=2$
D. differentiable neither at $\mathrm{x}=0$ nor at $\mathrm{x}=2$

Answer: B

- Watch Video Solution

2. If $f(x)=\left\{\begin{array}{ll}-x-\frac{\pi}{2} & x \leq-\frac{\pi}{2} \\ -\cos x & -\frac{\pi}{2}<x \leq 0 \\ x-1 & 0<x \leq 1 \\ \operatorname{In} x & x>1\end{array}\right.$ then which one of the following is not correct?
A. $\mathrm{f}(\mathrm{x})$ is continuous at $x=-\pi / 2$
B. $f(x)$ is not differentiable at $x=0$
C. $f(x)$ is differtiable at $x=1$
D. $f(x)$ is differentiable at $x=-3 / 2$

Answer: A::B::C::D

3. Let $f: R \rightarrow R$ be a function such that
$f(x+y)=f(x)+f(y), \forall x, y \in R$. If $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$, then
A. $f(x)$ is differentiable only in a finite interval containing zero
B. $\mathrm{f}(\mathrm{x})$ is continuous $\forall x \in R$
C. $\mathrm{f}^{\prime}(\mathrm{x})$ is constant $\forall x \in R$
D. $f(x)$ is differentiable except at finitely many points

Answer: B::C

- Watch Video Solution

4. Let $a, b \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by
$f(x)=a \cos \left(\left|x^{3}-x\right|\right)+b|x| \sin \left(\left|x^{3}+x\right|\right)$. Then f is
A. differentiable at $\mathrm{x}=0$ if $\mathrm{a}=0$ and $\mathrm{b}=1$
B. differentiable at $x=1$ if $a=1$ and $b=0$
C. NOT differentiable at $x=0$ if $a=1$ and $b=0$
D. Not differentiable at $x=1$ if $a=1$ and $b=1$

Answer: A::B

- Watch Video Solution

5. Let $f:\left[-\frac{1}{2}, 2\right] \rightarrow R$ and $g:\left[-\frac{1}{2}, 2\right] \rightarrow R$ be function defined by $f(x)=\left[x^{2}-3\right] \quad$ and $\quad g(x)=|x| f(x)+|4 x-7| f(x) \quad$ where $\quad[y]$ deonotes the greatest integer less than or equal to y for $\mathrm{y} \varepsilon r$. Then
A. f is discontinuous exactly at three points in $\left[-\frac{1}{2}, 2\right]$
B.f si discontinuous exactly at four points in $\left[-\frac{1}{2}, 2\right]$
C. g is NOT differentiable exactly at four points in $\left(-\frac{1}{2}, 2\right)$
D. g is NOT differentiable exactly at five points in $\left(-\frac{1}{2}, 2\right)$

Answer: B::C

- Watch Video Solution

6. Let $[x]$ be the greatest integer less than or equal to x. Then, at which of the following point (s) function $f(x)=x \cos (\pi(x+[x]))$ is discontinuous? $x=1$ (b) $x=-1$ (c) $x=0$ (d) $x=2$
A. $x=-1$
B. $x=0$
C. $x=2$
D. $x=1$

Answer: B::C::D

- Watch Video Solution

7. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be respectively given by $f(x)=|x|+1$ and $g(x)=x^{2}+1 . \quad$ Define $\quad h: R \rightarrow R \quad$ by $h(x)=\{\max \{f(x), g(x)\}, \quad$ if $x \leq 0$ and $\min \{f(x), g(x)\}, \quad$ if $x>$
.The number of points at which $h(x)$ is not differentiable is
8. A function $f(x)$ satisfies the following property: $f(x \dot{y})=f(x) f(y)$. Show that the function $f(x)$ is continuous for all values of x if it is continuous at $x=1$.

- Watch Video Solution

2. Statement-1: If $|f(x)| \leq|x|$ for all $x \in R$ then $|f(x)|$ is continuous at 0 . Statement-2: If $f(x)$ is continuous then $|f(x)|$ is also continuous.

- Watch Video Solution

3. Let $f(x)=\left\{\frac{\log (1+x)^{1+x}-x}{x^{2}}\right\}$. Then find the value of $f(0)$ so that the function f is continuous at $x=0$.

- Watch Video Solution

4. $x^{2}+(f(x)-2) x-\sqrt{3} \cdot f(x)+2 \sqrt{3}-3=0$, then the value of $f(\sqrt{3})$

- Watch Video Solution

5. Let : $f(x)=\left\{\begin{array}{ll}\frac{a+3 \cos x}{x^{2}} & x<0 \\ b \tan \left(\frac{\pi}{[x+3]}\right) & x \geq 0\end{array}\right.$ If $f(x)$ is continuous at $x=0$, then find a and b, where [.] denotes the greatest integer function.

