© 'doubtnut

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

FUNCTIONS

Single Correct Answer Type

1. $f(x)=\sin [x]+[\sin x], 0<x<\frac{\pi}{2}$ (where [.] represents the greatest integer function), can also be represented as
A. $\begin{cases}0, & 0<x<1 \\ 1+\sin 1, & 1 \leq x<\frac{\pi}{4}\end{cases}$
B. $\begin{cases}\frac{1}{\sqrt{2}}, & 0<x<\frac{\pi}{4} \\ 1+\frac{1}{2}+\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}, & \frac{\pi}{4} \leq x<\frac{\pi}{4}\end{cases}$
C. $\begin{cases}0, & 0<x<1 \\ \sin 1, & 1 \leq x<\frac{\pi}{2}\end{cases}$
D. $\begin{cases}0, & 0<x<\frac{\pi}{2} \\ 1, & \frac{\pi}{4}<x<1 \\ \sin 1, & 1 \leq x \leq \frac{\pi}{4}\end{cases}$

- Watch Video Solution

2. If

$$
\phi(x)=\frac{1}{1+e^{-x}}
$$

$S=\phi(5)+\phi(4)+\phi(3)+\ldots+\phi(-3)+\phi(-4)+\phi(-5)$ then the
value of S is
A. 5
B. $11 / 2$
C. 6
D. $13 / 2$

Answer: B
3. For non-negative integers m and n a function is defined as follows: $f(m, n)=\{n+1, \mathrm{ffm}=0$ andf($m-1,1) \mathrm{ifm} \neq 0, \mathrm{n}=0$ andf($m-1, \mathrm{f}(\mathrm{m}, \mathrm{n}-1)$) ifm $\neq 0, \mathrm{n} \neq 0\}$ Then the value of $f(1,1)$ is:
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

4. If $f: R \rightarrow Q$ (Rational numbers), $g: R \rightarrow Q$ (Rational numbers) are two continuous functions such that $\sqrt{3} f(x)+g(x)=4$ then $(1-f(x))^{3}+(g(x)-3)^{3}$ is equal to (1) 1 (2)2 (3) 3 (4) 4
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

5. If fandg are two functions defined on N, such that $f(n)-\{2 n-1$ if niseven $2 n+2$ if nisodd and $g(n)=f(n)+f(n+1)$. Then range of g is $\{m \in N: m=$ multiple of $4\}\{$ set of even natural numbers $\}\{m \in N: m=4 k+3, k$ is a natural number $\{m \in N: m=$ multiple of 3 or multiple of 4$\}$
A. $\{m \in N: m=$ multiple of 4$\}$
B. \{ set of even natural numbers \}
C. $\{m \in N: m=4 k+3, k$ is a natural number $\}$
D. $\{m \in N: m=$ multiple of 3 or multiple of 4$\}$

Answer: C

- Watch Video Solution

6. The number of points on the real line where the function $f(x)=\log _{\left|x^{2}-1\right|}|x-3|$ is not defined is
A. 4
B. 5
C. 6
D. 7

Answer: C

- Watch Video Solution

7. For relation $2 \log y-\log x-\log (y-1)=0$
A. domain $=(4,+\infty)$, range $=(1+\infty)$
B. domain $=(4, \infty)$, range $=(2+\infty)$
C. domain $=(2, \infty)$, range $=(2,+\infty)$
D. none of these

Answer: A

- Watch Video Solution

8. The range of the function $y=\left[x^{2}\right]-[x]^{2} x \in[0,2]$ (where [] denotes the greatest integer function), is
A. [0]
B. $[0,1]$
C. [1,2]
D. $[0,1,2]$

Watch Video Solution

9. The number of elements in the domain of the function $f(x)=\sin ^{-1}\left(\frac{x^{2}-2 x}{3}\right)+\sqrt{([x]+[-x])}$, (where [.] denotes the greater integer function) is equal to a. 4 b. 6 c. 3 d. 5
A. 6
B. 4
C. 3
D. 5

