©゙’ doubtnut

CHEMISTRY

BOOKS - SAI CHEMISTRY (TELUGU ENGLISH)

ELECTROCHEMISTRY

1. Calculate ΔG° for the following cell reaction.

$$
\begin{aligned}
& Z n_{(s)}+A g_{2} O_{(s)}+H_{2} O((I)) \rightarrow Z n_{a q}^{2+}+2 \mathrm{Ag}(s)+2 O H_{(a q)}^{-} \\
& E_{\frac{A g+}{A g}}^{\circ}=+0.80 \mathrm{~V} \text { and } E_{\frac{Z n^{+}+}{\circ}}^{\circ}=-0.76 \mathrm{~V}
\end{aligned}
$$

A. $-3.5 \mathrm{~kJ} / \mathrm{mol}$
B. $-301 \mathrm{~kJ} / \mathrm{mol}$
C. $305 \mathrm{~kJ} / \mathrm{mol}$
D. $301 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

- Watch Video Solution

2. The time required for a first order reaction to complete 90% is T . What is the time required to complete 99% of the same reaction?
A. 2 t
B. 3 t
C. t
D. 4 t

Answer: A

- Watch Video Solution

3. A lead storage battery is discharged. During the charging of this battery, the reaction that occurs at anode is
A. $\mathrm{PbSO}_{4}(s)+2 e^{-} \rightarrow \mathrm{Pb}(s)+\mathrm{SO}_{4}^{2-}(a q)$
B. $\mathrm{PbSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{PbO}_{2}(s)+\mathrm{SO}_{4}^{2-}(a q)+4 \mathrm{H}^{+}+2 e^{-}$
C. $\mathrm{PbSO}_{4}(s) \rightarrow \mathrm{Pb}(s)+\mathrm{SO}_{4}^{2-}(a q)$
D. $\mathrm{PbSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)+2 e^{-} \rightarrow \mathrm{PbO}_{2}(s)+\mathrm{SO}_{4}^{2-}(a q)+2 \mathrm{H}^{+}$

Answer: A

- Watch Video Solution

4. For the reaction
$5 \mathrm{Br}(a q)+\mathrm{BrO}_{3}^{-}(a q)+6 \mathrm{H}^{+}(a q) \rightarrow 3 \mathrm{Br}_{3}(a q)+3 \mathrm{H}_{2} \mathrm{O}(l)$
If, $-\frac{\Delta[B r]}{\Delta t}=0.05 \mathrm{molL} L^{-1} \mathrm{~min}^{-1},-\frac{\Delta\left[\mathrm{BrO} \mathrm{O}_{3}\right]}{\Delta t} \in \mathrm{molL}^{-1} \mathrm{~min}^{-1}$ is
A. 0.005
B. 0.05
C. 0.5
D. 0.01

(D) Watch Video Solution

5. At 298 K molar conductivities at infinite dilution $\left(\wedge_{m}^{\circ}\right)$ of $\mathrm{NH}_{4} \mathrm{Cl}$, KOH and KCl are $152.8,272.6$ and $149.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The \wedge_{m}° of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ and \% dissociation of $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ with $\wedge_{m}=25.1 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ at the same temperature are,
A. 275.6,0.91
B. 275.6,9.1
C. 266.6,9.6
D. 30,84

Answer: B

6. In a first order reaction, the concentration of the reactant decrease from 0.6 M to 0.3 M in 15 min . The time taken for the concentration to change from 0.1 M to 0.025 M in minutes is
A. 1.2
B. 12
C. 30
D. 3

Answer: C

- Watch Video Solution

7. During the electrolysis of copper sulphate aqueous solution using copper electrode, the reaction taking place at the cathode is
A. $C u \rightarrow C u^{2+(a q)+2 e^{-}}$
B. $C u^{2+}(a q)+2 e^{-} \rightarrow C u(s)$
C. $H^{+}(a q)+e^{-} \rightarrow \frac{1}{2} H_{2}(g)$
D. $\mathrm{SO}_{4}^{2-}(a q) \rightarrow \mathrm{SO}_{3}(g)+\frac{1}{2} \mathrm{O}_{2}(g)+2 e^{-}$

Answer: B

- Watch Video Solution

8. The extent of charge of lead accumulator is determined by
A. amount of PbSO_{4} in the battery
B. amount of PbO_{2} in the battery
C. specific gravity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ of the battery
D. amount of Pb in the battery

Answer: C

9. Which of the following relation is correct for a first order reaction?
($k=$ rate constant, $r=r a t e$ of reaction , $c=c o n c$. Of reactat
A.
B.
C.
D.

