

#### **MATHS**

## **BOOKS - SAI MATHS (TELUGU ENGLISH)**

## **ADDITION OF VECTORS AND PRODUCT OF VECTORS**

#### **Problems**

**1.** If 
$$\overset{-}{a}=2\hat{i}-3\hat{j}+5\hat{k}, \overset{-}{b}=3\hat{i}-4\hat{j}+5\hat{k}$$
 and  $\overset{-}{c}=5\hat{i}-3\hat{j}-2\hat{k},$  then the volume of the parallelopiped with co-terminus edges  $\overset{-}{a}+\overset{-}{b}+\overset{-}{c}, \overset{-}{c}+\overset{-}{a}$  is

A. 1

B. 5

C. 8

D. 16

#### Answer: D



View Text Solution

- The shortest distance between the skew 2. line  $rac{x-3}{-1}=rac{y-4}{2}=rac{z+2}{1}, rac{x-1}{1}=rac{y+7}{3}=rac{z+2}{2}$  is
  - A. 6
  - B. 7
  - C.  $3\sqrt{5}$
  - D.  $\sqrt{35}$

#### **Answer: D**



Watch Video Solution

If the position vectors of the vertices of  $\Delta ABC \quad ext{are} \quad 3\hat{i} + 4\hat{j} - \hat{k},\, \hat{i} + 3\hat{j} + \hat{k} \, ext{ and } \, 5\Big(\hat{i} + \hat{j} + \hat{k}\Big),$ 

respectively. Then, the magnitude of the altitude from A onto the side BC

is

- A.  $\frac{4}{3}\sqrt{5}$
- B.  $\frac{5}{3}\sqrt{5}$
- C.  $\frac{7}{3}\sqrt{5}$
- D.  $\frac{8}{3}\sqrt{5}$

### Answer: A



**Watch Video Solution** 

- **4.** ABCD is a parallelogram and P is a point on the segment AD dividing it internally in the ratio 3:1. The line BP meets the diagonal AC in Q. Then

AQ: QC=

A. 3:4

- B. 4:3
- C.3:2

#### Answer: A



**Watch Video Solution** 

- 5. If M and N are the mid points of the sides BC and CD respectively of a parallelogram ABCD, then AM + AN equals

  - A.  $\frac{4}{3}\overset{-}{A}C$  B.  $\frac{5}{3}\overset{-}{A}C$
  - C.  $rac{3}{2}ar{A}C$
  - D.  $rac{6}{5}ar{A}C$

#### **Answer: C**



6. P is the point of intersection of the diagonals of the parallelogram

$$\bar{S}A + \bar{S}B + \bar{S}C + \bar{S}D = \lambda \bar{S}P$$
, then  $\lambda =$ 

B. 4

#### **Answer: B**



# **Watch Video Solution**

7. If  $m_1, m_2, m_3, m_4$  are respetively the magnitudes of the vectors  $ar{a_1} = 2\,ar{i} - ar{j} + ar{k}, ar{a_2} = 3\,ar{i} - 4\,ar{j} - 4\,ar{k}, ar{a_3} = -\,ar{I} + ar{j} - ar{k}, ar{a_4} = -\,ar{i} + 3\,ar{j}$ 

, then the correct order of 
$$m_1,\,m_2,\,m_3,\,m_4$$
 is

A. 
$$m_3 < m_1 < m_4 < m_2$$

B.  $m_3 < m_1 < m_2 < m_4$ 

C.  $m_3 < m_4 < m_1 < m_2$ 

D.  $m_3 < m_4 < m_2 < m_1$ 

### Answer: A



# Watch Video Solution

**8.** If  $\bar{a}, \bar{b}, \bar{c}$  are unit vectos such that  $\bar{a} + \bar{b} + \bar{c} = \bar{0}$  then the

$$\bar{a}$$
.  $\bar{b}$  +  $\bar{b}$ .  $\bar{c}$  +  $\bar{c}$ .  $\bar{a}$  =

$$\mathrm{A.}\ \frac{3}{2}$$

 $\mathsf{B.}-\frac{3}{2}$ 

c.  $\frac{1}{2}$ 

D.  $-\frac{1}{2}$ 

#### **Answer: B**



**9.** If 
$$\overset{-}{a}=\overset{-}{2}\overset{-}{i}+\overset{-}{k}, \overset{-}{b}=\overset{-}{i}+\overset{-}{j}+\overset{-}{k}, \overset{-}{c}=\overset{-}{4}\overset{-}{i}-\overset{-}{3}\overset{-}{j}+\overset{-}{7}\overset{-}{k}$$
 then the vector  $\overset{-}{r}$  satisfying  $\overset{-}{r}\times\overset{-}{b}=\overset{-}{c}\times\overset{-}{b}$  and  $\overset{-}{r}.\overset{-}{a}=0$  is