Answer: D

- Watch Video Solution

10. Range
of the function
$f(x)=\sqrt{\cos ^{-1}\left(\sqrt{\log _{4} x}\right)-\frac{\pi}{2}}+\sin ^{-1}\left(\frac{1+x^{2}}{4 x}\right)$ is equal to
(A) $\left(0, \frac{\pi}{2}+\sqrt{\frac{\pi}{2}}\right]$
(B) $\left[\frac{\pi}{2}, \frac{\pi}{2}+\sqrt{\frac{\pi}{2}}\right]$
(C) $\left[\frac{\pi}{6}, \frac{\pi}{4}\right)$
(D) $\left\{\frac{\pi}{6}\right\}$
A. $\left(0, \frac{\pi}{2}+\sqrt{\frac{\pi}{2}}\right]$
B. $\left[\frac{\pi}{2}, \frac{\pi}{2}+\sqrt{\frac{\pi}{2}}\right]$
C. $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
D. $\left\{\frac{\pi}{6}\right\}$

Answer: D

- Watch Video Solution

11. The range of the function $f(x)=\tan ^{-1}\left(\frac{x^{2}+1}{x^{2}+\sqrt{3}}\right) x \in R$ is
A. $\left[\frac{\pi}{6}, \frac{\pi}{2}\right)$
B. $\left[\frac{\pi}{6}, \frac{\pi}{3}\right)$
C. $\left[\frac{\pi}{6}, \frac{\pi}{4}\right)$
D. none of these

Answer: C

- Watch Video Solution

12. The domain of the function $f(x)=\sqrt{10-\sqrt{x^{4}-21 x^{2}}}$ is
a) $[5, \infty)$
b. $[-\sqrt{21}, \sqrt{21}]$
c. $[-5,-\sqrt{21}] \cup[\sqrt{21}, 5] \cup\{0]$
d. $(-\infty,-5)$
A. $[5, \infty]$
B. $[-\sqrt{21}, \sqrt{21}]$
C. $[-5-\sqrt{21}] \cup[\sqrt{21}, 5)] \cup\{0\}$
D. $(-\infty,-5)$

Answer: C

- Watch Video Solution

13. Number of integers in domain of function
$f(x)=\log _{\left|x^{2}\right|}(4-|x|)+\log _{2}\{\sqrt{x}\}$ is
a) 0
b) 1
c) 2
d) 3
A. 0
B. 1
C. 2
D. 3

Answer: C

14. The domain of the function $f(x)=\log _{e}\left\{\operatorname{sgn}\left(9-x^{2}\right)\right\}+\sqrt{[x]^{3}-4[x]}$ (where [] represents the greatest integer function is
A. $[-2,1) \cup[2.3)$
B. $[-4,1) \cup[2,3)$
C. 94,1$) \cup[2,3)$
D. $[2,1) \cup[2,3)$

Answer: A

Watch Video Solution

15. Number of integers in the integer of

$$
f(x)=\frac{1}{\pi}\left(\sin ^{-1} x+\tan ^{-1} x\right)+\frac{x+1}{x^{2}+2 x+5} \text { is } 0 \text { b. } 3 \text { c. } 2 \text { d. } 1
$$

A. 0
B. 3
C. 2
D. 1

Answer: C

- Watch Video Solution

16. Let $G(x)=\left(\frac{1}{a^{x}-1}+\frac{1}{2}\right) F(x)$, where a is a positive real number not equal to 1 and $f(x)$ is an odd function. Which of the following statements is true? $G(x)$ is an odd function $G(x) i s$ an even function $G(x)$ is neither even nor odd function. Whether $G(x)$ is an odd or even function depends on the value of a
A. $G(x)$ is an odd function
B. $G(x)$ is an even function
C. $G(x)$ is neither even function nor odd function
D. Whether $\mathrm{G}(\mathrm{x})$ is an odd function or an even function, it depends on the value of a

Answer: B

- Watch Video Solution

17.