Answer: C

- Watch Video Solution

10. The emf (in V) of a Daniell cell containing $0.1 \mathrm{M} \mathrm{ZnSO}_{4}$ and 0.01 M CuSO_{4} solutions at their respective electrodes is $\left(E_{\frac{C u^{2}}{C u}}^{\circ}=+0.34 V, E_{\frac{Z n^{+}}{Z_{n}}}^{\circ}=-0.76 V\right)$
A. 1.1
B. 1.16
C. 1.13
D. 1.07

Answer: D

- Watch Video Solution

11. Which one of the following statements is correct for the reaction?
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{CH}_{3} \mathrm{COONa}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)$
A. Order is two but molecularity is one
B. Order is one but molecularity is two
C. Order is one but molecularity is one
D. Order is two but molecularity is two

Answer: D

12. Match the following lists.
A. $a(I I I) b(I) c(I I) d(V)$
B. $a(I I) b(V) c(I) d(I V)$
C. $a(I I I) b(I V) c(I) d(I I)$
D. $a(V) b(I) c(I V) d(I I)$

Answer: C

- View Text Solution

13. If the values of \wedge_{∞} of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaOH}$ and NaCl are 130, 217 and 109 ohm ${ }^{-1} \mathrm{~cm}^{2} \equiv^{-1}$ respectively, the \wedge_{∞} of
$\mathrm{NH}_{4} \mathrm{OH} \in o h \mathrm{~m}^{-1} \mathrm{~cm}^{2} \equiv^{-1}$ is
A. 238
B. 196
C. 22
D. 456

Answer: A

- Watch Video Solution

14. A solution of concentration C g equiv/L, has a specific resistance R. The equivalent conductance of the solution is
A. $\frac{R}{C}$
B. $\frac{C}{R}$
c. $\frac{1000}{R C}$
D. $\frac{1000 R}{C}$

Answer: C

15. What is the slope of the straight line for the graph drawn between Ink and y , where k is the rate constant of a reaction at temperature T ?
A. $-\frac{E_{a}}{2.303 R}$
B. $\frac{-E_{a}}{R}$
C. $\frac{E_{a}}{R}$
D. $\frac{R}{E_{a}}$

Answer: B

- Watch Video Solution

16. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240,349 and $229 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \equiv^{-1}$ respectively. The
equivalent conductance of benzoic acid in $o h m^{-1} \mathrm{~cm}^{2} \equiv^{-1}$ at the same conditions is
A. 80
B. 328
C. 360
D. 408

Answer: C

(D) Watch Video Solution

17. For the following cell reaction,
$A g\left|A g^{+}\right| A g C l\left|C l^{-}\right| C l_{2}, P t$
$\Delta G_{f}^{0}(A g C l)=-109 \mathrm{~kJ} / \mathrm{mol}$
$\Delta G_{f}^{0}(C l)=-129 \mathrm{~kJ} / \mathrm{mol}$
$\Delta G_{f}^{0}\left(A g^{+}\right)=78 \mathrm{~kJ} / \mathrm{mol}$
E° of the cell is
A. -0.60 V
B. 0.60 V
C. 6.0 V
D. None of these

Answer: A

- Watch Video Solution

18. At $25^{\circ} \mathrm{C}$ the molar conductances at infinite dilution for the strong electrolytes $\mathrm{NaOH}, \mathrm{NaCl}$ and BaCl_{2} are $248 \times 10^{-4}, 126 \times 10^{-4}$ and $280 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$ respectively, $\lambda_{m}^{o} \mathrm{Ba}(\mathrm{OH})_{2}$ in $\mathrm{Sm}^{2} \mathrm{~mol}^{-1}$ is
A. 52.4×10^{-4}
B. 524×10^{-4}
C. 402×10^{-4}
D. 262×10^{-4}

(D) Watch Video Solution

19. For a first order reaction at $27^{\circ} \mathrm{C}$, the ratio of time required for 75% completion to 25% completion of reaction is
A. 3
B. 2.303
C. 4.8
D. 0.477

Answer: C

- Watch Video Solution

20. When same quantity of electricity is passed through aqueous AgNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ solutions connected in series, $5.04 \times 10^{-2} \mathrm{~g}$ of H_{2}
is liberated. What is the mass of silver (in grams) deposited? (Eq. wts. of hydrogen $=1.008$, silver $=108$)
A. 54
B. 0.54
C. 5.4
D. 10.8

