©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

COORDINATE SYSYEM

Illustration 11

1. Number of points with integral co-ordinates that lie inside a triangle whose co-ordinates are (0,0), (0,21) and (21,0).

- Watch Video Solution

1. The point $(4,1)$ undergoes the following three transformations successively: (a) Reflection about the line $y=x$ (b) Translation through a distance 2 units along the positive direction of the x-axis. (c) Rotation through an angle $\frac{\pi}{4}$ about the origin in the anti clockwise direction. The final position of the point is given by the co-ordinates.

- Watch Video Solution

Illustration 13

1. At what point should the origin be shifted if the coordinates of a point $(4,5)$ become $(-3,9)$?

- Watch Video Solution

Illustration 14

1. If the axes are shifted to the point $(1,-2)$ without rotation, what do the following equations become? $2 x^{2}+y^{2}-4 x+4 y=0$ $y^{2}-4 x+4 y+8=0$

- Watch Video Solution

Illustration 15

1. Shift the origin to a suitable point so that the equation $y^{2}+4 y+8 x-2=0$ will not contain a term in y and the constant term.

- Watch Video Solution

Illustration 16

1. The equation of curve referred to the new axes, axes retaining their directions, and origin $(4,5)$ is $X^{2}+Y^{2}=36$. Find the equation referred to the original axes.

- Watch Video Solution

Illustration 17

1. The axes are rotated through an angle $\pi / 3$ in the anticlockwise direction with respect to $(0,0)$. Find the coordinates of point $(4,2)$ (w.r.t. old coordinate system) in the new coordinates system.

- Watch Video Solution

Illustration 18

1. The equation of a curve referred to a given system of axes is $3 x^{2}+2 x y+3 y^{2}=10$. Find its equation if the axes are rotated through an angle 45°, the origin remaining unchanged.

- Watch Video Solution

Illustration 19

1. If θ is an angle by which axes are rotated about origin and equation $a x^{2}+2 h x y+b y^{2}=0$ does not contain xy term in the new system, then prove that $\tan 2 \theta=\frac{2 h}{a-b}$.

- Watch Video Solution

Illustration 110

1. In any triangle ABC , prove that $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$, where D is the midpoint of $B C$.

- Watch Video Solution

Illustration 111

1. Find the coordinates of the circumcenter of the triangle whose vertices are $(A(5,-1), B(-1,5)$, and $C(6,6)$. Find its radius also.

- Watch Video Solution

Illustration 112

1. Two points $O(0,0)$ and $A(3, \sqrt{3})$ with another point P form an equilateral triangle. Find the coordinates of P.

Illustration 113

1. If the coordinates of any two points Q_{1} and Q_{2} are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, respectively, then prove that $O Q_{1} \times O Q_{2} \cos \left(\angle Q_{1} O Q_{2}\right)=x_{1} x-2+y-1 y_{2}$, whose O is the origin.

- Watch Video Solution

Illustration 114

1. Given that $P(3,1), Q(6.5)$, and $R(x, y)$ are three points such that the angle $P R Q$ is a right angle and the area of $R Q P$ is 7 , find the number of such points R.

Illustration 115

1. Find the area of a triangle having vertices $A(3,2), B(11,8)$, and $C(8,12)$.

- Watch Video Solution

Illustration 116

1. Prove that the area of the triangle whose vertices are $(t, t-2),(t+2, t+2)$, and $(t+3, t)$ is independent of t.

Illustration 117

1. Find the area of the quadrilateral $A B C D$ having vertices $A(1,1), B(7,-3), C(12,2)$, and $D(7,21)$.

- Watch Video Solution

Illustration 118

1. For what value of k are the points $(k, 2-2 k),(-k+1,2 k) \operatorname{and}(-4-k, 6-2 k)$ collinear?

- Watch Video Solution

Illustration 119

1. If the coordinates of two points A and B are $(3,4)$ and $(5,-2)$, respectively, find the coordinates of any point P if $P A=P B$. Area of $P A B$ is 10 sq. units.

- Watch Video Solution

Illustration 120

1. If the vertices of a triangle have rational coordinates, then prove that the triangle cannot be equilateral.

- Watch Video Solution

Illustration 121

1. Given points $P(2,3), Q(4,-2)$, and $R(\alpha, 0)$. Find the value of a if $P R+R Q$ is minimum.
2. If $A\left(\frac{3}{\sqrt{2}}, \sqrt{2}\right), \quad B\left(-\frac{3}{\sqrt{2}}, \sqrt{2}\right), C\left(-\frac{3}{\sqrt{2}},-\sqrt{2}\right)$ and $D(3 \cos \theta, 2 \sin \theta)$ are four points. If the area of the quadrilateral $A B C D$ is maximum where $\theta \in\left(3 \frac{\pi}{2}, 2 \pi\right)$ then (a) maximum area is 10 sq units (b) $\theta=7 \frac{\pi}{4}$ (c) $\theta=2 \pi-\frac{\sin ^{-1} 3}{\sqrt{85}}$ (d) maximum area is 12 sq units

(D) Watch Video Solution

Illustration 123

1. Find the coordinates of the point which divides the line segments joining the points $(6,3)$ and $(-4,5)$ in the ratio $3: 2$ (i) internally and
(ii) externally.

- Watch Video Solution

1. $A(1,1)$ and $B(2,-3)$ are two points and D is a point on $A B$ produced such that $A D=3 A B$. Find the co-ordinates of D.

- Watch Video Solution

Illustration 125

1. Determine the ratio in which the line $3 x+y-9=0$ divides the segment joining the points $(1,3)$ and $(2,7)$.

- Watch Video Solution

Illustration 126

1. Prove that the points $(-2,-1),(1,0),(4,3)$, and $(1,2)$ are the vertices of a parallelogram. Is it a rectangle?

Illustration 127

1. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ are n Points in a plane whose coordinates are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ respectively. $A_{1} A_{2}$ is bisected at the point $P_{1}, P_{1} A_{3}$ is divided in the ratio 1:2 at $P_{2}, P_{2} A_{4}$ is divided in the ratio 1:3 at $P_{3}, P_{3} A_{5}$ is divided in the ratio $1: 4$ at P_{4} and the so on until all n points are exhausted. find the coordinates of the final point so obtained.

- Watch Video Solution

Illustration 128

1. If vertex A of triangle $A B C$ is $(3,5)$ and centroid is $(-1,2)$, then find the midpoint of side $B C$.

Illustration 129

1. Let $O(0,0), P(3,4)$, and $Q(6,0)$ be the vertices of triangle $O P Q$. The point R inside the triangle $O P Q$ is such that the triangles $O P R, P Q R, O Q R$ are of equal area. The coordinates of R are $\left(\frac{4}{3}, 3\right)$ (b) $\left(3, \frac{2}{3}\right)\left(3, \frac{4}{3}\right)$ (d) $\left(\frac{4}{3}, \frac{2}{3}\right)$

- Watch Video Solution

Illustration 130

1. If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are the vertices of traingle ABC and $\quad x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2}=x_{3}^{2}+y_{3}^{2}$, then show that $x_{1} \sin 2 A+x_{2} \sin 2 B+x_{3} \sin 2 C=y_{1} \sin 2 A+y_{2} \sin 2 B+y_{3} \sin 2 C=0$

Illustration 131

1.

vertices
$A\left(a \cos \theta_{1}, a \sin \theta_{1}\right), B\left(a \cos \theta_{2}, a \sin \theta_{2}\right)$, and $C\left(a \cos \theta_{3}, a \sin \theta_{3}\right) \quad$ are equilateral triangle, then prove that $\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=0$ and $\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=0$

Illustration 132

1. Find the orthocentre of the triangle whose vertices are $(0,0),(3,0)$, and $(0,4)$.

- Watch Video Solution

1. If a vertex, the circumcenter, and the centroid of a triangle are (0,0), $(3,4)$, and $(6,8)$, respectively, then the triangle must be (a) a rightangled triangle (b) an equilateral triangle (c) an isosceles triangle (d) a right-angled isosceles triangle

- Watch Video Solution

Illustration 134

1. If the circumcenter of an acute-angled triangle lies at the origin and the centroid is the middle point of the line joining the points $\left(a^{2}+1, a^{2}+1\right)$ and $(2 a,-2 a)$, then find the orthocentre.

- Watch Video Solution

Illustration 135

1. Orthocenter and circumcenter of a triangle $A B C$ are $(a, b) \operatorname{and}(c, d)$, respectively. If the coordinates of the vertex A are $\left(x_{1}, y_{1}\right)$, then find the coordinates of the middle point of $B C$.

- Watch Video Solution

Illustration 136

1. If a vertex of a triangle is $(1,1)$, and the middle points of two sides passing through it are $-2,3$) and (5,2), then find the centroid and the incenter of the triangle.