$f(x)=\left([a]^{2}-5[a]+4\right) x^{3}-\left(6\{a\}^{2}-5\{a\}+1\right) x-(\tan x) \times \operatorname{sgn} x$ be an even function for all $x \in R$. Then the sum of all possible values of a is (where $[\cdot]$ and $\{\cdot\}$ denote greatest integer function and fractional part function, respectively)
A. $\frac{17}{6}$
B. $\frac{53}{6}$
C. $\frac{31}{3}$
D. $\frac{35}{3}$

Answer: D

Watch Video Solution

18. $f(x)=\sin ^{2} x+\cos ^{4} x+2$ and $g(x)=\cos (\cos x)+\cos (\sin x)$ Also let period $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ be T_{1} and T_{2} respectively then
A. $T_{1}=2 T_{2}$
B. $2 T_{1}=T_{2}$
C. $T_{1}=T_{2}$
D. $T_{1}=4 T_{2}$

Answer: C

- Watch Video Solution

19. A continuous, even periodic function f with period 8 is such that $f(0)=0, f(1)=-2, f(2)=1, f(3)=2, f(4)=3$, then the value of $\tan ^{-1} \tan \left\{f(-5)+f(20)+\cos ^{-1}(f(-10))+f(17)\right\}$ is equal to
A. $2 \pi-3$
B. $3-2 \pi$
C. $2 \pi+3$
D. $3-\pi$

Answer: D

- Watch Video Solution

20. If a and b are natural numbers and $f(x)=\sin \left(\sqrt{a^{2}-3}\right) x+\cos \left(\sqrt{b^{2}+7}\right) x \quad$ is periodic with finite fundamental period then period of $f(x)$ is
A. π
B. 2π
C. $2 \pi\left(\sqrt{a^{2}-3}+\sqrt{b^{2}+7}\right)$
D. $\pi\left(\sqrt{a^{2}-3}+\sqrt{b^{2}+7}\right)$

Answer: B

- Watch Video Solution

21. Period of $f(x)=\sin 3 x \cos [3 x]-\cos 3 x \sin [3 x]$ (where[] denotes the greatest integer function), is
A. $1 / 6$
B. $2 / 3$
C. $5 / 6$
D. $1 / 3$

Answer: D

- Watch Video Solution

22. What is the fundamental period of $f(x)=\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}$
A. $\pi / 2$
B. π
C. 2π
D. 3π

Answer: B

- Watch Video Solution

23. If $f: R \rightarrow R$ is a function satisfying the property $f(x+1)+f(x+3)=2$ for all $x \in R$ than f is
A. periodic with period 3
B. periodic with period 4
C. non periodic
D. periodic with period 5
24. Period of $f(x)=\operatorname{sgn}([x]+[-x])$ is equal to (where [.] denotes greatest integer function
A. 1
B. 2
C. 3
D. does not exist

Answer: A

- Watch Video Solution

25. If $F(x)$ and $G(x)$ are even and odd extensions of the functions $f(x)=x|x|+\sin |x|+x e^{x}$, where $x \in(0,1), g(x)=\cos |x|+x^{2}-x$, is where $x \in(0,1)$ respectively to the ars interval $(-1,0)$ then $F(x)+G(x)$ in $(-1,0)$ is
A. $\sin x+\cos x+x e^{-x}$
B. $-\left(\sin x+\cos x+x e^{-x}\right)$
C. $-\left(\sin x+\cos x+x+x e^{-x}\right)$
D. $-\left(\sin x+\cos x+x^{2}+x e^{-x}\right)$

Answer: C

- Watch Video Solution

26. Let $P(x)=x^{10}+a_{2} x^{8}+a_{3} x^{6}+a_{4} x^{4}+a_{5} x^{2}$ be a polynomial with real coefficients. If $P(1)=1$ and $P(2)=-5$, then the minimumnumber of distinct real zeroes of $P(x)$ is
A. 5
B. 6
C. 7
D. 8

- Watch Video Solution

27. Let $f: R \rightarrow[1, \infty)$ be defined as
$f(x)=\log _{10}\left(\sqrt{3 x^{2}-4 x+k+1}+10\right)$ If $\mathrm{f}(\mathrm{x})$ is surjective then $\mathrm{k}=$
A. $k=\frac{1}{3}$
B. $k<\frac{1}{3}$
C. $k>\frac{1}{3}$
D. $k=1$