- Watch Video Solution

6. If the function f as defined below is continuous at $x=O f i n d$ the values of a,b and
c
$f(x)=\left\{\frac{\sin (a+1) x+\sin x}{x}, x<0\right.$ and $c, x=0$, and $\frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x^{\frac{3}{2}}}$
7. If the function $g(x)\left\{\begin{array}{l}\frac{e^{p x}+\log _{e}(1+4 x)+q}{x^{3}}, x \neq 0 \\ r, x=0\end{array}\right.$ continuous at $x=0$, then find the values of p, q and r.

- Watch Video Solution

8. Find the points of discontinuity of the following fiunctions over R.
$(i) f(x)=\frac{1}{2 \sin x-1}(i i) f(x)=\frac{1}{x^{2}-3|x|+2}$
$($ iii $) f(x)=\frac{1}{x^{4}+x^{2}+1}$

- Watch Video Solution

9. What kind of discpntinuity following functions have ? If possible , redefine the function to make it continuous .
(a) $f(x)=[x]$ atx $=0$, where $[\mathrm{x}]$ repesents greates interger function
(b) $f(x)=[x]+[-x]$ atx $=1$, where $[\mathrm{x}]$ represents greatest integer fuction.
(c) $f(x)=\frac{e^{1}}{2} a t x=0$.
10. What type of discontinuity does $f(x)=\frac{1}{\log _{e}\left|x^{2}-4\right|}$ have?

- Watch Video Solution

11. What type of discontinuity does $f(x)=\cos ^{-1}\left(\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)$ have ?

Watch Video Solution

12. Let $f(x)$ be a function defined as $f(x)=\left\{\frac{x^{2}-1}{x^{2}-2|x-1|-1}, x \neq 1\left\{\frac{1}{2}, x=1\right.\right.$ Discuss the continuity of the function at $x=1$.

- Watch Video Solution

13. if $f(x)=\left\{\begin{array}{ll}\cos ^{-1}\{\cos x\} & x<\frac{\pi}{2} \\ \pi[x]-1 & x \geq \frac{\pi}{2}\end{array}\right.$. where [.] repesents greatest funcrtion and \{.\} represents fractional part function, then discuss the continuity of $\mathrm{f}(\mathrm{x})$ at $x=\frac{\pi}{2}$.

- Watch Video Solution

14. Test the continnuity of $f(x)$ at $x=0$ if
$f(x)=\left\{\begin{array}{ll}(x+1)^{2-\left(\frac{1}{|x|}+\frac{1}{x}\right)} & x \neq 0 \\ 1 & x=0\end{array}\right.$.

- Watch Video Solution

15. Discuss continuity of $f(x)=[\sin x]-[\cos x]$ at $x=\pi / 2$, where [.] represent the greatest integer function .

- Watch Video Solution

16. Let $f(x)=\left\{\frac{(\log)_{e} \cos x}{1+x^{2} 4-1}, x>0 \frac{e^{\sin 4 x}-1}{(\log)_{e}(1+\tan 2 x), x<0}\right.$ Find the value of $f(0)$ which makes the function continuous at $x=0$

- Watch Video Solution

17. A function $f(x)$ is defined as followings : $f(x)=\left\{a x-b, x \leq 1,3 x, 1<x<2, b x^{2}-a, x \geq 2\right.$ Prove that if $\mathrm{f}(\mathrm{x})$ is continuous at $x=1$ but discontinuous at $x=2$. then the locus of the point (a, b) is a straight excluding the point where it cuts the line $y=3$.

Watch Video Solution

18. Let F and G be two real-valued function defined on R (the set of all real numbers)
$\mathrm{F}(\mathrm{x})= \begin{cases}|x+1| \\ x & \{:(, \mathrm{xle} 0,),(, \mathrm{xgt0}):\}\} G(x)=\{:\{(,|\mathrm{x}|+1,),(,-\mid \mathrm{x}-2,):\} \\ & \begin{array}{l}x \leq 1 \\ x>1\end{array}\end{cases}$ and $H(x)=F(x)+G(x)$.