- Watch Video Solution

Illustration 137

1. The vertices of a triangle are $A(-1,-7), B(5,1) \operatorname{and} C(1,4)$. If the internal angle bisector of $\angle B$ meets the side $A C$ in D, then find the length $A D$.

- Watch Video Solution

Illustration 138

1. Determine x so that the line passing through (3,4)and $(x, 5)$ makes an angle of 135° angle with positive direction of x-axis

- Watch Video Solution

Illustration 139

1. Which line is having the greatest inclination with the positive direction of the x-axis?
(i) Line joining the points (1,3) and (4,7)
(ii) Line $3 x-4 y+3=0$

- Watch Video Solution

Illustration 140

1. If the point $(2,3),(1,1), \operatorname{and}(x, 3 x)$ are collinear, then find the value of x, using slope method.

- Watch Video Solution

Illustration 141

1. If the points $(a, 0),(b, 0),(0, c) \operatorname{and}(0, d)$ are concyclic $(a, b, c, d>0)$, then prove that $a b=c$.

Illustration 142

1. If $A(-2,1), B(2,3) \operatorname{and} C(-2,-4)$ are three points, find the angle between BAandBC.

- Watch Video Solution

Illustration 143

1. Angle of a line with the positive direction of the x-axis is θ. The line is rotated about some point on it in anticlockwise direction by angle 45° and its slope becomes 3 . Find the angle θ.

- Watch Video Solution

Illustration 144

1. Let $A(6,4) \operatorname{and} B(2,12)$ be two given point. Find the slope of a line perpendicular to $A B$.

- Watch Video Solution

Illustration 145

1. If line $3 x-a y-1=0$ is parallel to the line $(a+2) x-y+3=0$ then find the values of a.

- Watch Video Solution

Illustration 146

1. If $A(2,-1)$ and $B(6,5)$ are two points, then find the ratio in which the food of the perpendicular from $(4,1)$ to $A B$ divides it.

Illustration 147

1. If $\left(b_{2}-b_{1}\right)\left(b_{3}-b_{1}\right)+\left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right)=0$, then prove that the circumcenter of the triangle having vertices $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ and $\left(a_{3}, b_{3}\right)$ is $\left(\frac{a_{2}+a_{3}}{2}, \frac{b_{2}+b_{3}}{2}\right)$.

- Watch Video Solution

Illustration 148

1. Find the orthocentre of $A B C$ with vertices $A(1,0), B(-2,1)$, and $C(5,2)$

- Watch Video Solution

1. Two medians drawn from the acute angles of a right angled triangle intersect at an angle $\frac{\pi}{6}$. If the length of the hypotenuse of the triangle is 3 units, then the area of the triangle (in sq. units) is $\sqrt{3}$ (b) 3 (c) $\sqrt{2}$
(d) 9

- Watch Video Solution

Illustration 150

1. Plot the poitns whose coordinate are given below.
(i) $(2,3 \pi)$
(ii) $(2,-2 \pi / 3)$
(iii) $(-3,3 \pi / 4)$.

- Watch Video Solution

1. Convert the following points from polar coordinates to the corresponding Cartesian coordinates.
(i) $(2, \pi / 3)$
(ii) $(0 . \pi / 2)$
(iii) $(-\sqrt{2}, \pi / 4)$

- Watch Video Solution

Illustration 152

1. Convert the following Cartesian coordinates to the corresponding polar coordinates using positive r and negative r. (i)

$$
\begin{equation*}
(i i)(i i i)((i v)(v)-1,1(v i))(v i i) \tag{viii}
\end{equation*}
$$

$(i x)(x)((x i)(\xi i) 2,-3(x i i i))(x i v)(x v)$

- Watch Video Solution

1. Convert Cartesian equation $y=10$ into a polar equation.

- Watch Video Solution

Illustration 154

1. Express the polar equation $r=2 \cos \theta$ in rectangular coordinates.

- Watch Video Solution

Illustration 155

1. Convert $x^{2}-y^{2}=4$ into a polar equation.

- Watch Video Solution

1. Convert $r \sin \theta=r \cos \theta+4$ into its equivalent Cartesian equation.

- Watch Video Solution

Illustration 157

1. Convert $r=\operatorname{cosec} e e^{r \cos \theta}$ into its equivalent Cartesian equation.

- Watch Video Solution

Illustration 158

1. Find the maximum distance of any point on the curve $x^{2}+2 y^{2}+2 x y=1$ from the origin.

- Watch Video Solution

1. The sum of the squares of the distances of a moving point from two fixed points $(a, 0)$ and $(-a, 0)$ is equal to a constant quantity $2 c$. Find the equation to its locus.

- Watch Video Solution

Illustration 160

1. Find the locus of a point, so that the join of $(-5,1)$ and $(3,2)$ subtends a right angle at the moving point.

- Watch Video Solution

Illustration 161

1. Find the locus of a point such that the sum of its distances from the points $(0,2)$ and $(0,-2)$ is 6 .

- Watch Video Solution

Illustration 162

1. $A B$ is a variable line sliding between the coordinate axes in such a way that A lies on the x -axis and B lies on the y -axis. If P is a variable point on $A B$ such that $P A=b, P b=a$, and $A B=a+b$, find the equation of the locus of P.

- Watch Video Solution

Illustration 163

1. Two points PandQ are given. R is a variable point on one side of the line $P Q$ such that $\angle R P Q-\angle R Q P$ is a positive constant 2α. Find the locus of the point R.

- Watch Video Solution

Illustration 164

1. If the coordinates of a variable point P are $(a \cos \theta, b \sin \theta)$, where θ is a variable quantity, then find the locus of P.

- Watch Video Solution

Illustration 165

1. Find the locus of the point $\left(t^{2}-t+1, t^{2}+t+1\right), t \in R$.

Illustration 166

1. Line segment joining $(5,0)$ and $(10 \cos \theta, 10 \sin \theta)$ is divided by a point P in ratio $2: 3$ If θ varies then locus of P is a; A) Pair of straight lines C) Straight line B) Circle D) Parabola

- Watch Video Solution

Illustration 167

1. if $A(\cos \alpha, \sin \alpha), B(\sin \alpha,-\cos \alpha), C(1,2)$ are the vertices of Triangle ABC, Find the locsus of its centroid.

- Watch Video Solution

1. If a, b, c are the $p t h, q t h, r t h$ terms, respectively, of an $H P$, show that the points $(b c, p),(c a, q)$, and $(a b, r)$ are collinear.

- Watch Video Solution

2. Prove that the circumcenter, orthocentre, incenter, and centroid of the triangle formed by the points $A(-1,11), B(-9,-8)$, and $C(15,-2)$ are collinear, without actually finding any of them.

- Watch Video Solution

3. A rod of length k slides in a vertical plane, its ends touching the coordinate axes. Prove that the locus of the foot of the perpendicular from the origin to the rod is $\left(x^{2}+y^{2}\right)^{3}=k^{2} x^{2} y^{2}$.

- Watch Video Solution

4. $O X$ and $O Y$ are two coordinate axes. On $O Y$ a fixed point $P(0, c)$ is taken and on $O X$ any point Q is taken. On $P Q$, an equilateral triangle is described, its vertex R being on the side of $P Q$ away from O. Then prove that the locus of R is $y=\sqrt{3} x-c$

- Watch Video Solution

5. If (x, y) and (x, y) are the coordinates of the same point referred to two sets of rectangular axes with the same origin and it $u x+v y$, where u and v are independent of $x a n d y$, becomes $V X+U Y$, show that $u^{2}+v^{2}=U^{2}+V^{2}$.

- Watch Video Solution

6. What does the equation $2 x^{2}+4 x y-5 y^{2}+20 x-22 y-14=0$ become when referred to the rectangular axes through the point
$(-2,-3)$, the new axes being inclined at an angle at 45° with the old axes?

- Watch Video Solution

7. Prove that the image of point $P(\cos \theta, \sin \theta)$ in the line having slope $\tan (\alpha / 2)$ and passing through origin is $Q(\cos (\alpha-\theta), \sin (\alpha-\theta))$.

- Watch Video Solution

8. A line cuts the x -axis at $A(7,0)$ and the y -axis at $B(0,-5) \mathrm{A}$ variable line $P Q$ is drawn perpendicular to $A B$ cutting the x-axis in P and the y axis in Q. If $A Q$ and $B P$ intersect at R, find the locus of R.

- Watch Video Solution

9. Two straight lines rotate about two fixed points $(-a, 0)$ and $(a, 0)$ in antic clockwise direction. If they start from their position of coincidence

- Watch Video Solution

Concept Applications 11

1. What is the minimum area of a triangle with integral vertices?

- Watch Video Solution

2. What is length of the projection of line segment joining points $(2,3)$ and $(7,5)$ on x-axis.

- Watch Video Solution

3. Point $P(2,3)$ goes through following transformations in successtion:
(i) reflection in line $y=x$
(ii) translation of 4 units to the right
(iii) translation of 5 units up
(iv) reflection in y-axis

Find the coordinates of final position of the point .