Answer: C

- Watch Video Solution

21. When electric current is passed through acidified water for 1930s, 1120 mL of H_{2} gas is collected (at STP) at the cathode. What is the current passed in ampere?
A. 0.05
B. 0.5
C. 5
D. 50

Answer: C

- Watch Video Solution

22. Calculate the emf of the cell
$C u(s)\left|C u^{2+}(a q)\right|\left|A g^{+}(a q)\right| A g(s)$
Given,

$$
E_{\left(C u^{2+}\right) /(C u)}=+0.34 V, E_{\left(A g^{+}\right) /(A g)}=0.80 \mathrm{~V}
$$

A. +0.46 V
B. +1.14 V
C. +0.57 V
D. -0.46 V
23. The standard reduction potentials of $\mathrm{Zn}^{2+} / \mathrm{Zn}, \mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Ag}^{+} / \mathrm{Ag}$ are respectively $-0.78,0.34$ and 0.8 V . The following cells were constructed:
(1) $Z n\left|Z n^{2+}\right|\left|C u^{2+}\right| C u$
(2) $Z n\left|Z n^{2+}\right|\left|A g^{+}\right| A g$
(3) $\mathrm{Cu}\left|\mathrm{Cu}^{2+}\right|\left|\mathrm{Ag}^{+}\right| \mathrm{Ag}$

What is the correct order of of these cells?
A. $2>3>1$
B. $2>1>3$
C. $1>2>3$
D. $3>1>2$

Answer: B

24. What is the time (in sec) required for depositing all the silver present in 125 mL of $1 \mathrm{M} \mathrm{AgNO}_{3}$ solution by passing a current of 241.25 A?
A. 10
B. 50
C. 1000
D. 100

Answer: B

- Watch Video Solution

25. Assertion (A) : A current of 96.5 A is passed into aqueous AgNO solution for 100 s . The weight of silver deposited is 10.8 g (at. wt. of Ag $=108$).

Reason (R) : The mass of a substance deposited during the electrolysis
of an electrolyte is inversely proportional to the quantity of electricity passing through the electrolyte.

The correct answer is
A. Both (A) and (R) are true and (R) is the correct explanation of (A)
B. Both (A) and (R) are true and (R) is not the correct explanation of
(A)
C. (A) is true but (R) is false
D. (A) is false but (R) is true

Answer: C

- Watch Video Solution

26. Which of the following is not correct?
A. Aqueous solution of NaCl is an electrolyte
B. The units of electrochemical equivalent are g-C
C. In the Nernst equation, n represents the number of electrons transferred in the electrode reaction
D. Standard reduction potential of hydrogen electrode is zero volt

Answer: B

- Watch Video Solution

27. The electrochemical equivalent of a metal is ' x ' $g-C^{-1}$, The equivalent weight of metal is
A. x
B. $x \times 96500$
C. $\frac{x}{96500}$
D. $1.6 \times 10^{-19} x$

Answer: B

28. When X amperes of current is passed through molten for $96.5 \mathrm{~s}, 0.09$ g of aluminium is deposited. What is the value of X ?
A. 10A
B. 20A
C. 30A
D. 40 A

Answer: A

- Watch Video Solution

29. What is the reduction electrode potential (in volts) of copper electrode, when $\left[\mathrm{Cu}^{2+}\right]=0.01 \mathrm{M}$ is in a solution at $25^{\circ} \mathrm{C}$?
(E° of $C u^{2+} / C u$ electrode is +0.34 V .)
A. 0.3991
B. 0.2809
C. 0.3105
D. 0.3695

Answer: B

- Watch Video Solution

30. 0.066 g of metal was deposited, when a current of 2 A is passed through a metal ion solution for 100s. What is the electrochemical equivalent (in $g-C^{-1}$) of the metal?
A. 3.3×10^{-6}
B. 3.3×10^{-4}
C. 0.033
D. 3.3
31. During the electrolytic reduction of alumina, the reaction at cathode is
A. $2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 e^{-}$
B. $3 F^{-} \rightarrow 3 F+3 e^{-}$
C. $A l^{3+}+3 e^{-} \rightarrow A l$
D. $2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{H}_{2}$

Answer: C

- Watch Video Solution

32. One ampere of current is passed for 9650 s through molten AlCl_{3}.

What is the weight, in gram, of Al deposited at cathode?(atomic weight of $\mathrm{Al}=27$)
A. 0.9
B. 9
C. 0.09
D. 90