Point of discontinuity of $\mathrm{H}(\mathrm{x})$ are
19. If $f: R \rightarrow R$ is a function defined by $f(x)=[x] \cos \left(\frac{2 x-1}{2}\right) \pi$, where [x] denotes the greatest integer function, then f is

- Watch Video Solution

20. Find the points of discontinuity of following functions (where ,[.] repesents greatest integer fuction)
(i) $f(x)=[x / 3], x \in[0,30]$
(ii) $f(x)=\left[\log _{e} x\right]$
(iii) $f(x)=\left[\sin ^{-1} x\right]$
$f(x)=\left[\frac{2}{1+x^{2}}\right], x>0$

- Watch Video Solution

21. Draw the graph and find the points of discontinuity $f(x)=[2 \cos x]$, $x \in[0,2 \pi]$. ([.] represents the greatest integer function.)

(D) Watch Video Solution

22. Draw the graph and discuss the continuity of $f(x)=[\sin x+\cos x], x \in[0,2 \pi]$, where [.] represents the greatest integer function.

- Watch Video Solution

23. If the function $f(x)=\left[\frac{(x-2)^{3}}{a}\right] \sin (x-2)+a \cos (x-2)$, [.] denotes the greatest integer function, is continuous in $[4,6]$, then find the values of a.

Watch Video Solution

24. Discuss continuity of
(i) $f(x)=\operatorname{sgn}\left(x^{3}-x\right)(i i) f(x)=\operatorname{sgn}(2 \cos x-1)$
(iii) $f(x)=\operatorname{sgn}\left(x^{2}-2 x+3\right)$
25. If $f(x)=\operatorname{sgn}(2 \sin x+a)$ is continuous for all x, then find the possible values of a.

- Watch Video Solution

26. Discuss the continuity of $f(x)=|x| \operatorname{sgn}\left(x^{3}-x\right)$

- Watch Video Solution

27. if $f(x) \begin{cases}\operatorname{sgn}(x-2) \times\left[\log _{e} x\right] & 1 \leq x \leq 3 \\ \left\{x^{2}\right\} & 3<x \leq 3.5\end{cases}$
where [.] dentes inteatest function ans \{.\} repesents fractional part function find the points where the continuity of $f(x)$ shoukd be checked, Hence find he points of discontinuity.
28. Discuss the continuity of $f(x)=\left(\lim _{n \rightarrow \infty} \frac{x^{2 n}-1}{x^{2 n}+1}\right.$

- Watch Video Solution

29. Discuss continuity of function $f(x)=1+\lim _{n \rightarrow \infty} \cos ^{2 n} x$. Draw the graph of the function and find the period of the function .

(Watch Video Solution

30. Find the values of a if $f(x)=(\lim)_{n} \vec{\infty} \frac{a x^{2 n}+2}{x^{2 n}+a+1}$ is continuous at $x=1$.

- Watch Video Solution

31. Discuss the continuity of function
$f(x)= \begin{cases}1 & \text { if } \mathrm{x} \text { is rational } \\ 0 & \text { if } \mathrm{x} \text { is irrational }\end{cases}$
32. Let $\mathrm{f}(\mathrm{x})$ be given that $f(x)= \begin{cases}x & \text { if } \mathrm{x} \text { is rational } \\ 1-x & \text { if } \mathrm{x} \text { is irrational }\end{cases}$ The number of points at which $f(x)$ is continuous, is

- Watch Video Solution

33. For $x>0, \operatorname{leth}(x)=\left\{\frac{1}{q}, \quad\right.$ if $x=\frac{p}{q}$ and 0, if xisirrational where $p, q>0$ are relatively prime integers. Then prove that $f(x)$ is continuous for all irrational values of x.

- Watch Video Solution

34. If $f(x)=\frac{x+1}{x-1} \operatorname{andg}(x)=\frac{1}{x-2}$, then discuss the continuity of $f(x), g(x), \operatorname{andfog}(x)$.

- Watch Video Solution

35. If $f(x)=\left\{\begin{array}{ll}x-2 & x \leq 0 \\ 4-x^{2} & x>0\end{array}\right.$, discusscont \in uityof $\mathrm{y}=\mathrm{f}(\mathrm{f}(\mathrm{x}))$

- Watch Video Solution

36. Show that the function $f(x)=(x-a)^{2}(x-b)^{2}+x$ takes the value $\frac{a+b}{2}$ for some value of $x \in[a, b]$.

- Watch Video Solution

37. Using intermediate value theorem, prove that there exists a number x such that $x^{2005}+\frac{1}{1+\sin ^{2} x}=2005$.