- Watch Video Solution

4. Find the equation to which the equation $x^{2}+7 x y-2 y^{2}+17 x-26 y-60=0$ is transformed if the origin is shifted to the point $(2,-3)$, the axes remaining parallel to the original axies.

- Watch Video Solution

5. Without rotating the original coordinate axes, to which point should origin be transferred, so that the equation $x^{2}+y^{2}-4 x+6 y-7=0$ is changed to an equation which contains no term of first degree?
6. Given the equation $4 x^{2}+2 \sqrt{3} x y+2 y^{2}=1$. Through what angle should the axes be rotated so that the term $x y$ is removed from the transformed equation.

- Watch Video Solution

Concept Applications 12

1. Show that the distance between the points $P(a \cos \alpha, a \sin \alpha)$ and $Q(a \cos \beta, a \sin \beta)$ is $2 a \frac{\sin (a-b)}{2}$

- Watch Video Solution

2. Check how the points A, B and C are situated where $A(4,0), B(-1,-1), C(3,5)$.
3. If the points $(1,1):\left(0, \sec ^{2} \theta\right)$; and $(\operatorname{cosec} 2,0)$ are collinear, then find the value of θ

- Watch Video Solution

4. Area of the regular hexagon whose diagonal is the join of $(2,4)$ and $(6,7)$ is

- Watch Video Solution

5. Let $A B C D$ be a rectangle and P be any point in its plane. Show that $A P^{2}+P C^{2}=P B^{2}+P D^{2}$.

- Watch Video Solution

6. Find the length of altitude through A of the triangle $A B C$, where $A \equiv(-3,0) B \equiv(4,-1), C \equiv(5,2)$

- Watch Video Solution

7. Find the area of the pentagon whose vertices are $A(1,1), B(7,21), C(7,-3), D(12,2)$, and $E(0,-3)$

- Watch Video Solution

8. Four points $A(6,3), B(-3,5), C(4,-2)$ and $D(x, 2 x)$ are given in such a way that area of $\frac{D B C}{A B C}=\frac{1}{2}$, find x.

- Watch Video Solution

1. If point $P(3,2)$ divides the line segment AB internally in the ratio of 3:2 and point $Q(-2,3)$ divides AB externally in the ratio $4: 3$ then find the coordinates of points A and B.

- Watch Video Solution

2. If the point $(x,-1),(3, y),(-2,3)$, and $(-3,-2)$ taken in order are the vertices of a parallelogram, then find the values of xandy.

- Watch Video Solution

3. If the midpoints of the sides of a triangle are $(2,1),(-1,-3), \operatorname{and}(4,5)$, then find the coordinates of its vertices.

- Watch Video Solution

4. The line joining $A(b \cos \alpha, b \sin \alpha)$ and $B(a \cos \beta, a \sin \beta)$ is produced to the point $M(x, y)$ so that $A M$ and $B M$ are in the ratio $b: a$. Then prove that $x+y \tan \left(\frac{\alpha+\beta}{2}\right)=0$.

- Watch Video Solution

5. If the middle points of the sides of a triangle are $(-2,3),(4,-3), \operatorname{and}(4,5)$, then find the centroid of the triangle.

- Watch Video Solution

6. Find the incentre of the triangle with vertices $(1, \sqrt{3}),(0,0)$ and $(2,0)$

- Watch Video Solution

7. If $(1,4)$ is the centroid of a triangle and the coordinates of its any two vertices are $(4,-8)$ and $(-9,7)$, find the area of the triangle.

- Watch Video Solution

8. The vertices of a triangle are $A\left(x_{1}, x_{1} \tan \theta_{1}\right), B\left(x_{2}, x_{2} \tan \theta_{2}\right) \operatorname{and} C\left(x_{3}, x_{3} \tan \theta_{3}\right)$. if the circumcentre of Delta $A B C$ coincides with the origin and $H(x, y)$ is the orthocentre, show that $\frac{y}{x}=\frac{\sin \theta_{1}+s \int h \eta_{2}+\sin \theta_{3}}{\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}}$

- Watch Video Solution

9. If $\left(x_{i}, y_{i}\right), i=1,2,3$ are the vertices of an equilateral triangle such that
$\left(x_{1}+2\right)^{2}+\left(y_{1}-3\right)^{2}=\left(x_{2}+2\right)^{2}+\left(y_{2}-3\right)^{2}=\left(x_{3}+2\right)^{2}+\left(y_{3}-3\right)^{2}$
, then find the value of $\frac{x_{1}+x_{2}+x_{3}}{y_{1}+y_{2}+y_{3}}$
10. about to only mathematics

- Watch Video Solution

Concept Applications 14

1. The line joining the points $(x, 2 x) \operatorname{and}(3,5)$ makes an obtuse angle with the positive direction of the x-axis. Then find the values of x.

- Watch Video Solution

2. If the line passing through $(4,3) \operatorname{and}(2, k)$ is parallel to the line $y=2 x+3$, then find the value of k.

- Watch Video Solution

3. Triangle $A B C$ lies in the cartesian plane and has an area of 70 sq. units. The coordinates of B and C are $(12,19)$, and $(23,20)$ respectively. The line containing the median to the side $B C$ has slope -5 . Find the possible coordinates of point A.

- Watch Video Solution

4. For a given point $A(0,0), A B C D$ is a rhombus of side 10 units where slope of $A B$ is $\frac{4}{3}$ and slope of $A D$ is $\frac{3}{4}$. The sum of abscissa and ordinate of point C (where C lies in first quadrant) is

- Watch Video Solution

5. The line joining the points $A(2,1)$, and $B(3,2)$ is perpendicular to the line $\left(a^{2}\right) x+(a+2) y+2=0$. Find the values of a.
6. Find the angle between the line joining the points (1,-2), $(3,2)$ and the line $x+2 y-7=0$

- Watch Video Solution

7. The othocenter of $\triangle A B C$ with vertices $B(1,-2)$ and $C(-2,0)$ is $H(3,-1)$. Find the vertex A .

- Watch Video Solution

8. The medians AD and BE of the triangle with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are mutually perpendicular. Prove that $a^{2}=2 b^{2}$.

- Watch Video Solution

1. Convert the polar coordinates to its equivalent Cartesian coordinates
$(2, \pi)$.

- Watch Video Solution

2. Convert the following Cartesian coordinates to the cooresponding polar coordinates using positive r.
(i) $(1,-1)$
(ii) $(-3,-4)$

- Watch Video Solution

3. Convert $2 x^{2}+3 y^{2}=6$ into the polar equation.

- Watch Video Solution

4. Convert $r=4 \tan \theta \sec \theta$ into its equivalent Cartesian equation.
5. Find the minimum distance of any point on the line $3 x+4 y-10=0$ from the origin using polar coordinates.

- Watch Video Solution

Concept Applications 16

1. Find the locus of a point whose distance from $(a, 0)$ is equal to its distance from the y-axis.

- Watch Video Solution

2. The coordinates of the point A and B are $(a, 0)$ and $(-a, 0)$, respectively. If a point P moves so that $P A^{2}-P B^{2}=2 k^{2}$, when k is constant, then find the equation to the locus of the point P.
3. Let $A(2,-3)$ and $B(-2,1)$ be vertices of a triangle $A B C$. If the centroid of this triangle moves on line $2 x+3 y=1$, then the locus of the vertex C is the line :

- Watch Video Solution

4. Q is a variable point whose locus is $2 x+3 y+4=0$; corresponding to a particular position of Q, P is the point of section of $O Q, O$ being the origin, such that $O P: P Q=3: 1$. Find the locus of P.

- Watch Video Solution

5. Find the locus of the mid-point of the portion of the line $x \cos \alpha+y \sin \alpha=p$ which is intercepted between the axes.
6. Find the locus of the point of intersection of lines $x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=b(\alpha$ is a variable $)$.

- Watch Video Solution

7. A point moves such that the area of the triangle formed by it with the points $(1,5)$ and $(3,-7)$ squinits. Then, find the locus of the point.

- Watch Video Solution

8. A variable line passing through point $P(2,1)$ meets the axes at A and B. Find the locus of the circumcenter of triangle $O A B$ (where O is the origin).

- Watch Video Solution

9. A straight line is drawn through $P(3,4)$ to meet the axis of x and y at AandB, respectively. If the rectangle $O A C B$ is completed, then find the locus of C.