Answer: A

- Watch Video Solution

33. Molten CuCl_{2} is electrolysed using platinum electrodes. The reaction occuring at anode is
A. $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}(g)+2 e^{-}$
B. $C l_{2}(g)+2 e^{-} \rightarrow 2 C l$
C. $\mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu}(s)$
D. $\mathrm{Cu}(s) \rightarrow \mathrm{Cu}^{2+}+2 e^{-}$
34. What is the approximate quantity of electricity (in coulomb) required to deposit all the silver from 250 mL of $1 \mathrm{M} \mathrm{AgNO}_{3}$ aqueous solution?
A. 96500
B. 24125
C. 48250
D. 12062.5

Answer: B

- Watch Video Solution

35. The units of electrochemical equilvalent are
A. gC
B. $g a m p^{-1} s^{-1}$
C. $g a m p s^{-1}$
D. $a m p^{-1} s$

Answer: B

- Watch Video Solution

36. The cell reaction of a cell is
$M g(s)+C u^{2+}(a q) \rightarrow C u(s)+M g^{2+}(a q)$
If the standard reduction potentials of magensium and copper are -0.33
and +2.38 V respectively, the emf of the cell is
A. +2.03 V
B. -2.03 V
C. +2.71 V
D. -2.71 V

- Watch Video Solution

37. Which one of the following metals will not reduce $\mathrm{H}_{2} \mathrm{O}$?
A. Ca
B. Fe
C. Cu
D. Li

Answer: C

Watch Video Solution
38. In the electrochemical cell
$H_{2}(g) 1 a t m\left|1 H^{+}(l m)\right|\left|C u^{2+}(I M)\right| C u(s)$
Which one of the following statements is true?
A. H_{2} is cathode, Cu is anode
B. Oxidation occurs at Cu electrode
C. Reduction occurs at H_{2} electrode
D. H_{2} is anode, Cu is cathode

Answer: D

- Watch Video Solution

39. On passing a current through a KCl solution, 19.5 g of potassium is deposited. If the same quantity of electricity is passed through a solution of aluminium chloride, the amount of aluminium deposited is
A. 4.5 g
B. 9.0 g
C. 13.5 g
D. 27 g

- Watch Video Solution

40. The reaction taking place at the anode, when an aqueous solution of $\mathrm{CuSO} \mathrm{H}_{4}$ is electrolysed using inert Pt electrode, is
A. $2 \mathrm{SO}_{4}^{2-} \rightarrow \mathrm{S}_{2} \mathrm{O}_{4}^{2-}+2 e^{-}$
B. $\mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu}$
C. $2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 e^{-}$
D. $2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{H}_{2}$

Answer: C

- Watch Video Solution

41. The standard reduction potentials at 298 K for the following half cell
$Z n^{2+}(a q)+2 e^{-} \rightarrow Z n(s)-0.762$
$C r^{3+}(a q)+3 e^{-} \rightarrow C r(s)-0.740$
$2 H^{+}(a q)+2 e^{-} \rightarrow H_{2}(g)-0.000$
$F e^{3+}(a q)+e^{-} \rightarrow \mathrm{Fe}^{3+}(a q)-0.770$
Which one is the strongest reducing agent?
A. $\mathrm{Zn}(\mathrm{s})$
B. $\mathrm{Cr}(\mathrm{s})$
C. $H_{2}(\mathrm{~g})$
D. $F e^{2+}(\mathrm{aq})$

Answer: A

- Watch Video Solution

42. When Zn metal is added to CuSO_{4} solution, Cu is precipitated, it is due to
A. Oxidation of $C u^{2+}$
B. Reduction of $C u^{2+}$
C. Hydrolysis of CuSO_{4}
D. Ionisation of CuSO_{4}

Answer: B

- Watch Video Solution

43. Which of the following alkali metals has the greatest tendency for the half reaction.
$M(g) \rightarrow M^{+}(g)+e^{-}$?
A. Sodium
B. Lithium
C. Potassium
D. Cesium

Answer: B

44. When a copper wire is dipped in aqueous AgNO_{3} solution, the solution turns blue. The reason for this is
A. Oxidation of silver
B. Reduction of copper
C. Oxidation of copper
D. Reduction of silver

Answer: C

- Watch Video Solution

45. How many grams of copper would be deposited, if 3.00 A of current is passed through a solution of CuSO_{4} for 4 h ? (At. wt. of $\mathrm{Cu}=63.54$)
A. 7.11
B. 14.22
C. 2844
D. 56.88