Answer: A

- Watch Video Solution

28. about to only mathematics
A. injective but not surjective
B. injective as well as surjective
C. neither injective nor surjective
D. surjective but injective

Answer: B

D Watch Video Solution

29. about to only mathematics
A. a bijection
B. one-one but not onto
C. onto but not one-one
D. neither one-one nor onto

Answer: A

30. $f: R \rightarrow R$ defined by $f(x)=\frac{1}{2} x|x|+\cos +1$ is
A. one-one and onto
B. one-one and into
C. many-one and onto
D. many-one and into

Answer: A

- Watch Video Solution

31. about to only mathematics
A. $[1,4]$
B. $[-2,3]$
C. $(0,3]$
D. $[2,5\}$

Answer: C

- Watch Video Solution

32. Let $f: R \rightarrow\left(0, \frac{2 \pi}{3}\right]$ defined as $f(x)=\cot ^{-1}\left(x^{2}-4 x+\alpha\right)$ Then the smallest integral value of α such that, $f(x)$ is into function is
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

33. about to only mathematics
A. many-one and onto
B. many-one and into
C. one-one and onto
D. one-one and into

Answer: B

- Watch Video Solution

34. Which of the following statements are incorrect? I. If $f(x)$ and $g(x)$ are one-one then $f(x)+g(x)$ is also one-one. II. If $f(x)$ and $g(x)$ are one-one then $f(x) g(x)$ is also one-one. III. If $f(x)$ is odd then it is necessarily one-one? IandIIonly b. IIandIIIonly c. IIIandIonly d. I, IIandIII
A. I and II only
B. II and III only
C. III and I only
D. I, II and III

Answer: D

- Watch Video Solution

35. Which of the following functions is one-one ? (1) $f: R \rightarrow R$ defined as
$f(x)=e^{s g n x}+e^{x^{2}}$
$(2) f:[-1, \infty) \rightarrow(0, \infty)$
defined
by
$f(x)=e^{x^{2}+|x|}$
(3) $f:[3,4] \rightarrow[4,6]$
defined
by
$f(x)=|x-1|+|x-2|+|x-3|+x-4 \mid$
(4) $f(x)=\sqrt{\ln (\cos (\sin x))}$
A. $f: R \rightarrow R$ denined as $f(x)=d^{\text {sgn } \mathrm{x}}+d^{x^{2}}$
B. $f:[-1, \infty) \rightarrow(0, \infty)$ defined by $f(x)=e^{x^{2}+|x|}$
C.

$$
f:[3,4] \rightarrow[4,6] \text { defined by } f(x)=|x-1|+|x-2|+|x-3|+\mid
$$

D. $f(x)=\sqrt{\ln (\cos (\sin x))}$

Answer: C

- Watch Video Solution

36. about to only mathematics
A. -1
B. 0
C. 1
D. 100

Answer: D

- Watch Video Solution

37. If $f(x)=x^{2}+x+\frac{3}{4}$ and $g(x)=x^{2}+a x+1$ be two real functions, then the range of a for which $g(f(x))=0$ has no real solution is $(-\infty,-2)$ b. $(-2,2)$ c. $(-2, \infty)$ d. $(2, \infty)$
A. $(-\infty,-2)$
B. $(-2,2)$
C. $(-2, \infty)$
D. $(2, \infty)$

Answer: C

- Watch Video Solution

38. If domain of $f(x)$ is $[1,3]$, then the domain of $f\left(\log _{2}\left(x^{2}+3 x-2\right)\right)$ is
A. $[-5,-4] \cup[1,2]$
B. $[-13,-2] \cup\left[\frac{3}{5}, 5\right]$
C. $[4,1] \cup[2,7]$
D. $[-3,2]$

Answer: A

- Watch Video Solution

39. Let $f(x)=\frac{x}{1+x}$ and $g(x)=\frac{r x}{1-x}$. Let S be the set of all real numbers r, such that $f(g(x))=g(f(x))$ for infinitely many real numbers x. The number of elements in set S is
A. 1
B. 2
C. 3
D. 5