- Watch Video Solution

Exercises

1. $A B C$ is an isosceles triangle. If the coordinates of the base are $B(1,3)$ and $C(-2,7)$, the coordinates of vertex A
A. $(1,6)$
B. $(-1 / 2,5)$
C. $(-5 / 6,6)$
D. none of these

Answer: C

2. If two vertices of a triangle are $(1,3)$ and $(4,-1)$ and the area of triangle is 5 sq. units, then the angle at the third vertex lies in :
A. $\left(0, \frac{\tan ^{-1.5}}{4}\right]$
B. $\left(0, \frac{\tan ^{-1.5}}{4}\right)$
C. $\left(2 \tan ^{-1} \frac{5}{4}, 2\right)$
D. none of these

Answer: A

- Watch Video Solution

3. Which of the following sets of points form an equilateral triangle?
$(a)(1,0),(4,0),(7,-1)$
$(b)(0,0),\left(\frac{3}{2}, \frac{4}{3}\right),\left(\frac{4}{3}, \frac{3}{2}\right)$
(c) $\left(\frac{2}{3},\right),\left(0, \frac{2}{3}\right),(1,1)$ (d) None of these
A. $(1,0),(4,0),(7,-1)$
B. $(0,0),(3 / 2,4 / 3), 4 / 3,3 / 2)$
C. $(2 / 3,0),(0,2 / 3),(1,1)$
D. none of these

Answer: D

- Watch Video Solution

4. A particle p moves from the point $A(0,4)$ to the point $10,-4)$. The particle P can travel the upper-half plane $\{(x, y) \mid y \geq\}$ at the speed of $1 \mathrm{~m} / \mathrm{s}$ and the lower-half plane $\{(x, y) \mid y \leq 0\}$ at the speed of 2 m / s. The coordinates of a point on the x -axis, if the sum of the squares of the travel times of the upper- and lower-half planes is minimum, are $(1,0)(b)(2,0)(c)(4,0)(d)(5,0)$
A. $(1,0)$
B. $(2,0)$
C. $(4,0)$
D. $(5,0)$

Answer: B

- Watch Video Solution

5. If $\left|x_{1} y_{1} 1 x_{2} y_{2} 1 x_{3} y_{3} 1\right|=\left|a_{1} b_{1} 1 a_{2} b_{2} 1 a_{3} b_{3} 1\right|$ then the two triangles with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)$ are equal to area (b) similar congruent (d) none of these
A. equal in area
B. similar
C. congruent
D. none of these

Answer: A
6. $O P Q R$ is a square and M, N are the middle points of the sides $P Q a n d Q R$, respectively. Then the ratio of the area of the square to that of triangle $O M N$ is 4:1 (b) 2:1 (c) 8:3 (d) 7:3
A. $4: 1$
B. 2:1
C. 8:3
D. 7:3

Answer: C

- Watch Video Solution

7. A straight line passing through $P(3,1)$ meets the coordinate axes at Aand B. It is given that the distance of this straight line from the origin O is maximum. The area of triangle $O A B$ is equal to
A. $50 / 3$ sq.units
B. $25 / 3$ sq.units
C. $20 / 3$ sq.units
D. $100 / 3$ sq.units

Answer: A

- Watch Video Solution

8. Let $A \equiv(3,-4), B \equiv(1,2)$. Let $P \equiv(2 k-1,2 k+1)$ be a variable point such that $P A+P B$ is the minimum. Then k is $7 / 9$ (b) 0 (c) 7/8 (d) none of these
A. $7 / 9$
B. 0
C. $7 / 8$
D. none of these

- Watch Video Solution

9. The polar coordinates equivalent to $(-3, \sqrt{3})$ are
A. $\left(2 \sqrt{3}, \frac{\pi}{6}\right)$
B. $\left(-2 \sqrt{3}, \frac{5 \pi}{6}\right)$
C. $\left(2 \sqrt{3}, \frac{7 \pi}{6}\right)$
D. $\left(2 \sqrt{3}, \frac{5 \pi}{6}\right)$

Answer: D

- Watch Video Solution

10. If the point $x_{1}+t\left(x_{2}-x_{1}\right), y_{1}+t\left(y_{2}-y_{1}\right)$ divides the join of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ internally in ratio of $t: 1$ then vlaue of t is
A. $t<0$
B. $0<t<1$
C. $t>1$
D. $t=1$

Answer: B

(D) Watch Video Solution

11. P and Q are points on the line joining $A(-2,5)$ and $B(3,1)$ such that $A P=P Q=Q B$. Then, the distance of the midpoint of $P Q$ from the origin is 3 (b) $\frac{\sqrt{37}}{2}$ (b) 4 (d) 3.5
A. 3
B. $\sqrt{37 / 2}$
C. 4
D. 3.5

D Watch Video Solution

12. In triangle $A B C$, angle B is right angled, $A C=2$ and $A(2,2), B(1,3)$ then the length of the median $A D$ is
A. $\left(\frac{1}{2}\right)$
B. $\sqrt{\frac{5}{2}}$
C. $\frac{5}{\sqrt{2}}$
D. $\frac{1}{\sqrt{2}}$

Answer: B

13. One vertex of an equilateral triangle is $(2,2)$ and its centroid is $\left(-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$ then length of its side is (a) $4 \sqrt{2}$ (b) $4 \sqrt{3}$ (c) $3 \sqrt{2}$ (d) $5 \sqrt{2}$
A. $4 \sqrt{2}$
B. $4 \sqrt{3}$
C. $3 \sqrt{2}$
D. $5 \sqrt{2}$

Answer: A

- Watch Video Solution

14. ABCD is a rectangle with $A(-1,2), B(3,7)$ and $A B: B C=4: 3$. If P is the centre of the rectangle, then the distance of P from each corner is equal to
A. $\frac{\sqrt{14}}{2}$
B. $3 \frac{\sqrt{41}}{4}$
C. $2 \frac{\sqrt{41}}{3}$
D. $5 \frac{\sqrt{41}}{8}$

Answer: D

- Watch Video Solution

15. If $(2,-3),(6,-5)$ and $(-2,1)$ are three consecutive verticies of a rohmbus, then its area is (a) 24 (b) 36 (c) 18 (d) 48
A. 24
B. 36
C. 18
D. 48
16. If poitns $A(3,5)$ and B are equidistant from $H(\sqrt{2}, \sqrt{5})$ and B has rational coordinates,then $A B=$
A. $\sqrt{7}$
B. $\sqrt{(3-\sqrt{2})^{2}+(5-\sqrt{5})^{2}}$
C. $s \sqrt{34}$
D. none of these

Answer: D

- Watch Video Solution

17. Le n be the number of points having rational coordinates equidistant from the point $(0, \sqrt{3})$, the
A. $n>2$
B. $n \leq 1$
C. $n \leq 2$
D. $n=1$

Answer: C

- Watch Video Solution

18. In a $\triangle A B C$ the sides $B C=5, C A=4$ and $A B=3$. If $A(0,0)$ and the internal bisector of angle A meets $B C$ in $D\left(\frac{12}{7}, \frac{12}{7}\right)$ then incenter of $\triangle A B C$ is
A. $(2,2)$
B. $(3,2)$
C. $(2,3)$
D. $(1,1)$

Answer: D

19. If $A(0,0), B(1,0)$ and $C\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ then the centre of the circle for which the lines $A B, B C, C A$ are tangents is
A. $\left(\frac{1}{2}, \frac{1}{4}\right)$
B. $\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$
C. $\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}\right)$
D. $\left(\frac{1}{2},-\frac{1}{\sqrt{3}}\right)$

Answer: C

- Watch Video Solution

20. Statement 1: If in a triangle, orthocentre, circumcentre and centroid are rational points, then its vertices must also be rational points.

Statement : 2 If the vertices of a triangle are rational points, then the centroid, circumcentre and orthocentre are also rational points.
A. Statement 1 is true, Statement 2 is true and Statement 2 is correct explanation for Statement 1.
B. Statement 1 is true, Statement 2 is true and Statement 2 is not the correct exlpanation for Statement 1.
C. Statement 1 is true, Statement 2 is false.
D. Statement 1 is false, Statement 2 is true.