- Watch Video Solution

38. Let $f(x)$ be a continuous function defined for $1 \leq x \leq 3$. If $f(x)$ takes rational values for all x and $f(2)=10$ then the value of $f(1.5)$ is:
39. Let $f:[0,1] \overrightarrow{0,1}$ be a continuous function. Then prove that $f(x)=x$ for at least one $0 \leq x \leq 1$.

- Watch Video Solution

40. Let $f(x)$ be a function satisfying the condition $f(-x)=f(x)$ for all real x . If $f^{\prime}(0)$ exists, then its value is equal to

- Watch Video Solution

41. Discuss the differentiability of $f(x)=(2 x-5)^{3 / 5}$ at $x=\frac{5}{2}$.

- Watch Video Solution

42. Discuss the differentiability of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{\sin x^{2}}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ at $\mathrm{x}=0$
43.

$f(x)=\left\{x \sin \left(1 n x^{2}\right), x \neq 00, x=0 a t x=0\right.$

- Watch Video Solution

44. Discuss the differentiability of $f(x)=\left\{(x-e) 2^{-2\left(\frac{1}{(e-x)}\right)}, x \neq e\right.$ and 0 at $x=e$. at the point $x=e$

- Watch Video Solution

45. $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$ then at $x=0$, value of $\mathrm{f}(\mathrm{x})$ is

- Watch Video Solution

46. Prove the each of the following function is differentiable at $\mathrm{x}=0$.
(i)f(x) $=\cos |x|(i i) f(x)=x|x|$
(iii) $f(x)=\left|x^{3}\right|(i v) f(x)=\frac{x}{1+|x|}$

- Watch Video Solution

47.

$f(x)=\left\{x, x \leq 1, x^{2}+b x+c, x>1^{\prime \prime} f \in d b\right.$ and c if functioniscont $x=1$ ’

Watch Video Solution

48. Find the values of a and b if
$f(x)=\left\{a+\sin ^{-1}(x+b), x \geq 1\right.$ and $x, x<1$ is differentiable at $x=1$.

- Watch Video Solution

49.

$f(x)=\left\{a x(x-1)+b, x<1 x-1,1 \leq x \leq 3 \cdot p x^{2}+q x+2, x>3\right.$

Find the values of the constants $a, b, p a n d q$ so that all the following conditions are satisfied $f(x)$ is continuous for all $x \cdot f(1)$ does not exist. $f^{\prime}(x)$ is continuous at $x=3$

- Watch Video Solution

50. $\operatorname{Let} f(x)=\left[\begin{array}{ll}a \sqrt{x+1} & 0<x<3 \\ b x+2 & 3 \leq x<5\end{array}\right.$ if $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=3$ then find the values of a and b.

- Watch Video Solution

51. Discuss the differentiability of $f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$

- Watch Video Solution

52. Discuss the differentiability of $f(x)=\sin |x|$
53. Drew the graph of the function and find the points of nondifferentiability .(i) $f(x)=\min ,\{x, \sin x\}$.

- Watch Video Solution

54. If $f(x)=\max \left\{x^{2}+2 a x+1, b\right\}$ has two points of nondifferentiability, then prove that $a^{2}>1-b$

- Watch Video Solution

55. Test the continuity and differentiability of the function $f(x)=\left|\left(x+\frac{1}{2}\right)[x]\right|$ by drawing the graph of the function when $-2 \leq x<2$, where [.] represents the greatest integer function.

- Watch Video Solution

56. Discuss the continuity and differentiability of the function $f(x)=|x|+|x-1|$ in the interval $(-1,2)$.

Watch Video Solution

57. Discuss the differentiability of $f(x)=[\mathrm{x}]$
$+|1-x|, x \in(-1,3)$, where[.] represents greatest integer function.

- Watch Video Solution

58. The set of points, where $\mathrm{f}(\mathrm{x})=\frac{x}{1+|x|}$ is differentiable, is

- Watch Video Solution

59.

Discuss
the
differentiability
$f(x)=\left(x^{2}-1\right)\left|x^{2}-x-2\right|+\sin (|x|)$.
60.
$f(x)=|x| \sin x+|x|-2 \operatorname{sgn}(x-2)+|x-3|$.

- Watch Video Solution

61. Discuss differentiability of $f(x)=\left(e^{|x|-1}-1\right)\left|x^{4}-x^{2}\right|$.

- Watch Video Solution

62. Let $f(x)=e^{x-1}-a x^{2}+b$ and $g(x)=\left\{\begin{array}{ll}e^{x-1} & x \leq 1 \\ x^{2}+1 & x>1\end{array}\right.$, then find the values of a and b such that $f(x) \times g(x)$ is differentiable at $x=1$.