A. 
$$\overset{-}{i}+\overset{-}{8j}+\overset{-}{2k}$$

$$\overset{-}{\text{B.}}\overset{-}{-}\overset{-}{8j}+\overset{-}{2k}$$

C. 
$$\overset{-}{i}-\overset{-}{8j}-\overset{-}{2k}$$

D. 
$$-\stackrel{-}{i}-8\stackrel{-}{j}+\stackrel{-}{2k}$$

#### Answer: D



# Watch Video Solution

If  $\bar{a}, \bar{b}, \bar{c}$  are three vectors 10. such that  $\left|ar{a}
ight|=1,\left|ar{b}
ight|=2,\left|ar{c}
ight|=3, \ ext{and} \ ar{a}. \ ar{b}. \ =ar{b}. \ ar{c}=ar{c}. \ ar{a}=0, \ ext{ then } \left|\left|ar{a}ar{b}ar{c}
ight|
ight|=3$ 

B. 2

C. 3

D. 6

#### **Answer: D**



View Text Solution

# **11.** If $\left[ \stackrel{-}{a} \times \stackrel{-}{b} \times \stackrel{-}{c} \stackrel{-}{c} \times \stackrel{-}{a} \right] = \lambda \left[ \stackrel{-}{a} \stackrel{-}{b} \stackrel{-}{c} \right]$ , then $\lambda =$

A. 0

B. 1

C. 2

D. 3

### **Answer: B**



12. The Cerrtesian equation of the plane passing through the point

$$\overset{-}{b}=\overset{-}{i}-\overset{-}{2j}+\overset{-}{4k}$$
 and  $\overset{-}{c}=3i+\overset{-}{2j}-\overset{-}{5k}$  is

#### Answer: C



## 13. The shortest distance between the skew lines

$$ar{r} = \left(\hat{i} + 2\hat{j} + 3\hat{k}
ight) + t\Big(\hat{i} + 3\hat{j} + 2\hat{k}\Big)$$
 and

$$\overset{-}{r}=\left(4\overset{-}{i}+5\overset{-}{j}+6\overset{-}{k}
ight)+t\Big(2\hat{i}+3\hat{j}+\hat{k}\Big)$$
 is

A. 
$$\sqrt{b}$$

B. 3

 $\mathrm{C.}\ 2\sqrt{3}$ 

D.  $\sqrt{3}$ 

#### Answer: D



Watch Video Solution

14. If x,y,z are non-zero real numbers, a = xi + 2j, b = yi + 3k and c = xi + yi + 3kzk are such that  $a \times b$  = zi - 3j + k then [a b c] =

A. 3

B. 10

C. 9

D. 6

#### **Answer: C**



15. If a,b and c are vectors with magnitudes 2,3 and 4 respectively then the least upper bound of  $\left|a-b\right|^2+\left|b-c\right|^2+\left|c-a\right|^2$  among the given values is

B. 97

C. 87 D. 90

**Answer: C** 



**16.** The angle beween the lines 
$$\hat{r}=\left(2\hat{i}-3\hat{j}+\hat{k}\right)+\lambda\left(\hat{i}+4\hat{j}+3\hat{k}\right) ext{ and } \hat{r}=\left(\hat{i}-\hat{j}+2\hat{k}\right)+\mu\left(\hat{i}+2\hat{j}+3\hat{k}\right)$$
 is

A. 
$$\frac{\pi}{2}$$

B. 
$$\cos^{-1}\left(\frac{9}{\sqrt{91}}\right)$$

$$\mathsf{C.}\cos^{-1}\left(\frac{7}{\sqrt{84}}\right)$$

$$\mathsf{D.} \; \frac{\pi}{3}$$

#### Answer: A



- 17. If a, b and c are non-coplanar vectors and if d is such that  $d=\frac{1}{x}(a+b+c) \text{ and } a=\frac{1}{y}(b+c+d) \text{ where x and y are non-zero real numbers, then } \frac{1}{xy}(a+b+c+d)=$ 
  - A. 3c
  - $\mathsf{B.}-a$
  - C. 0
  - D. 2a