Answer: D

D Watch Video Solution

21. Consider three points $P=(-\sin (\beta-\alpha),-\cos \beta)$, $Q=(\cos (\beta-\alpha), \sin \beta), \quad$ and $\quad R=((\cos (\beta-\alpha+\theta), \sin (\beta-\theta))$, where $0<\alpha, \beta, \theta<\frac{\pi}{4}$ Then
A. Plies on the line segment RQ
B. Q lies on the segment PR
C. R lies on the line segment $P R$
D. P,Q,R are non-collinear

Answer: D

- Watch Video Solution

22. If two vertices of a triangle are $(-2,3)$ and $(5,-1)$ the orthocentre lies at the origin, and the centroid on the line $x+y=7$, then the third vertex lies at
A. $(7,4)$
B. $(8,14)$
C. $(12,21)$
D. none of these

Answer: D
23. The vertices of a triangle are $\left.\left(p q, \frac{1}{p q}\right),(p q)\right),\left(q r, \frac{1}{q r}\right)$, and $\left(r q, \frac{1}{r p}\right)$, where p, q and r are the roots of the equation $y^{3}-3 y^{2}+6 y+1=0$. The coordinates of its centroid are $(1,2)$
$(2,-1)(c)(1,-1)(d)(2,3)$
A. $(1,2)$
B. $(2,-1)$
C. $(1,-1)$
D. $(2,3)$

Answer: B

- Watch Video Solution

24. If the vertices of a triangle are $(\sqrt{5,0}),(\sqrt{3}, \sqrt{2})$, and $(2,1)$, then the orthocentre of the triangle is
(a) $(\sqrt{5}, 0)$
(b)
$(0,0)$
$(\sqrt{5}+\sqrt{3}+2, \sqrt{2}+1)$ (d) none of these
A. $(\sqrt{5}, 0)$
B. $(0,0)$
C. $(\sqrt{5}+\sqrt{3}+2, \sqrt{2}+1)$
D. none of these

Answer: C

- Watch Video Solution

25. Two vertices of a triangle are $(4,-3) \&(-2,5)$. If the orthocentre of the triangle is at $(1,2)$, find coordinates of the third vertex.
A. $(-33,-26)$
B. $(33,26)$
C. $(26,33)$
D. none of these

- Watch Video Solution

26. In $\triangle A B C$ if the orthocentre is $(1,2)$ and the circumcenter is $(0,0)$ then centroid of $\triangle A B C$ is.
A. $(1 / 2,2 / 3)$
B. $(1 / 3,2 / 3)$
C. $(2 / 3,1)$
D. none of these

Answer: B

- Watch Video Solution

27. A triangle $A B C$ with vertices $A(-1,0), B\left(-2, \frac{3}{4}\right)$, and $C\left(-3,-\frac{7}{6}\right)$ has its orthocentre at H. Then, the orthocentre of triangle $B C H$ will be $(-3,-2)$ (b) 1,3$)(-1,2)$ (d) none of these
A. $(-3,-2)$
B. $(1,3)$
C. $(-1,2)$
D. none of these

Answer: D

- Watch Video Solution

28. If a triangle $A B C, A \equiv(1,10)$, circumcenter $\equiv\left(-\frac{1}{3}, \frac{2}{3}\right)$, and orthocentre $\equiv\left(\frac{11}{3}, \frac{4}{3}\right)$, then the coordinates of the midpoint of the side opposite to A are

$$
\text { A. }(1,-11 / 3)
$$

B. $(1 / 5)$
C. $(1,-3)$
D. $(1,6)$

Answer: A

- Watch Video Solution

29. In the $\triangle A B C$, the coordinates of B are $(0,0), A B=2, \angle A B C=\frac{\pi}{3}$ and the middle point of BC has the coordinates $(2,0)$. The centroid of the triangle is
A. $(1 / 2, \sqrt{3} / 2)$
B. $(5 / 3,1 / \sqrt{3})$
C. $(4+\sqrt{3} / 3,1 / 3)$
D. none of these
30. If the origin is shifted to the point $\left(\frac{a b}{a-b}, 0\right)$ without rotation, then the equation $(a-b)\left(x^{2}+y^{2}\right)-2 a b x=0$ becomes
A. $(a-b)\left(x^{2}+y^{2}\right)-(a+b) x y+a b x=a^{2}$
B. $(a+b)\left(x^{2}+y^{2}\right)=2 a b$
C. $\left(x^{2}+y^{2}\right)=\left(a^{2}+b^{2}\right)$
D. $(a-b)^{2}\left(x^{2}+y^{2}\right)=a^{2} b^{2}$

Answer: D

- Watch Video Solution

31. A light ray emerging from the point source placed at $P(2,3)$ is reflected at a point Q on the y -axis. It then passes through the point
$R(5,10)$. The coordinates of Q are (a) $(0,3)$ (b) (0,2) (c) (0,5) (d) none of these
A. $(0,3)$
B. $(0,2)$
C. $(0,5)$
D. none of these

Answer: C

- Watch Video Solution

32. Point $P(p, 0), Q(q, 0), R(0, p), S(0, q)$ from.
A. parallelogram
B. rhombus
C. cyclic quadrilateral
D. none of these

- Watch Video Solution

33. A rectangular billiard table has vertices at $P(0,0), Q(0,7), R(10,7)$, and $S(10,0)$. A small billiard ball starts at $M(3,4)$, moves in a straight line to the top of the table, bounces to the right side of the table, and then comes to rest at $N(7,1)$. The y coordinate of the point where it hits the right side is 3.7 (b) 3.8 (c) 3.9 (d)

4
A. 3.7
B. 3.8
C. 3.9
D. 4
34. ABCD is a square Points $E(4,3)$ and $F(2,5)$ lie on AB and CD , respectively,such that EF divides the square in two equal parts. If the coordinates of A are (7,3),then the coordinates of other vertices can be
A. $(7,2)$
B. $(7,5)$
C. $(-1,3)$
D. $(-1,5)$

Answer: D

- Watch Video Solution

35. If one side of a rhombus has endpoints $(4,5)$ and $(1,1)$, then the maximum area of the rhombus is 50 sq. units (b) 25 sq. units 30 sq. units
(d) 20 sq. units
A. 50 sq.units
B. 25 sq.units
C. 30 sq.units
D. 20 sq.units

Answer: B

- Watch Video Solution

36. following transformations successively: $f_{1}(x, y) \overrightarrow{y, x} f_{2}(x, y) \overrightarrow{x+3 y, y}$ $\left.f_{3}(x, y) \overrightarrow{(x-y) / 2},(x+y) / 2\right)$ The final figure will be square (b) a rhombus a rectangle (d) a parallelogram
A. a square
B. a rhombus
C. a rectangle
D. a parallelogram

Answer: D

- Watch Video Solution

37. If a straight line through the origin bisects the line passing through the given points $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$, then the lines
(a) are perpendicular (b) are parallel (c) have an angle between them of
$\frac{\pi}{4}$ (d) none of these
A. are perpendicular
B. are parallel
C. have an angle between them of $\pi / 4$
D. none of these

Answer: A

38. Let $A_{r}, r=1,2,3$, be the points on the number line such that $O A_{1}, O A_{2}, O A_{3}$. are in $G P$, where O is the origin, and the common ratio of the $G P$ be a positive proper fraction. Let M, be the middle point of the line segment $A_{r} A_{r+1}$. Then the value of $\sum_{r=1}^{\infty} O M_{r}$ is equal to
(a) $\frac{O A_{1}\left(O S A_{1}-O A_{2}\right)}{2\left(O A_{1}+O A_{2}\right)}$
(b) $\frac{O A_{1}\left(O A_{2}+O A_{1}\right)}{2\left(O A_{1}-O A_{2}\right)}$
(c) $\frac{O A_{1}}{2\left(O A_{1}-O A_{2}\right)}$
∞

- Watch Video Solution

39. The vertices of a parallelogram $A B C D$ are $A(3,1), B(13,6), C(13,21)$, and $D(3,16)$. If a line passing through the origin divides the parallelogram into two congruent parts, then the slope of the line is (a) $\frac{11}{12}$ (b) $\frac{11}{8}$ (c) $\frac{25}{8}$ (d) $\frac{13}{8}$
A. $11 / 12$
B. $11 / 8$
C. $25 / 8$
D. $13 / 8$

Answer: B

- Watch Video Solution

40. Point A and B are in the first quadrant,point O is the origin. If the slope of $O A$ is 1, slope of $O B$ is 7 and $O A=O B$, Then slope of $A B$ is: $a .-1 / 5 b$. $-1 / 4$ c. $-1 / 3$ d. $-1 / 2$
A. $-1 / 5$
B. $-1 / 4$
C. $-1 / 3$
D. $-1 / 2$

Answer: D
41. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be in A.P and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be in G.P.. Then the points $(a, x),(b, y)$ and (c, z) will be collinear if
A. $x^{2}=y$
B. $x=y=z$
C. $y^{2}=z$
D. $x=z^{2}$

Answer: B

- Watch Video Solution

42. If $\sum_{i-1}^{4}\left(x 1^{2}+y 1^{2}\right) \leq 2 x_{1} x_{3}+2 x_{2} x_{4}+2 y_{2} y_{3}+2 y_{1} y_{4}$, the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)$ are the vertices of a rectangle collinear the vertices of a trapezium none of these
A. the vertices of a rectangle
B. collinear
C. the vertices of a trapezium
D. none of these

Answer: A

- Watch Video Solution

43. The vertices A and D of square $A B C D$ lie on the positive sides of $x-$ and y-axis , respectively. If the vertex C is the point $(12,17)$, then the coordinates of vertex B are (a) $(14,16)(b)(15,3)(c) 17,5)$ (d) $(17,12)$
A. $(14,16)$
B. $(15,3)$
C. $(17,5)$
D. $(17,12)$