Answer: B

- Watch Video Solution

46. The metal that has the highest electrical conductivity is
A. Al
B. Cu
C. Ag
D. Au

Answer: C

47. How many grams of copper will be deposited from a solution of CuSO_{4} by passing 0.5 F of electricity?
A. 31.75
B. 63.5
C. 15.875
D. 127

Answer: C

- Watch Video Solution

48. The single electrode reactions,
$C d(s) \rightarrow C d^{2+}(0.1)+2 e^{-}, E^{\circ}=0.4030$
$C u^{2+}+2 e^{-} \rightarrow C u(s), E^{\circ}=0.337$
can be combined to give the cell reaction, $C d(s)+\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}(s)$
The emf of the cell is
A. 0.74
B. 0.1354
C. 0.66
D. 0.066

Answer: A

- Watch Video Solution

49. When dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ is electrolysed at room temperature between platinum electrodes, the substance liberated at the anode is
A. S
B. SO_{2}
C. H_{2}
D. O_{2}
50. When 9.65 C of electricity is passed through a solution of AgNO_{3} (atomic weight of silver 108), the amount of silver deposited is
A. 10.8 mg
B. 5.4 mg
C. 16.2 mg
D. 21.2 mg

Answer: A

- Watch Video Solution

51. Three faradays of electricity was passed through an aqueous solution of iron (II) bromide. The weight of iron metal (at.wt. = 56) deposited at the cathode is (in grams)
A. 56
B. 56
C. 56
D. 168

Answer: B

- Watch Video Solution

52. For a reversible reaction $A \leftrightarrow B$, which one of the following statements is wrong from the given energy Reaction coordinate
A. Activation energy of forward reaction is greater than backward reaction
B. The forward reaction is endothermic
C. The threshold energy is less than that of activation energy
D. The energy of activation of forward reaction is equal to the sum of heat of reaction and the energy of activation of backward reaction.

Answer: C

- View Text Solution

53. The rate constant of a first order reaction at $27^{\circ} \mathrm{C}$ is $10^{-3} \mathrm{~min}^{-1}$. The temperature coefficient of this reaction is 2 . What is the rate constant (in $\min n^{-1}$) at $17^{\circ} C$ for this reaction?
A. 10^{-3}
B. 5×10^{-4}
C. 2×10^{-3}
D. 2×10^{-3}
54. Observe the following reaction:
$2 A+B \rightarrow C$
The rate of formation of C is $2.2 \times 10^{3} \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$. What is the value
$-\frac{d(A)}{d t}\left(\right.$ in $\left.\mathrm{molL}^{-1} \mathrm{~min}^{-1}\right)$
A. $2.2 \times I 0^{-3}$
B. 1.1×10^{-3}
C. 4.4×10^{-3}
D. 5.5×10^{-3}

Answer: C

- Watch Video Solution

55. ___-_of a reaction cannot be determined experimentally.
A. Order
B. Order
C. Rate constant
D. Molecularity

Answer: D

- Watch Video Solution

56. Which one of the following equations is correct for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$?
A. $3 \frac{d\left[\mathrm{NH}_{3}\right]}{d t}=2 \frac{d\left[\mathrm{H}_{2}\right]}{d t}$
B. $2 \frac{d\left[\mathrm{NH}_{3}\right]}{d t}=3 \frac{d\left[\mathrm{H}_{2}\right]}{d t}$
C. $3 \frac{d\left[\mathrm{NH}_{3}\right]}{d t}=-2 \frac{d\left[\mathrm{H}_{2}\right]}{d t}$
D. $3 \frac{d\left[N H_{3}\right]}{d t}=-2 \frac{d\left[H_{2}\right]}{d t}$
57. Consider the following reaction:
$N_{2}(g)+3 H_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$ the rate of this reaction in terms of N_{2} at T K is $=\frac{-d\left[N_{2}\right]}{d t}=0.02 \mathrm{molL}^{-1} \mathrm{~s}^{-1}$. What is the value of $\frac{-d\left[N_{2}\right]}{d t}$ (in units of $m o l L^{-1} s^{-1}$) at the same temeprature.
A. 0.02
B. 50
C. 0.06
D. 0.04