#### **Answer: C**



Watch Video Solution

- **18.** Three non-zero non-collinear vectors a, b, c are such that a + 3b is collinear with c, while 3b + 2c is collinear with a. Then a + 3b + 2c =
  - A. 0
  - $\mathrm{B.}\,2\widehat{a}$
  - C.  $3\hat{b}$
  - D.  $4\hat{c}$

#### **Answer: A**



- **19.** The points whose position vectors are 2i + 3j + 4k, 3i + 4j + 2k and 4i + 2k
- 2j + 3k are the vertices of

- A. An isoscles triangle
- B. Right angled triangle
- C. Equilateral triangle
- D. Righta angled isosceles triangle

#### **Answer: C**



- **20.** P,Q,R and four point with the position vectors 3i-4j+5k, -4i+5j+k and -3i+4j+3k, respectively. Then the line PQ meets the line RS at the point
  - A. 3i+4j+3k
  - $\mathsf{B.} 3i + 4j + 3k$
  - $\mathsf{C.}-i+4j+k$
  - D. i + j + k

#### **Answer: B**



View Text Solution

21.

$$\overrightarrow{a} \neq \overrightarrow{0}, \overrightarrow{b} \neq \overrightarrow{0}, \overrightarrow{c} \neq \overrightarrow{0}, \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0} \text{ and } \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{0}, \text{ then } \overrightarrow{a} \times \overrightarrow{a}$$

lf

is equal to

A. 
$$\overset{
ightarrow}{b}$$

в. 
$$\overrightarrow{a}$$

$$\mathsf{C.}\stackrel{\longrightarrow}{0}$$

D. i+j+k

### **Answer: C**



$$r=3i+5j+7k+\lambda(i+2j+k)$$
 and  $r=-i-j-k+\mu(7i-6j+k)$  is

23. A unit vector coplanar with i+j+3k and i+3j+k and perpendicular to

the

between

lines

distance

C. 
$$\frac{36}{5\sqrt{5}}$$
D.  $\frac{46}{5\sqrt{5}}$ 

The

 $\text{A.}\ \frac{16}{5\sqrt{5}}$ 

 $\text{B.}\ \frac{26}{5\sqrt{5}}$ 

**Answer: D** 

shortest

22.



A. 
$$\dfrac{1}{\sqrt{2}}(j+k)$$

B. 
$$\dfrac{1}{\sqrt{3}}(i-j+k)$$

$$\mathsf{C.}\,\frac{1}{\sqrt{2}}(j-k)$$

D. 
$$\dfrac{1}{\sqrt{3}}(i+j-k)$$

#### **Answer: C**



View Text Solution

**24.** If  $\overrightarrow{a}$  and  $\overset{\longrightarrow}{\longrightarrow} b$  are two non-zero perpendicular vectors, then a vector y satisfying equations  $\overrightarrow{a}.\overrightarrow{y}=c$  (where c is scalar) and

$$\overrightarrow{a} imes \overrightarrow{a} imes \overrightarrow{b}$$
 is

A. 
$$\left|a
ight|^2[ca-(a imes b)]$$

B. 
$$|a|^2[ca+(a imes b)]$$

C. 
$$rac{1}{\leftert a
ightert ^{2}}[ca-(a imes b)]$$

D. 
$$\frac{1}{|a|^2}[ca+(a\times b)]$$

#### Answer: C



**25.** 
$$\stackrel{\longrightarrow}{\longrightarrow} a = i + j - 2h \Rightarrow \sum \left\{ (a \times i) \times j \right\}^2$$
 is equal to

- A.  $\sqrt{6}$
- B. 6
- C. 36
- D.  $6\sqrt{6}$

#### Answer: B



# **View Text Solution**

**26.** Let a, b and c be three non-coplanar vectors and let p,q and r be the vector defined by  $p=rac{b imes c}{\lceil abc
ceil},$   $q=rac{c imes a}{\lceil abc
ceil},$   $r=rac{a imes b}{\lceil abc
ceil}.$ 

Then, (a+b). p+(b+c).q +(c+a).r` is equal to

- A. 0
- B. 1

C. 2

D. 3

#### **Answer: D**



View Text Solution

**27.** Let  $\overrightarrow{a}+i+2j+j, \overrightarrow{b}=i-j+k, \overrightarrow{v}=i+h-k$ . A vector in the plane of  $\overrightarrow{a}$  and  $\overrightarrow{b}$  has projection  $\frac{1}{\sqrt{3}}$  on  $\overrightarrow{c}$ . Then, one such vector is