- Watch Video Solution

44. Through the point $P(\alpha, \beta)$, where $\alpha \beta>0$, the straight line $\frac{x}{a}+\frac{y}{b}=1$ is drawn so as to form a triangle of area S with the axes. If $a b>0$, then the least value of S is (a) $\alpha \beta$ (b) $2 \alpha \beta$ (c) $3 \alpha \beta$ (d) none
A. $\alpha \beta$
B. $2 \alpha \beta$
C. $3 \alpha \beta$
D. none

Answer: B

- Watch Video Solution

45. The locus of the moving point whose coordinates are given by $\left(e^{t}+e^{-t}, e^{t}-e^{-t}\right)$ where t is a parameter, is (a) $x y=1$ (b) $x+y=2$
(c) $x^{2}-y^{2}=4$ (d) $x^{2}-y^{2}=2$
A. $x y=1$
B. $x+y=2$
C. $x^{2}-y^{2}=4$
D. $x^{2}-y^{2}=2$

Answer: C

- Watch Video Solution

46. The locus of a point represent by
$x=\frac{a}{2}\left(\frac{t+1}{t}\right), y=\frac{a}{2}\left(\frac{t-1}{t}\right)$, where $t=\in R-\{0\}$, is
A. $x^{2}+y^{2}=a^{2}$
B. $x^{2}-y^{2}=a^{2}$
C. $x+y=a$
D. $x-y=a$

Answer: A

- Watch Video Solution

47. Vertices of a variable triangle are $(3,4) ;(5 \cos \theta, 5 \sin \theta)$ and $(5 \sin \theta,-5 \cos \theta)$ where θ is a parameter then the locus of its orthocentre \quad is \quad a. $\quad(x+y-1)^{2}+(x-y-7)^{2}=100 \quad$ b.
$(x+y-7)^{2}+(x-y-1)^{2}=100$
c.
$(x+y-7)^{2}+(x+y-1)^{2}=100$
d.
$(x+y-7)^{2}+(x-y+1)^{2}=100$
A. 1
B. $1 / 2$
C. 2
D. $3 / 2$

- Watch Video Solution

48. Vertices of a variable triangle are $(3,4) ;(5 \cos \theta, 5 \sin \theta)$ and $(5 \sin \theta,-5 \cos \theta)$ where θ is a parameter then the locus of its orthocentre \quad is \quad a. $\quad(x+y-1)^{2}+(x-y-7)^{2}=100$ b. $(x+y-7)^{2}+(x-y-1)^{2}=100$ c.
$(x+y-7)^{2}+(x+y-1)^{2}=100$
$(x+y-7)^{2}+(x-y+1)^{2}=100$
A. $(x+y-1)^{2}+(x-y-7)^{2}=100$
B. $(x+y-7)^{2}+(x-y-1)^{2}=100$
C. $(x+y-7)^{2}+(x+y-1)^{2}=100$
D. $(x+y-7)^{2}+(x-y+1)^{2}=100$
49. From a point, P perpendicular $P M$ and $P N$ are drawn to x and y axes, respectively. If $M N$ passes through fixed point (a, b), then locus of P is
A. $x y=a x+b y$
B. $x y=a b$
C. $x y=b x+a y$
D. $x+y=x y$

Answer: C

D Watch Video Solution

50. The locus of point of intersection of the lines
$y+m x=\sqrt{a^{2} m^{2}+b^{2}}$ and $m y-x=\sqrt{a^{2}+b^{2} m^{2}}$ is
A. $x^{2}+y^{2}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
B. $x^{2}+y^{2}=a^{2}+b^{2}$
C. $x^{2}+y^{2}=a^{2}-b^{2}$
D. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=a^{2}-b^{2}$

Answer: B

D Watch Video Solution

51. If the roots of the equation
$\left(x_{1}^{2}-a^{2}\right) m^{2}-2 x_{1} y_{1} m+y_{1}^{2}+b^{2}=0(a>b)$ are the slopes of two perpendicular lies intersecting at $P\left(x_{1}, y_{1}\right)$, then the locus of P is
A. $x^{2}+y^{2}=a^{2}+b^{2}$
B. $x^{2}+y^{2}=a^{2}-b^{2}$
C. $x^{2}-y^{2}=a^{2}+b^{2}$
D. $x^{2}-y^{2}=a^{2}-b^{2}$

Answer: B

52. Through point $P(-1,4)$, two perpendicular lines are drawn which intersect x -axis at Q and R . find the locus of incentre of $\triangle P Q R$. a.
$x^{2}+y^{2}+2 x-8 y-17=0$
b. $x^{2}-y^{2}+2 x-8 y+17=0$
c.
$x^{2}+y^{2}-2 x-8 y-17=0$ d. $x^{2}-y^{2}+8 x-2 y-17=0$
A. $x^{2}+y^{2}+2 x-8 y-17=0$
B. $x^{2}-y^{2}+2 x-8 y+17=0$
C. $x^{2}+y^{2}-2 x-8 y-17=0$
D. $x^{2}-y^{2}+8 x-2 y-17=0$

Answer: B

- Watch Video Solution

53. The number of integral points (x, y) (i.e, x and y both are integers)
which lie in the first quadrant but not on the coordinate axes and also on the straight line $3 x+5 y=2007$ is equal to
A. 133
B. 135
C. 138
D. 140

Answer: A

D Watch Video Solution

54. The foot of the perpendicular on the line $3 x+y=\lambda$ drawn from the origin is C. If the line cuts the x and the y-axis at $A a n d B$, respectively, then $B C: C A$ is
A. $1: 3$
B. $3: 1$
C. $1: 9$
D. $9: 1$

- Watch Video Solution

55. The image of $P(a, b)$ on the line $y=-x$ is Q and the image of Q on the line $y=x$ is ' R ' find the mid-point of ' P ' and ' R '
A. $(a+b, b+a)$
B. $((a+b) / 2,(b+2) / 2)$
C. $(a-b, b-a)$
D. $(0,0)$

Answer: D

- Watch Video Solution

56. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+\left(b_{2}+b_{2}\right) y+c=0$, then the value
of C is
A. $a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}$
B. $\sqrt{a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}}$
C. $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{2}^{2}-b_{1}^{2}\right)$
D. $\frac{1}{2}\left(a_{1}^{2}+b_{2}^{2}+a_{1}^{2}+b_{2}^{2}\right)$

Answer: D

D Watch Video Solution

57. Consider three lines as follows. $L_{1}: 5 x-y+4=0$ $L_{2}: 3 x-y+5=0 L_{3}: x+y+8=0$ If these lines enclose a triangle $A B C$ and the sum of the squares of the tangent to the interior angles can be expressed in the form $\frac{p}{q}$, where pandq are relatively prime numbers, then the value of $p+q$ is
A. 500
B. 450
C. 230
D. 465

Answer: D

- Watch Video Solution

58. Consider a point $A(m, n)$, where m and n are positve intergers. B is the reflection of A in the line $y=x, \mathrm{C}$ is the reflaction of B in the y axis, D is the reflection of C in the x axis and E is the reflection of D is the y axis. The area of the pentagon ABCDE is $\mathrm{a} .2 m(m+n)$ b. $m(m+3 n)$ c. $m(2 m+3 n)$ d. $2 m(m+3 n)$
A. $2 m(m+n)$
B. $m(m+3 n)$
C. $m(2 m+3 n)$
D. $2 m(m+3 n)$

- Watch Video Solution

59. In the given figure, $O A B C$ is a rectangle. Slope of $O B$ is

a. $1 / 4$ b. $1 / 3$
c. $1 / 2 \mathrm{~d}$. Cannot be determined
A. $1 / 4$
B. $1 / 3$
C. $1 / 2$
D. Cannot be determined

Answer: C

- Watch Video Solution

Multiple Correct

1. If $(-6,-4),(3,5),(-2,1)$ are the vertices of a parallelogram, then the remaining vertex can be $(0,-1)$ (b) 7,9$)(-1,0)$ (d) $(-11,-8)$
A. $(0,-1)$
B. $(7,10)$
C. $(-1,0)$
D. $(-11,-8)$
2. Let $0 \equiv(0,0), A \equiv(0,4), B \equiv(6,0)$. Let P be a moving point such that the area of triangle $P O A$ is two times the area of triangle $P O B$.

