

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

DOT PRODUCT

Dpp 2 1

1. Let a,bgt0 and
$$\alpha = \frac{\hat{i}}{a} + \frac{4\hat{j}}{b} + b\hat{k}$$
 and $\beta = b\hat{i} + a\hat{t}j + \frac{1}{b}\hat{k}$, then the maximum value of $\frac{10}{5 + \alpha \cdot \beta}$ is

B. 2

C. 4

D. 8

Answer: A

2. If a vector
$$\overrightarrow{r}$$
 is equall inclined with the vectors
 $\overrightarrow{a} = \cos\theta \hat{i} + \sin\theta \hat{j}, \ \overrightarrow{b} = -\sin\theta \hat{i} + \cos\theta \hat{j}$ and
 $\overrightarrow{c} = \hat{k}$, then the angle between \overrightarrow{r} and \overrightarrow{a} is
A. $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$
B. $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$

$$\mathsf{C}.\cos^{-1}\left(\frac{1}{3}\right)$$
$$\mathsf{D}.\cos^{-1}\left(\frac{1}{2}\right)$$

Answer: B

3. Let G be the centroid of the $\triangle ABC$, whose sides are of lengths a,b,c. If P be a point in the plane of $\triangle ABC$, such that PA = 1, PB = 3, PC = 4 and PG = 2, then the value of $a^2 + b^2 + c^2$ is

A. 42

B.40

C. 36

D. 28

Answer: A

Watch Video Solution

4. If $a = 3\hat{i} - \hat{j} + 5\hat{k}$ and $b = \hat{i} + 2\hat{j} - 3\hat{k}$ are given vector, A vector c which is perpenduclar to Z-axis satisfying $c \cdot a = 9$ and $c \cdot b = -4$. If inclination of c with X-axis and Y-axis is α and β respectively, then which of the following is not true?

A.
$$lpha > rac{\pi}{4}$$

B.
$$eta > rac{\pi}{2}$$

C. $lpha > rac{\pi}{2}$
D. $eta < rac{\pi}{2}$

Answer: C

Watch Video Solution

5. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are unit vectors such that \overrightarrow{a} is perpendicular to the plane of $\overrightarrow{b}, \overrightarrow{c}$ and the angle between $\overrightarrow{b}, \overrightarrow{c}$ is $\frac{\pi}{3}$, then $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right| =$

A. 1

B. 2

C. 3

D. 4

Answer: B

Watch Video Solution

6. A unit vector \overrightarrow{a} in the plane of $\overrightarrow{b} = 2\hat{i} + \hat{j}$ and $\overrightarrow{c} = \hat{i} - \hat{j} + \hat{k}$ is such that angle between \overrightarrow{a} and \overrightarrow{d} is same as angle between \overrightarrow{a} and \overrightarrow{b} where $\overrightarrow{d} = \overrightarrow{j} + 2\overrightarrow{k}$. Then \overrightarrow{a} is

A.
$$rac{ec{i}+ec{j}+ec{k}}{ec{j}+ec{k}}$$
 $rac{ec{\lambda}}{\sqrt{3}}$
B. $rac{ec{i}-ec{j}+ec{k}}{\sqrt{3}}$

Answer: B

7. In a tetrahedron OABC, the edges are of lengths, |OA| = |BC| = a, |OB| = |AC| = b, |OC| = |AB| = c.let G_1 and G_2 be the centroids of the triangle ABC and AOC with that $OG_1 \perp BG_2$, then the value of $\frac{a^2 + c^2}{b^2}$ is B. 3

C. 6

D. 9

Answer: B

Watch Video Solution

8. The vectors \overrightarrow{x} and \overrightarrow{y} satisfy the equation $p\overrightarrow{x} + q\overrightarrow{y} = \overrightarrow{a}$ (where p,q are scalar constants and \overrightarrow{a} is a known vector). It is given that $\overrightarrow{x} \cdot \overrightarrow{y} \ge \frac{\left|\overrightarrow{a}\right|^2}{4pq}$, then $\frac{\left|\overrightarrow{x}\right|}{\left|\overrightarrow{y}\right|}$ is equal to (pq > 0)