- Watch Video Solution

63. Prove that function $f(x)=(\sin \pi x)(x-1)^{1 / 5}$ is continuous and differentiable at $\mathrm{x}=1$

Also show that $\mathrm{f}^{\prime}(\mathrm{x})$ is differentiable at $\mathrm{x}=1$.

- Watch Video Solution

64. The set of points where $x^{2}|x|$ is thrice differentiable, is

- Watch Video Solution

Solved Examples

1. Examine the continuity at $x=0$ of the sum function of the infinite series:

$$
\frac{x}{1+x}+\frac{x}{(x+1)(2 x+1)}+\frac{x}{(2 x+1)(3 x+1)}+.
$$

- Watch Video Solution

2. A function $f(x)$ is defind as
$f(x)=\left\{\begin{array}{lr}x^{2}+a x+1 & \mathrm{x} \text { is rational } \\ a x^{2}+2 x+b & \mathrm{x} \text { is irrational }\end{array}\right.$
is continuous at $x=1$ and 3 , them find the values of a and b.

- Watch Video Solution

3. Let $[x]$ denote the greatest integer less than or equal to x and $g(x)$ be
given $\operatorname{by} g(x)= \begin{cases}{[f(x)]} & x \in(0, \pi / 2) \cup(\pi / 2, \pi) \\ 3 & x=\frac{\pi}{2}\end{cases}$
where, $f(x)=\frac{2\left(\sin x-\sin ^{n} x\right)+\left|\sin x-\sin ^{n} x\right|}{2\left(\sin x-\sin ^{n} x\right)-\left|\sin x-\sin ^{n} x\right|}, n \in R^{+} \quad$ then at $x=\frac{\pi}{2}, g(x)$, is

(Watch Video Solution

4. The function $f(x)=[x]+\sqrt{\{x\}}$, where [.] denotes the greatest Integer function and $\{$.$\} denotes the fractional part function respectively,$ is discontinuous at

D Watch Video Solution

5. The function $y=f(x)$ is defined by $x=2 t-|t|, y=t^{2}+|t|, t \in R$ in the interval $x \in[-1,1]$, then

- Watch Video Solution

6. If $f(x)=\left\{\begin{array}{ll}x-3, & x<0 \\ x^{2}-3 x+2, & x \geq 0\end{array}\right.$ and let $g(x)=f(|x|)+|f(x)|$. Discuss the differentiability of $\mathrm{g}(\mathrm{x})$.

- Watch Video Solution

7. Let $f: R \rightarrow R$ satisfying $|f(x)| \leq x^{2}, \forall x \in R$, then show that $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$.

- Watch Video Solution

8. If a function $f:[-2 a, 2 a] \rightarrow R$ is an odd function such that, $f(x)=f(2 a-x)$ for $x \in[a, 2 a]$ and the left-hand derivative at $x=a$
is 0 , then find the left-hand derivative at $x=-a$.

- Watch Video Solution

9. If $f(x)$ is continuous and differentiable function $f\left(\frac{1}{n}\right)=0 \forall n \leq 1$ and $n \in Z . \quad$ then prove that $f(0)=0$ and $f^{\prime}(0)=0$

- Watch Video Solution

10. If $\mathrm{f}(\mathrm{x})$ is continuous and differerntiable function such that $f\left(\frac{1}{n}\right)=0$ for all $n \in N$, then

- Watch Video Solution

11.

Let

$$
f(x)=x^{3}-x^{2}-x+1
$$

and
$g(x)=\{\max \{f(t) ; 0 \leq t \leq x\}, 0 \leq x \leq 1,3-x, 1 \leq x \leq 2$ Discuss
the continuity and differentiability of the function $g(x)$ in the interval (0 , 2).

- Watch Video Solution

12. Let $\alpha \in R$. Prove that a function $f: R \rightarrow R$ is differentiable at α if and only if there is a function $g: R \rightarrow R$ which is continuous at α and satisfies $f(x)-f(\alpha)=g(x)(x-\alpha), \forall x \in R$.