The locus of P will be a straight line whose equation can be $x+3 y=0$
(b) $x+2 y=02 x-3 y=0$ (d) $3 y-x=0$
A. $x+3 y=0$
B. $x+2 y=0$
C. $2 x-3 y=0$
D. $3 y-x=0$

Answer: A::D

- Watch Video Solution

3. If $)-4,0$) and $(1,-1)$ are two vertices of a triangle of area 4squinits, then its third vertex lies on
A. $y=x$
B. $5 x+y+12=0$
C. $x+5 y-4=0$
D. $x+5 y+12=0$

Answer: C::D

(D) Watch Video Solution

4. The area of triangle $A B C$ is $20 \mathrm{~cm}^{2}$. The coordinates of vertex A are $-5,0)$ and those of B are $(3,0)$. The vertex C lies on the line $x-y=2$. The coordinates of C are
(a) $(5,3)$
(b) $(-3$
$3,-5)(-5$
, - 7
(d) $(7,5)$
A. $(5,3)$
B. $(-3,-5)$
C. $(-5,-7)$
D. $(7,5)$

Answer: B

- Watch Video Solution

5. If $\left(a \cos \theta_{1}, a \sin \theta_{1}\right),\left(a \cos \theta_{2}, a \sin \theta_{2}\right)$, and $\left(a \cos \theta_{3} a \sin \theta_{3}\right)$ represent the vertces of an equilateral triangle inscribed in a circle. Then.
A. $\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=0$
B. $\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=0$
C. $\tan \theta_{1}+\tan \theta_{2}+\tan \theta_{3}=0$
D. $\cot \theta_{1}+\cot \theta_{2}+\cot \theta_{3}=0$

Answer: A: B

6. If the points $A(0,0), B(\cos \alpha, \sin \alpha)$, and $C(\cos \beta, \sin \beta)$ are the vertices of a right- angled triangle, then
A. $\sin \frac{\alpha-\beta}{2}=\frac{1}{\sqrt{2}}$
B. $\cos \frac{\alpha-\beta}{2}=\frac{1}{\sqrt{2}}$
C. $\cos \frac{\alpha-\beta}{2}=-\frac{1}{\sqrt{2}}$
D. $\sin \frac{\alpha-\beta}{2}=-\frac{1}{\sqrt{2}}$

Answer: A::C::D

- Watch Video Solution

7. The ends of a diagonal of a square are $(2,-3)$ and $(-1,1)$.

Another vertex of the square can be (a) $\left(-\frac{3}{2},-\frac{5}{2}\right)$ (b) $\left(\frac{5}{2}, \frac{1}{2}\right)$
$\left(\frac{1}{2}, \frac{5}{2}\right)$ (d) none of these
A. $(-3, / 2,-5 / 2)$
B. $(5 / 2,1 / 2)$
C. $(1 / 2,5 / 2)$
D. none of these

Answer: A: B

- Watch Video Solution

8. If all the vertices of a triangle have integral coordinates, then the triangle may be (a) right-angle (b) equilateral (c) isosceles (d) none of these
A. right-angled
B. equilateral
C. isosceles
D. none of these
9. In a $A B C, A \equiv(\alpha, \beta), B \equiv(1,2), C \equiv(2,3)$, point A lies on the line $y=2 x+3$, where α, β are integers, and the area of the triangle is S such that $[S]=2$ where [.] denotes the greatest integer function. Then the possible coordinates of A can be $(-7,-11)(-6,-9)$ $(2,7)(3,9)$
A. $(-7,-11)$
B. $(-6,-9)$
C. $(2,7)$
D. $(3,9)$

Answer: A::B::C::D

- Watch Video Solution

10. In an acute triangle $A B C$, if the coordinates of orthocentre H are $(4, b)$, of centroid G are $(b, 2 b-8)$ and of circumcenter S are $(-4,8)$,then b cannot be (a) 4 (b) 8 (c) 12 (d) -12
A. (a) 4
B. (b) 8
C. (c) 12
D. (d) -12

Answer: A::B::C::D

- Watch Video Solution

11. Consider the points $O(0,0), A(0,1)$, and $B(1,1)$ in the x - y plane. Suppose that points $C(x, 1)$ and $D(1, y)$ are chosen such that $0<x<1$. And such that O, C, and D are collinear. Let the sum of the area of triangles OAC and BCD be denoted by S . Then which of the following is/are correct?. (a) Minimum value of S is irrational lying in (1 /
$3,1 / 2)$ (b) Minimum value of S is irrational in $(2 / 3,1)$.(c) The value of x for the minimum value of S lies in $(2 / 3,1)$.(d) The value of x for the minimum values of S lies in $(1 / 3,1 / 2)$.
A. Minimum value of S is irrational lying in $(1 / 3,1 / 2)$.
B. Minimum value of S is irrational in $(2 / 3,1)$.
C. The value of x for the minimum value of S lies in $(2 / 3,1)$.
D. The value of x for the minimum values of S lies in $(1 / 3,1 / 2)$.

Answer: A::C

- Watch Video Solution

12. Two sides of a rhombus ABCD are parallel to the lines $y=x+2$ and $y=$ $7 x+3$ If the diagonals of the rhombus intersect at the point $(1,2)$ and the vertex A is on the y-axis, then vertex A can be a. $(0,3)$ b. $(0,5 / 2)$ c. $(0,0)$ d. $(0,6)$
A. $(0,3)$
B. $(0,5 / 2)$
C. $(0,0)$
D. $(0,6)$

Answer: B::C

- Watch Video Solution

13. A right angled triangle $A B C$ having a right angle at $C, C A=b$ and $C B=a$, move such that angular points A and B slide along x-axis and y-axis respectively. Find the locus of C
A. (a) $a x+b y+1=0$
B. (b) $a x+b y=0$
C. (c) $a x^{2} \pm 2 b t+y^{2}=0$
D. (d) $a x-b y=0$

- Watch Video Solution

Linked

1. For points $P \equiv\left(x_{1}, y_{1}\right)$ and $Q \equiv\left(x_{2}, y_{2}\right)$ of the coordinates plane, a new distance $\mathrm{d}(\mathrm{P}, \mathrm{Q})$ is defined by $d(P, Q)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$. Let $O \equiv(0,0)$ and $A \equiv(3,2)$. Consider the set of points P in the first quadrant which are equidistant (with respect to the new distance) from O and A .

The set of poitns P consists of
A. one straight line only
B. union of two line segments
C. union of two infinite rays
D. union of a line segment of finite length and an infinite ray

Answer: D

2. For points $P \equiv\left(x_{1}, y_{1}\right)$ and $Q \equiv\left(x_{2}, y_{2}\right)$ of the coordinates plane, a new distance $\mathrm{d}(\mathrm{P}, \mathrm{Q})$ is defined by $d(P, Q)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$. Let $O \equiv(0,0)$ and $A \equiv(3,2)$. Consider the set of points P in the first quadrant which are equidistant (with respect to the new distance) from O and A .

The area of the ragion bounded by the locus of P and the line $y=4$ in the first quadrant is
A. 2sq.units
B. 4 sq.units
C. 6 sq.units
D. noen of these

Answer: B

- Watch Video Solution

3. For points $P \equiv\left(x_{1}, y_{1}\right)$ and $Q \equiv\left(x_{2}, y_{2}\right)$ of the coordinates plane, a new distance d (P, Q) is defined by $d(P, Q)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$. Let $O \equiv(0,0)$ and $A \equiv(3,2)$. Consider the set of points P in the first quadrant which are equidistant (with respect to the new distance) from O and A .

The set of poitns P consists of
A. one -one and onto function
B. many one and onto function
C. one-one and into function
D. relation but not function

Answer: D

- Watch Video Solution

4. Consider the traingle having vertices $O(0,0), A(2,0)$, and $B(1, \sqrt{3})$.

Also $b \leq \min \left\{a_{1}, a_{2}, a_{3} \ldots a_{n}\right\}$ means $b \leq a_{1}$ when a_{1} is least, $b \leq a_{2}$
when a_{2} is least, and so on. Form this, we can say $b \leq a_{1}, b \leq a_{2}, \ldots . b \leq a_{n}$.

Let R be the region consisting of all those points P inside $\triangle O A B$ which satisfy $d(P, O A) \leq \min [d(P, O B), d(P, A B)]$, where d denotes the distance from the point to the corresponding line. then the area of the region R is
A. $\sqrt{3}$ sq,units
B. $(2+\sqrt{3})$ sq.units
C. $\sqrt{3} / 2$ sq.units
D. $1 / \sqrt{3}$ sq.units

Answer: D

- Watch Video Solution

5. Consider the traingle having vertices $O(0,0), A(2,0)$, and $B(1, \sqrt{3})$. Also $b \leq \min \left\{a_{1}, a_{2}, a_{3} \ldots a_{n}\right\}$ means $b \leq a_{1}$ when a_{1} is least, $b \leq a_{2}$
when a_{2} is least, and so on. Form this, we can say $b \leq a_{1}, b \leq a_{2}, \ldots . b \leq a_{n}$.