Answer: D

58. One mole of $\mathrm{A}(\mathrm{g})$ is heated to $200^{\circ} \mathrm{C}$ in a one litre closed flask, till the following equilibrium is reached.
$A(g) \leftrightarrow B(g)$
The rate of forward reaction, at equilibrium, is $0.02 \mathrm{molL}^{-1} \mathrm{~min}^{-1}$. What is the rate (in $\mathrm{molL}^{-1} \mathrm{~min}^{-1}$) of the backward reaction at equilibrium?
A. 0.04
B. 0.01
C. 0.02
D. 1

Answer: C

- Watch Video Solution

59. Equilibrium constant for the reaction, $\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g)$ is 81 . If the velocity constant of the forward reaction is $162 \mathrm{~L} \mathrm{~mol} s^{-1}$, what is the velocity constant (in mols^{-1}) for the backward reaction?
A. 13122
B. 2
C. 261
D. 243

Answer: B

(D) Watch Video Solution

60. Consider the following reaction:
$A \rightarrow$ Products
This reaction is completed in 100 min .

The rate constant of this reaction at $t_{1}=10 \mathrm{~min}$, is $10^{-2} \mathrm{~min}^{-1}$. What is the rate constant $\left(\right.$ in $\left.\min ^{-1}\right)$ at $t_{2}=20 \mathrm{~min}$?
A. 2×10^{-2}
B. 10^{-2}
C. 5×10^{-3}
D. 0.1

Answer: B

(D) Watch Video Solution

61. The half-life of a first order reaction is 10 s . What is its rate constant (in s^{-1}) ?
A. 0.0693
B. 0.693
C. 6.93
D. 69.3

Answer: A

- Watch Video Solution

62. 75% of a first order reaction is completed in $32 \mathrm{~min} .50 \%$ of the reaction would have been completed in
A. 24 min
B. 16 min
C. 18 min
D. 24 min

Answer: B

- Watch Video Solution

63. The ΔH value for the reaction,
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ is -44.12 Kcal
If E_{1} is the activation energy of the reactants and E , is the activation energy of the products, for the above reaction.
A. $E_{1}>E_{2}$
B. $E_{1}<E_{2}$
C. $E_{1}=E_{2}$
D. ΔH is not related to E_{1} or E_{2}

Answer: B

- Watch Video Solution

64. In the equilibrium reaction,
$A+B \leftrightarrow C+D$
The activation energy for the forward reaction is $25 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ and
that of the backward reaction is $15 \mathrm{kcal} \mathrm{mol}^{-1}$. Which one of the following statements is correct?
A. It is an exothermic proces
B. It is an endothemic process
C. It is a reaction for which $\Delta H=0$
D. It is a reaction for which $\Delta H=0$

Answer: B

(D) Watch Video Solution

65. With respect to the figure given, which of the following statements is correct?
A. ΔE for forward reaction is $\mathrm{C}-\mathrm{B}$
B. ΔE for the forward reaction is B - A
C. $E_{\text {forward }}>E_{\text {backward }}$
D. ΔE for reverse reaction is $\mathrm{C}-\mathrm{A}$

Answer: B

- View Text Solution

66. The rate of a reaction, $2 A+3 B+4 C \rightarrow$ products, is equal to $R=[A]^{2}[B]^{3}[C]^{4}$. The overall order of the reaction is
A. 9
B. 5
C. 5
D. 3

Answer: A
67. For a reaction $A+B \rightarrow$ Products, the rate of the reaction was doubled, when concentration of-A was doubled. When the concentration of A and B were doubled, the rate was again doubled.

The order of the reaction with respect to A and B are respectively.
A. 1,1
B. 2,0
C. 1,0
D. 0,1

Answer: C

- Watch Video Solution

68. The unit of rate of first order reaction is
A. s^{-1}
B. s^{-1}
C. $m o l L^{-1} s^{-1}$
D. No units

Answer: C

- Watch Video Solution

69. The time tor half - life of a first order reaction is 1 h . What is the time taken for 87.5% completion of the reaction?
A. lh
B. 3 h
C. 2 h
D. 4 h

Answer: C

70. If a reaction obeys the following equation
$k=\frac{2.303}{t} \log _{10}\left(\frac{a}{a-x}\right)$, the order of the reaction will be
A. Zero order
B. Second order
C. First order
D. Third order

Answer: B

(D) Watch Video Solution

71. The rate of reaction is generally doubled for rise in temperature.
A. $20^{\circ} \mathrm{C}$
B. $10^{\circ} \mathrm{C}$
C. $100^{\circ} \mathrm{C}$
D. None of the above

Answer: B

- Watch Video Solution