- Watch Video Solution

13. $f^{\prime}(0)=\lim _{n \rightarrow \infty} n f\left(\frac{1}{n}\right)$ and $f(0)=0$ Using this, find `lim_($n->\infty 0$) $\left.\left((n+1)(2 / p i) \cos ^{\wedge}(-1)(1 / n)-n\right)\right),\left|\cos ^{\wedge}(-1) 1 / n\right|$

- Watch Video Solution

14. about to only mathematics

Concept Application Exercise 41

1. A function $f(x)$ satisfies the following property: $f(x y)=f(x) f(y)$. Show that the function $f(x)$ is continuous for all values of x if it is continuous at $x=1$.

- Watch Video Solution

2. Find the value of $f(0)$ so that the function. $f(x)=\frac{\sqrt{1+x}-1+x 3}{x}$ becomescont \in uousat $x=0$

- Watch Video Solution

3. The function $f: R \sim\{0\} \vec{R}$ given by $f(x)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$ can be made continuous at $\mathrm{x}=0$ by defining $\mathrm{f}(0)$ as (1) $2(2)-1$ (3) 0 (4) 1
4. Let $f(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$, If $f(x)$ is continuous in $\left[0, \frac{\pi}{4}\right]$, then find the value of $f\left(\frac{\pi}{4}\right)$.

- Watch Video Solution

5. If $f(x)=\left(\tan \left(\frac{\pi}{4}+(\log)_{e} x\right)\right)^{(\log)_{x} e}$ is to be made continuous at $x=1$, then what is the value of $f(1)$?

- Watch Video Solution

6.

If

 the function $f(x)=\frac{x^{2}-(A+2) x+A}{x-2}, f$ or $x \neq 2 a n d f(2)=2$, is continuous at $x=2$, then find the value of A.
- Watch Video Solution

7. The values of a and b so that the function $f(x)= \begin{cases}x+a \sqrt{2} \sin x, & 0 \leq x<\pi / 4 \\ 2 x \cot x+b, & \pi / 4 \leq x \leq \pi / 2 \quad \text { is } \quad \text { continuous } \\ a \cos 2 x-b \sin x, & \pi / 2<x \leq \pi\end{cases}$ $x \in[0, \pi]$, are

- Watch Video Solution

8.

Let
$f(x)=\left\{\frac{1-\cos 4 x}{x^{2}}, \quad\right.$ if $\quad x<0 a, \quad$ if $\quad x=0 \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}$,
Determine the value of a so that $f(x)$ is continuous at $x=0$.

- Watch Video Solution

9. Let $f(x)=\left\{\begin{array}{ll}\{1+|\sin x|\}^{a /|\sin x|}, & -\pi / 6<x<0 \\ b, & x=0 \\ e^{\tan 2 x / \tan 3 x}, & 0<x<\pi / 6\end{array}\right.$ Determine a and b such that $f(x)$ is continuous at $x=0$

- Watch Video Solution

10. Let $f(x)$ be a continous function in $[-1,1]$ such that
$f(x)=\left[\begin{array}{ll}\frac{\ln \left(a x^{2}+b x+c\right)}{x^{2}} & -1 \leq x<0 \\ 1 & x=0 \\ \frac{\sin \left(e^{x^{2}}-1\right)}{x^{2}} & 0<x \leq 1\end{array}\right.$ Then which of the following
is/are corrent

- Watch Video Solution

11. Which of the following functions is not continuous $\forall x \in R$?
A. $\sqrt{2 \sin x+3}$
B. $\frac{e^{x}+1}{e^{x}+3}$
C. $\left(\frac{2^{2 x}+1}{2^{3}+5}\right)^{5: 7}$
D. $\sqrt{\operatorname{sgn} x+1}$

Answer:

12. Discuss the continuity of $f(x)=\left\{\frac{x^{2}}{|x|}, x \neq 00, x=0\right.$

- Watch Video Solution

13. Let $f(x)=\left\{(1+3 x)^{\frac{1}{x}}, x \neq 0\right.$ and $e^{3}, x=0$. Discuss the continuity of $f(x)$ at $(a) x=0$, (b) $x=1$.

- Watch Video Solution

14. Discuss the conttinuity of $f(x)=\left\{\begin{array}{ll}\frac{x-1}{\frac{1}{x-1}} & x=0 \\ 0 & x=0\end{array}\right.$ at $\mathrm{x}=1$.

- Watch Video Solution

$$
15 .
$$

Discuss
the
continuity
of
$f(x)=\left\{\frac{x^{4}-5 x^{2}+4}{\mid(x-1)(x-2)}, x \neq 1,26, x=112, x=2\right.$
16. Discuss the contiuity of the funtion $\mathrm{f}(\mathrm{x})=[\mathrm{x}]+|1-\mathrm{x}|,-1 \leq x \leq 3$, where
[.] represents the greatest integer function .