Let R be the region consisting of all those points P inside $\triangle O A B$ which satisfy $d(P, O A) \leq \min [d(P, O B), d(P, A B)]$, where d denotes the distance from the point to the corresponding line. then the area of the region R is
A. $\sqrt{3}$ sq,units
B. $1 / \sqrt{3}$ sq.units
C. $\sqrt{3} / 2$ sq,units
D. none of these

Answer: B

- Watch Video Solution

6. Let $A B C D$ is a square with sides of unit length. Points E and F are taken om sides $A B$ and $A D$ respectively so that $A E=A F$. Let P be a point inside
the square $A B C D$. The maximum possible area of quadrilateral CDFE is-
A. $1 / 8$
B. $1 / 4$
C. $5 / 8$
D. $3 / 8$

Answer: C

- Watch Video Solution

7. Let $A B C D$ be a square with sides of unit lenght. Points E and F are taken on sides AB and AD , respectively,so that $A E=A F$. Let P be a point inside the squre $A B C D$.

The value of $(P A)^{2}-(P B)^{2}+(P C)^{2}-(P D)^{2}$ is equal to
A. 3
B. 2
C. 1
D. 0

Answer: D

D Watch Video Solution

8. Let $A B C D$ be a square with sides of unit lenght. Points E and F are taken on sides AB and AD , respectively,so that $A E=A F$. Let P be a point inside the squre $A B C D$.

Let a line passing through point A divides the sqaure $A B D$ into two parts so that the area of one portion is double the other. then the length of the protion of line inside the square is
A. $\sqrt{10} / 3$
B. $\sqrt{13} / 3$
C. $\sqrt{11} / 3$
D. $2 / \sqrt{3}$

D Watch Video Solution

9. Let $A B C$ be an acute- angled triangle and $A D, B E$, and $C F$ be its medians, where E and F are at $(3,4)$ and $(1,2)$ respectively. The centroid of $\triangle A B C G(3,2)$.

The coordinates of point D is \qquad
A. $(7,-4)$
B. $(5,0)$
C. $(7,4)$
D. $(-3,0)$

Answer: B

D Watch Video Solution

10. Let $A B C$ be an acute- angled triangle and $A D, B E$, and $C F$ be its medians, where E and F are at $(3,4)$ and $(1,2)$ respectively. The centroid of $\triangle A B C G(3,2)$.

The coordinates of point D is \qquad

Watch Video Solution

Matrix Match Type

1. Match the following lists:

List I	List II
a. Four lines $x+3 y-10=0, x+3 y-5$ $20=0,3 x-y+5=0$, and $3 x-y-5$ $=0$ form a figure which is	p. a quadrilateral which is neither a parallelogram nor a trapezium
b. The points $A(1,2), B(2,-3)$, $C(-1,-5)$, and $D(-2,4)$ in order are the vertices of	q. a parallelogram c. The lines $7 x+3 y-33=0,3 x-7 y+$ $19=0,3 x-7 y-10$, and $7 x+3 y-4$ $=0$ form a figure which is
r. a rectangle of area 10 sq. units $7=0,4 y-3 x-21=0,3 y-4 x+14$ $=0$ form a figure which is	s. a square

2. Consider the triangle whose vetices are (0,0) , (5,12) and (16,12).

List I	List is
a. Centroid of the triangle	P. $\left(\frac{21}{2}, \frac{8}{3}\right)$
b. Circumcenter of the triangle	q. $(7,9)$
c. Incenter of the triangle	r. $(27,-21)$
d. Excenter opposite to vertex $(5,12)$	s. $(7,8)$

[^0]
3. Match the following List I to List II

- Watch Video Solution

4.
5. Line AB passes through point $(2,3)$ and intersects the positive x and y axes at $\mathrm{A}(\mathrm{a}, 0)$ and $\mathrm{B}(0, \mathrm{~b})$ respectively. If the area of $\triangle A O B$ is 11 . then the value of $4 b^{2}+9 a^{2}$ is

- Watch Video Solution

2. A point A divides the join of $P(-5,1)$ and $Q(3,5)$ in the ratio $k: 1$. Then the integral value of k for which the area of $A B C$, where B is $(1,5)$ and C is $(7,-2)$, is equal to 2 units in magnitude is \qquad

- Watch Video Solution

3. The distance between the circumcenter and the orthocentre of the triangle whose vertices are $(0,0),(6,8)$, and $(-4,3)$ is L. Then the value of $\frac{2}{\sqrt{5}} L$ is
4. A man strats from the point $P(-3,4)$ and reaches the point $Q(0,1)$ touching the x -axis at $R(\alpha, 0)$ such that $P R+R Q$ is minimum. Then $|\alpha|=$.

Watch Video Solution

5. Let $A(0,1), B(1,1), C(1,-1), D(-1,0)$ be four points. If P is any other point, then $P A+P B+P C+P D \geq d$, where [d] represents greatest integer.

- Watch Video Solution

6. A triangle ABC has vertices $A(5,1), B(-1,-7)$ and $C(1,4)$ respectively. L be the line mirror passing through C and parallel to $A B$ and a light ray eliminating from point A goes along the direction of internal bisector of the angle A, which meets the mirror and $B C$ at E, D
respectively. If sum of the areas of $\triangle A C E$ and $\triangle A B E$ is K sq units then $\frac{2 K}{5}-6$ is

- Watch Video Solution

7. If the area of the triangle formed by the points $(2 a, b)(a+b, 2 b+a)$, and $(2 b, 2 a)$ is $2 q u n i t s$, then the area of the triangle whose vertices are $(1+b, a-b),(3 b-a, b+3 a)$, and $(3 a-b, 3 b-a)$ will be \qquad

Watch Video Solution

8. Lines L_{1} and L_{2} have slopes m and n , respectively, suppose L_{1} makes twice as large angle with the horizontal (mesured counter clockwise from the positive x-axis as does L_{2} and L_{1} has 4 times the slope of L_{2}. If
L_{1} is not horizontal, then the value of the proudct mn equals.

- Watch Video Solution

9. If lines $2 x-3 y+6=0$ and $k x+2 y=12=0$ cut the coordinate axes in concyclic points, then the value of $|k|$ is

- Watch Video Solution

10. If from point $P(4,4)$ perpendiculars to the straight lines $3 x+4 y+5=0$ and $y=m x+7$ meet at Q and R area of triangle $P Q R$ is maximum, then m is equal to

- Watch Video Solution

11. The value of a for which the image of the point ($a, a-1$) w.r.t the line mirror $3 x+y=6 a$ is the point $\left(a^{2}+1, a\right)$ is (A) 0 (B) 1 (C) 2 (D) none of these
12. The maximum area of the convex polyon formed by joining the points $A(0,0), B\left(2 t^{2}, 0\right), C(18,2), D\left(\frac{8}{r^{2}}, 4\right) \quad$ and $\quad E(0,2) \quad$ where $t \in R-\{0\}$ and interior angle at vertex B is greater than or equal to 90° is

- Watch Video Solution

Jee Main

1. The lines $p\left(p^{2}+1\right) x-y+q=0 \quad$ and $\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0$ are perpendicular to a common line for
A. no value of p.
B. exactly one value of p.
C. exactly two values of p.
D. more than two values of p.

D Watch Video Solution

2. If the line $2 x+y=k$ passes through the point which divides the line segment joining the points $(1,1)$ and $(2,4)$ in the ratio $3: 2$, then k equals
A. $\frac{29}{5}$
B. 5
C. 6
D. $\frac{11}{5}$

Answer: C

D Watch Video Solution

3. The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices $(0,0),(0,41)$ and $(41,0)$ is
A. 901
B. 861
C. 820
D. 780

Answer: D

- Watch Video Solution

4. Let k be an integer such that the triangle with vertices $(k,-3 k),(5, k)$ and $(-k, 2)$ has area $28 s q$ units. Then the orthocentre of this triangle is at the point : (1) $\left(1,-\frac{3}{4}\right)$ (2) $\left(2, \frac{1}{2}\right)$
(3) $\left(2,-\frac{1}{2}\right)(4)\left(1, \frac{3}{4}\right)$
A. $\left(2, \frac{1}{2}\right)$
B. $\left(2,-\frac{1}{2}\right)$
C. $\left(1, \frac{3}{4}\right)$
D. $\left(1,-\frac{3}{4}\right)$

Answer: A

- Watch Video Solution

5. Let the orthocentre and centroid of a triangle be $(-3,5)$ and $B(3,3)$ respectively. If C is the circumcentre of the triangle then the radrus of the circle having line segment $A C$ as diameter, is
A. $\frac{3 \sqrt{5}}{2}$
B. $\sqrt{10}$
C. $2 \sqrt{10}$
D. $3 \frac{\sqrt{5}}{2}$

- Watch Video Solution

6. The straight line through a fixed point $(2,3)$ intersects the coordinate axes at distinct point P and Q. If O is the origin and the rectangle OPRQ is completed then the locus of R is
A. $3 x+2 y=6 x y$
B. $3 x+2 y=6$
C. $2 x+3 y=x y$
D. $3 x+2 y=x y$

Answer: D

- Watch Video Solution

[^0]: 0
 Watch Video Solution