Answer: B

- Watch Video Solution

40. Let $f(x)=\frac{a x+b}{c x+d}$. Then the $f o f(x)=x$, provided that : $(a \neq 0, b \neq 0, c \neq 0, d \neq 0)$
A. $d=-a$
B. $d=a$
C. $a=b=1$
D. $a=b=c=d=1$,

Answer: A

- Watch Video Solution

41. If $f: R \rightarrow R, f(x)=x^{3}+3$, and $g: R \rightarrow R, g(x)=2 x+1$, then $f^{-1}\left(g^{-1}(23)\right)$ equals
A. 2
B. 3
C. $(14)^{1 / 3}$
D. $(15)^{1 / 3}$

Answer: A

- Watch Video Solution

42. If $f(x)=x(x-1)$ is a function from $\left[\frac{1}{2}, \infty\right) \rightarrow\left[-\frac{1}{4}, \infty\right)$, then $\left\{x \in r: f^{-1}(x)=f(x)\right\}$ is a. null set b. $\{0,2\}$ c. $\{2\}$ d. a set containing 3 elements
A. null set
B. $\{0,2\}$
C. $\{2\}$
D. a set containing 3 elements

Answer: C

43. Let $a>1$ be a real number and $f(x)=\log _{a} x^{2}$ for $x>0$. If f^{-1} is the inverse function fo f and b and c are real numbers then $f^{-1}(b+c)$ is equal to
A. $f^{-1}(b) . f^{-1}(c)$
B. $f^{-1}(b)+f^{-1}(c)$
C. $\frac{1}{f(b+c)}$
D. $\frac{1}{f^{-1}(b)+f^{-1}(c)}$

Answer: A

- Watch Video Solution

44. If the function $f(x)=\{x+1$ if $x \leq 1,2 x+1$ if $1<x \leq 2$ and $g(x)=\left\{x^{2}\right.$ if $-1 \leq x \leq 2, x+2$ if $2 \leq x \leq 3$ then the number of roots of the equation $f(g(x))=2$
A. 4
B. 3
C. 2
D. 1

Answer: C

- Watch Video Solution

45. Suppose $f(x)=a x+b a n d g(x)=b x+a$, whereaand b are positive integers. If $f(g(20))-g(f(20))=28$, then which of the following is not true? $a=15$ b. $a=6$ c. $b=14$ d. $b=3$
A. $a=15$
B. $a=6$
C. $b=14$
D. $b=3$

Answer: D

46. If $f(x)$ is an invertible function and $g(x)=2 f(x)+5$, then the value of $g^{-1}(x)$ is (a) $2 f^{-1}(x)-5$ (b) $\frac{1}{2 f^{-1}(x)+5} \frac{1}{2} f^{-1}(x)+5$ (d) $f^{-1}\left(\frac{x-5}{2}\right)$
A. $2 f^{-1}(x)-5$
B. $\frac{1}{2 f^{-1}(x)+5}$
C. $\frac{1}{2} f^{-1}(x)+5$
D. $f^{-1}\left(\frac{x-5}{2}\right)$

Answer: D

- Watch Video Solution

47. If $f(x)=\left\{\begin{array}{ll}-x+1, & x \leq 0 \\ -(x-1)^{2}, & x \geq 1\end{array}\right.$,then the number of solutions of
$f(x)-f^{-1}(x)=0$ is
A. 0
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

48. about to only mathematics
A. -1
B. 0
C. 1
D. none of these

Answer: B

49. If $f\left(x^{2}-6 x+6\right)+f\left(x^{2}-4 x+4\right)=2 x, \forall x \in R \quad$ then $f(-3)+f(9)-5 f(1)=?(\mathrm{~A}) 7$ (B) 8 (C) 9 (D) 10
A. 7
B. 8
C. 9
D. 10

Answer: C

50. about to only mathematics
A. 1
B. 3
C. -1
D. none of these

- Watch Video Solution

51. If $f: R \rightarrow R$ is a function satisfying $f(x+y)=f(x y)$ for all x, y in R
and $f\left(\frac{3}{4}\right)=\frac{3}{4}$, then $f\left(\frac{9}{16}\right)$ is a. $\frac{3}{4}$ b. $\frac{9}{16}$ c. $\frac{\sqrt{3}}{2}$ d. 0
A. $\frac{3}{4}$
B. $\frac{9}{16}$
C. $\frac{\sqrt{3}}{2}$
D. 0