- Watch Video Solution

Concept Application Exercise 42

1. Find the value of x in $[1,3]$ where the function $\left[x^{2}+1\right]$ ([.] represents the greatest integer function) is discontinuous.

- Watch Video Solution

2. Find the number of points of discontinuity for $f(x)=[6 \sin x], 0 \leq \pi([$.$] represents the greatest integer function)$.

- Watch Video Solution

3. Discuss the continuity of $f(x)=\left[\tan ^{-1} x\right]([$.$] represents the greatest$ integer function).

D Watch Video Solution

4. Discuss the continuity of $f(x)=\left\{\cot ^{-1} x\right](\{\cdot\}$ represents the fractional part function).

- Watch Video Solution

5. Discuss the continuity of $f(x)=(\log |x|) \operatorname{sgn}\left(x^{2}-1\right), x \neq 0$.

(Watch Video Solution

6. $\operatorname{Letf}(x)= \begin{cases}{[\sin \pi x]} & 0 \leq x \leq 1 \\ \operatorname{sgn}\left(x-\frac{5}{4}\right) \times\left\{x-\frac{2}{3}\right\} & 1 \leq x \leq 2\end{cases}$
when [.] denotes the greatest integer function and \{.\} represents the fractional part function ,At what points should the continuity be checked ? Hence, find the points of discontinuity .

(D) Watch Video Solution

7. Consider $f(x)=\lim _{x-\infty} \frac{x^{n}-\sin x^{n}}{x^{n}+\sin x^{n}}$ for $x>0, x \neq 1, f(1)=0$ then

- Watch Video Solution

8.

Discuss
the
continuity
$f(x) \in[0,2]$, wheref $(x)=(\lim)_{n \rightarrow \infty}\left(\sin \left(\pi \frac{x}{2}\right)\right)^{2 n}$

- Watch Video Solution

9.

Discuss
the
continuity
of
$f(x)=\left\{x^{2}\right.$, xisrational $-x^{2}$, xisirrational.

- Watch Video Solution

10. Find the value of a for which $f(x)=\left\{x^{2}, x \in Q x+a, x \notin Q\right.$ is not continuous at any x.

- Watch Video Solution

11. If $y=\frac{1}{t^{2}+t-2}$, wheret $=\frac{1}{x-1}$, then find the number of points where $f(x)$ is discontinuous.

- Watch Video Solution

12. Find the points of discontinuity of the function: $f(x)=\frac{1}{1-e^{\frac{x-1}{x-2}}}$

- Watch Video Solution

13. Let $f(x)=\left\{\begin{array}{ll}1+x & 0 \leq x \leq 2 \\ 3-x & 2<x \leq 3\end{array}\right.$ then discuss the continuity of $\mathrm{g}(\mathrm{x})$ $=f(f(x))$.

Concept Application Exercise 43

1. Prove that $f(x)=\frac{x^{3}}{4}-\sin \pi x+3$ takes the value of $\frac{7}{3}$ for $x \in[-2,2]$.

- Watch Video Solution

2. Leg f be continuous on the interval $[0,1]$ to R such that $f(0)=f(1)$. Prove that there exists a point c in $\left[\frac{0,1}{2}\right]$ such that $f(c)=f\left(c+\frac{1}{2}\right)$.

- Watch Video Solution

3. Suppose f is a continuous map from R to R and $f(f(a))=a$ for some a. Show that there is some b such that $f(b)=b$.

- Watch Video Solution

Concept Application Exercise 44

1. If f is an even function such that $(\lim)_{h \overrightarrow{0}} \frac{f(h)-f(0)}{h}$ has some finite non-zero value, then prove that $f(x)$ is not differentiable at $x=0$.

- Watch Video Solution

2. Let $\mathrm{f}(\mathrm{x})$ be a function satisfying $f(x+y)=f(x)+f(y)$ and $f(x)=x g(x)$ For all $x, y \in R$, where $\mathrm{g}(\mathrm{x})$ is continuous. Then,

- Watch Video Solution

3. $f(x)=[2 x] \sin 3 \pi x a n d f^{\prime}\left(k^{\prime}\right)=\lambda k \pi(-1)^{k}$ (where [.] denotes the greatest integer function and $k \in N$), then find the value of λ.