A. 1

B.
$$\frac{p^2}{q^2}$$

C. $\frac{p}{q}$
D. $\frac{q}{p}$

Answer: D

9. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 non-zero vectors such that \overrightarrow{a} is perpendicular to \overrightarrow{b} and \overrightarrow{c} and $|\overrightarrow{a}| = 1, |\overrightarrow{b}| = 2, |\overrightarrow{c}| = 1, \overrightarrow{b}, \overrightarrow{c} = 1$. There is a non-zero vector coplanar with $\overrightarrow{a} + \overrightarrow{b}$ and $2\overrightarrow{b} - \overrightarrow{c}$ and $\overrightarrow{d}, \overrightarrow{a} = 1$, then the minimum value of $|\overrightarrow{d}|$ is

A.
$$\frac{2}{\sqrt{13}}$$

B.
$$\frac{3}{\sqrt{3}}$$

C.
$$\frac{4}{\sqrt{5}}$$

D.
$$\frac{4}{\sqrt{13}}$$

Answer: D

10. Let two non-collinear vectors \overrightarrow{a} and \overrightarrow{b} inclined at an angle $\frac{2\pi}{3}$ be such that $\left|\overrightarrow{a}\right| = 3$ and $\left|\overrightarrow{b}\right| = 2$. If a point P moves so that at any time t its position vector \overrightarrow{OP} (where O is the origin) is given as

$$\overrightarrow{OP} = \left(t+rac{1}{t}
ight)\overrightarrow{a} + \left(t-rac{1}{t}
ight)\overrightarrow{b}$$
 then least distance

of P from the origin is

A.
$$\sqrt{2\sqrt{133}-10}$$

B. $\sqrt{2\sqrt{133}+10}$
C. $\sqrt{5+\sqrt{133}}$

D. none of these

Answer: B

Watch Video Solution
11. Four vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 and \overrightarrow{x} satisfy the relation
 $(\overrightarrow{a}, \overrightarrow{x})\overrightarrow{b} = \overrightarrow{c} + \overrightarrow{x}$ where $\overrightarrow{b}, \overrightarrow{a} \neq 1$. The value of

 \overrightarrow{x} in terms of $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} is equal to

A.
$$\frac{\left(\overrightarrow{a},\overrightarrow{c}\right)\overrightarrow{b}-\overrightarrow{c}\left(\overrightarrow{a},\overrightarrow{b}-1\right)}{\left(\overrightarrow{a},\overrightarrow{b}-1\right)}$$
B.
$$\frac{\overrightarrow{c}}{\overrightarrow{a},\overrightarrow{b}-1}$$
C.
$$\frac{2\left(\overrightarrow{a},\overrightarrow{c}\right)\overrightarrow{b}+\overrightarrow{c}}{\overrightarrow{a},\overrightarrow{b}-1}$$
D.
$$\frac{2\left(\overrightarrow{a},\overrightarrow{c}\right)\overrightarrow{b}+\overrightarrow{c}}{\left(\overrightarrow{a},\overrightarrow{c}\right)\overrightarrow{c}+\overrightarrow{c}}$$

Answer: A

12. If area of a triangular face BCD of a regular tetrahdedron ABCD is $4\sqrt{3}$ sq. units, then the area of a triangle whose two sides are represented by vectors \overrightarrow{AB} and \overrightarrow{CD} is

A. 6 sq. units

B. 8 sq.units

C. 12 sq. units

D. 16 sq.units

Answer: B

13. The OABC is a tetrahedron such that $OA^2 + BC^2 = OB^2 + CA^2 = OC^2 + AB^2$,then

A. $OA\perp BC$

 $\mathsf{B.}\,OB\perp AC$

 $\mathsf{C}.\,OC\perp AB$

D. $AB \perp AC$

Answer: D

14. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three units vectors equally inclined to each other at an angle α . Then the angle

between \overrightarrow{a} and plane of \overrightarrow{b} and \overrightarrow{c} is

$$A. \theta = \frac{\cos^{-1}(\cos \alpha)}{\frac{\cos \alpha}{2}}$$
$$B. \theta = \frac{\sin^{-1}(\cos \alpha)}{\frac{\cos \alpha}{2}}$$
$$C. \theta = \frac{\cos^{-1}\left(\frac{\sin \alpha}{2}\right)}{\sin \alpha}$$
$$D. \theta = \frac{\sin^{-1}\left(\frac{\sin \alpha}{2}\right)}{\sin \alpha}$$

Watch Video Solution

Answer: A

15. If a,b,c and A,B,C
$$\in$$
 R-{0} such that $aA + bB + cD + \sqrt{(a^2 + b^2 + c^2)(A^2 + B^2 + C^2)} = 0$, then value of $\frac{aB}{bA} + \frac{bC}{cB} + \frac{cA}{aC}$ is

A. 3

B. 4

C. 5

D. 6

Answer: A