Answer: A

- Watch Video Solution

52. A function $f: R \rightarrow R$ satisfy the equation $f(x) f(y)-f(x y)=x+y$ for all $x, y \in R$ and $f(y)>0$, then
A. $f(x) f^{-1}(x)=x^{2}-4$
B. $f(x) f^{-1}(x)=x^{2}-6$
C. $f(x) f^{-1}(x)=x^{2}-1$
D. none of these

Answer: C

- Watch Video Solution

53. Let f be a function defined from $R^{+} \rightarrow R^{+}$. If $(f(x y))^{2}=x(f(y))^{2}$ for all positive numbers x and y , If $f(2)=6$, find $f(50)=$?
A. 20
B. 30
C. 5
D. 40
54. Suppose f is a real function satisfying $f(x+f(x))=4 f(x) \operatorname{and} f(1)=4$. Then the value of $f(21)$ is 162164 105
A. 16
B. 64
C. 4
D. 44

Answer: B

Watch Video Solution

55. The graph of a function $y=g(x)$ is shown in the following figure. If $f(x)=-3 x^{2}-k x-12, k \in \operatorname{Rand} f(g(x))>0 \forall x \in R \quad$ then lest integral value of k is equal to a. b. c.d.
A. 13
B. 14
C. 15
D. 16

Answer: C

- Watch Video Solution

56. Let $f: I \vec{I}$ be a function (I is set of integers) such that $f(0)=1, f(f(n)=f(f(n+2)+2)=n$ then $f(3)=0$ b. $f(2)=0 \mathrm{c}$.
$f(3=-2)$ d. f is many one function
A. $f(3)=0$
B. $f(2)=0$
C. $f(3)=-2$
D. f is many -one function

Answer: C

- Watch Video Solution

Multiple Correct Answers Type

1. The function $f(x)=\cos ^{-1}\left(\frac{2[|\sin x|+|\cos x|]}{\sin ^{2} x+2 \sin x+\frac{11}{4}}\right)$ is defined if x belongs to (where [.] represents the greatest integer function)
A. $\left[0, \frac{7 \pi}{6}\right]$
B. $\left[0, \frac{\pi}{6}\right]$
C. $\left[\frac{11 \pi}{6}\right]$
D. $[\pi, 2 \pi]$

Answer: A: : $\mathrm{B}: \mathrm{C}$
2. Which of the following functions are defined for all x ?
A. $\sin [x]+\cos [x]([x]$ denotes the greatest integer $\leq x)$
B. $\sec ^{-1}\left(1+\sin ^{2} x\right)$
C. $\tan (\log x)$
D. $\sqrt{\frac{9}{8}+\cos x+\cos 2 x}$

Answer: A::B::D

- Watch Video Solution

3. Which of the following functions is/are bounded?
A. $f(x)=\frac{2 x}{1+x^{2}},[-2,2]$
B. $f(x)=\frac{x^{2}}{1-x}, x \in[0,2]-[1]$
C. $f(x)=\frac{x^{3}-8 x+6}{4 x+1},[0,5]$
D. none of these

- Watch Video Solution

4. The function 'g' defined by
$g(x)=\sin \left(\sin ^{-1}\{\sqrt{x}\}+\cos \left(\sin ^{-1}\{\sqrt{x}\}\right)-1\right.$ where $\{x\}$ denotes the functional part function is
A. an even function
B. a periodic function
C. an odd function
D. neither even nor odd

Answer: A: B

- Watch Video Solution

5. Let f be a differential function such that $f(x)=f(2-x)$ and $g(x)=f(1+x)$ then (1) $\mathrm{g}(\mathrm{x})$ is an odd function (2) $\mathrm{g}(\mathrm{x})$ is an even function (3) graph of $f(x)$ is symmetrical about the line $x=1(4) f^{\prime}(1)=0$
A. $g(x)$ is an odd function
B. $g(x)$ is an even function
C. graph of $f(x)$ is symmetrical about the line $x=1$
D. $f^{\prime}(1)=0$