- Watch Video Solution

4. let $f(x)=\left\{g(x) \cdot \cos \left(\frac{1}{x}\right)\right.$ if $x \neq 0$ and 0 if $x=0$, where $\mathrm{g}(\mathrm{x})$ is an even function differentiable at $\mathrm{x}=0$ passing through the origin then $f^{\prime}(0)$

- Watch Video Solution

5. If $f(x)=\left(\sin ^{-1} x\right)^{2} \cdot \cos \left(\frac{1}{x}\right) \mathrm{if} x \neq 0 ; f(0)=0, f(x)$ is continuous at $\mathrm{x}=0$ or not ?

- Watch Video Solution

6. $\operatorname{Letf}(x)= \begin{cases}\sqrt{x}(1+x \sin (1 / x)) & x>0 \\ -\sqrt{(-x)}(1+\sin (1 / x)) & x<0 \\ 0 & x=0\end{cases}$

Discuss differentiability at $\mathrm{x}=0$.

- Watch Video Solution

1. Discuss the continuity and differentiability of $f(x)=|x+1|+|x|+|x-1| \forall x \in R ;$ also draw the graph of $f(x)$

Watch Video Solution

2. Find x where $f(x)=\max \{\sqrt{x(2-x)}, 2-x\}$ is non-differentiable.

- Watch Video Solution

3.

Discuss
the
differentiability
$f(x)=\operatorname{mim} .\{|x|,|x-2|, 2-|x-1|\}$.

- Watch Video Solution

4. Discuss the differentiability of function $f(x)=x-\left|x-x^{2}\right|$
5. Discuss the differentiability of $f(x)|[x]| x \mid$ in $-1<x \leq 2$, where [.] repesents the greatest intger function.

- Watch Video Solution

6. Discuss the differentiabilty of $f(x)=\cos (\cos x)$

- Watch Video Solution

7. Discuss the differentiability of $f(x)=\max \left\{\tan ^{-1} x, \cot ^{-1} x\right\}$.

- Watch Video Solution

8. Find
9.

the values \quad of $\begin{gathered}\text { aandb }\end{gathered}$ if

- Watch Video Solution

9. Discuss the differentiability of $f\left(x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right.$

(Watch Video Solution

10. Discuss the differentiability of $f(x)=\left|\left|x^{2}-4\right|-12\right|$.

- Watch Video Solution

11. Discuss the differentiability of $f(x)=x[x]\{x\}$ in interval $[-1,2]$, where
[.] and \{.\} denotes the greatest integer function and fractional part fntion , respectively.

- Watch Video Solution

12. Discuss the continuity and differentiability in [0,2] of $f(x)=\left\{|2 x-3|[x], x \geq 1 \sin \left(\frac{\pi x}{2}\right), x<1\right.$ to where [.] denotes the greatest integer function.
13. For which values of x function $\mathrm{f}(\mathrm{x})=(\sin \pi x)|x-1||x-2||x-3|$ is non - differentiable ?

- Watch Video Solution

14. Number of points where $f(x)=\left|\mathrm{x} \operatorname{sgn}\left(1-x^{2}\right)\right|$ is non-differentiable is a. 0 b. 1 c. 2 d. 3

- Watch Video Solution

15. Let $f(x)=\left\{\begin{array}{ll}\left(\cos \frac{1}{x}\right)(\log (1+x))^{2} & x \geq 0 \\ 0 & x \leq 0\end{array}\right.$. Prove that $\mathrm{f}(\mathrm{x})$ if differentiable but derivative is not continuous at $\mathrm{x}=0$.

- Watch Video Solution

Matrix Match Type

1. Match the following lists:

List I	List II
a. $f(x)=\left\|x^{3}\right\|$ is	p. continuous in $(-1,1)$
b. $f(x)=\sqrt{\|x\|}$ is	q. differentiable in $(-1,1)$
c. $f(x)=\left\|\sin ^{-1} x\right\|$ is	r. differentiable in $(0,1)$
d. $f(x)=\cos ^{-1}\|x\|$ is	s. not differentiable at least at one point in $(-1,1)$

- Watch Video Solution

2. In the following ,[x] denotes the greatest integer less than or equal to
x. Now, match th following lists:

List I	List II
a. $f(x)=x\|x\|$ is	p. Continuous in $(-1,1)$
b. $f(x)=\sqrt{\|x\|}$ is	q. Differentiable in $(-1,1)$
c. $f(x)=x+[x]$ is	r. Strictly increasing in $(-1,1)$
d. $f(x)=\|x-1\|$ is	s. Not differentiable at least at one point in $(-1,1)$

- Watch Video Solution