Answer: B::C::D

D Watch Video Solution

6. If a differentiable function satisfies $(x-y) f(x+y)-(x+y) f(x-y)=2\left(x^{2} y-y^{2}\right) \forall x, y \in R$ and $f(1)=$ then:
A. $f(x)$ must be polynomial function
B. $f(3)=12$
C. $f(0)=0$
D. $f(x)$ may not be differentiable

- Watch Video Solution

7. about to only mathematics
A. $f(0)=0$
B. $\mathrm{f}(0)$ cannot be determined
C. $\mathrm{k}=2$
D. k cannot be determined

Answer: A::C

- Watch Video Solution

8. Suppose that $f(x) f(f(x))=1$ and $f(1000)=999$ then which of the following is true
A. $f(500)=\frac{1}{500}$
B. $f(199)=\frac{1}{199}$
C. $f(x)=\frac{1}{x} \forall x \in R-\{0\}$
D. $f(1999)=\frac{1}{1999}$

Answer: A::B

- Watch Video Solution

9. If graph of a function $f(x)$ which is defined in $[-1,4]$ is shown in the following figure then identify the correct statement(s).

A. domain of $f(|x|-1)$ is $[-5,5]$
B. range of $f(|x|+1)$ is $[0,2]$
C. range of $f(-|x|)$ is $[-1,0]$
D. domain of $f[-3,3]$

Answer: A::B::C

- Watch Video Solution

Comprehension Type

1. Let $f(x)=x^{2}-2 x-1 \forall x \in R$. Let $f:(-\infty, a] \rightarrow[b, \infty)$, where a is the largest real number for which $f(x)$ is bijective.

If $f: R \rightarrow R$, then range of values of k for which equation $f(|x|)=k$ has 4 distinct real roots is
A. $-9 / 4$
B. $-5 / 4$
C. -2
D. -1

Answer: C

- Watch Video Solution

2. Let $f(x)=x^{2}-2 x-1 \forall x \in R$. Let $f:(-\infty, a] \rightarrow[b, \infty)$, where a is the largest real number for which $f(x)$ is bijective. If $f: R \rightarrow R$, then range of values of k for which equation $f(|x|)=k$ has 4 distinct real roots is
A. $1+\sqrt{x+2}$
B. $1-\sqrt{x+3}$
C. $1-\sqrt{x+2}$
D. $1+\sqrt{x+3}$

Answer: A

3. Let $f(x)=x^{2}-2 x-1 \forall \xi n R$ Let $f:(-\infty, a] \rightarrow[b, \infty)$, where a is the largest real number for which $\mathrm{f}(\mathrm{x})$ is bijective. If $f: R \rightarrow R$, $g(x)=f(x)+3 x-1$, then the least value of function $y=g(|x|)$ is
A. $(-2,-1)$
B. $(-2,0)$
C. ($-1,0$)
D. $(0,1)$

Answer: A

- Watch Video Solution

4. Consider a differentiable $f: R \rightarrow R$ for which
$f(1)=2$ and $f(x+y)=2^{x} f(y)+4^{y} f(x) \forall x, y \in R$.
The value of $f(4)$ is
A. 160
B. 240
C. 200
D. none of these

Answer: B

- Watch Video Solution

5. Consider a differentiable $f: R \rightarrow R$ for which
$f(1)=2$ and $f(x+y)=2^{x} f(y)+4^{y} f(x) \forall x, y \in R$.
The minimum value of $f(x)$ is
A. 1
B. $-\frac{1}{2}$
C. $-\frac{1}{4}$
D. none of these

Answer: C

- Watch Video Solution

6. Let $f(x)$ be real valued and differentiable function on R such that $f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)} f(0)$ is equals a. b. c. d. none of these
A. 1
B. 0
C. -1
D. none of these

Answer: B

D Watch Video Solution

7. Let $f(x)$ be real valued and differentiable function on R such that $f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)} f(0)$ is equals a. b. c. d. none of these
A. odd function
B. even function
C. odd and even function simultaneously
D. neither even nor odd

Answer: A

- Watch Video Solution