A. 4i+j-4k

B. 3i+j-3k

C. 4i-j+4k

D. 2i+j+2k

#### Answer: D



28. The point of intersection of the lines

$$l_1$$
:  $r(t) = (i - 6j + 2k) + t(i + 2j + k)$ 

$$l_2\!:\!R(u)=(4j+k)+u(2i+j+2k)$$
 is

- A. (4,4,5)
- B. (6,4,7)
- C. (8,8,9)
- D. (10,12,11)

#### **Answer: C**



**View Text Solution** 

**29.** The vectors AB = 3i - 2j + 2k and BC = -1 - 2k are the adjacent sides of a parallelogram. The angle between its diagonals is

- A.  $\frac{\pi}{2}$
- B.  $\frac{\pi}{3}$  or  $\frac{2\pi}{3}$

C. 
$$\frac{3\pi}{4}$$
 or  $\frac{\pi}{4}$ 

D. None of these

#### **Answer: C**



Watch Video Solution

**30.** If  $p^{th}$ ,  $q^{th}$ ,  $r^{th}$  terms of a geometric progression are the positive numbers a,b,c respectively, then the angle between the vectors  $\left(\log a^2\right)I + \left(\log b^2\right)j + \left(\log c^2\right)k$  and  $(\mathsf{q} - \mathsf{r}) \, \mathsf{I} + (\mathsf{r} - \mathsf{p}) \, \mathsf{j} + (\mathsf{p} - \mathsf{q}) \, \mathsf{k}$  is

A. 
$$\frac{\pi}{3}$$

B. 
$$\frac{\pi}{2}$$

C. 
$$rac{\sin^{-1}(1)}{\sqrt{a^2+b^2+c^2}}$$

$$\sqrt{a^2 + b^2 + c^2}$$
 D.  $\frac{\pi}{4}$ 

#### **Answer: B**



31. The magnitude of the projection of the vector a=4i-3j+2k on the line which makes equal angles with the corrdinates axes is

- A.  $\sqrt{2}$
- B.  $\sqrt{3}$
- C.  $\frac{1}{\sqrt{3}}$  D.  $\frac{1}{\sqrt{2}}$

#### **Answer: B**



**View Text Solution** 

32. If the vectors i-2xj-2yk and i+3xj+2yk are orthogonal to each other, then the locus of the point (x,y) is

- A. A circle
- B. An ellipse

C. A parabola

D. A straight line

#### Answer: A



View Text Solution

# **33.** For any vector $\overrightarrow{r}$ .

$$I imes\left(\overrightarrow{r} imes i
ight)+j imes\left(\overrightarrow{r} imes j
ight)+\ imes\left(\overrightarrow{r}+\ imes k
ight)$$
 is equal to

A. 0

B. 2r

C. 3r

D. 4r

#### **Answer: B**



**34.** If the vectors AB = -3i + 4k and AC = 5i - 2j + 4k are the sides of a triangle ABC, then the length of the median through A is

- A.  $\sqrt{14}$
- B.  $\sqrt{18}$
- C.  $\sqrt{25}$
- D.  $\sqrt{29}$

#### **Answer: B**



- **35.** If |a|=1, |b|=2 and the angle between a and b is 120, then  $\{(a+3b)\times(3a-b)\}^2=$ 
  - A. 425
  - B. 375
  - C. 325

#### **Answer: D**



**Watch Video Solution** 

- **36.** Let v = 2i + j k and w = 1 + 3k. If u is unit vector. Then the maximum value of the scalar triple product [u v w] is
  - A. 1
  - B.  $\sqrt{10} + \sqrt{6}$
  - C.  $\sqrt{59}$
  - D.  $\sqrt{60}$

## **Answer: C**



37. Let  $\overrightarrow{a}=\hat{i}-2\hat{j}+3\hat{k}, \overrightarrow{b}=2\hat{i}+3\hat{j}-\hat{k} ext{ and } \overrightarrow{c}=\lambda\hat{i}+\hat{j}+(2\lambda-1)\hat{k}.$  If  $\overrightarrow{a}$ 

is parallel to the plane containing 
$$\overrightarrow{a}$$
,  $\overrightarrow{b}$  then  $\lambda$  is equal to

D. 2

Answer: A

B. 1



**38.** If three unit vectors  $\overrightarrow{a}$ ,  $\overrightarrow{b}$ ,  $\overrightarrow{c}$  satisfy  $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ , then the angle between  $\overrightarrow{a}$  and  $\overrightarrow{b}$  is

A. 
$$\frac{2\pi}{3}$$
B.  $\frac{5\pi}{6}$ 

C. 
$$\frac{\pi}{3}$$

$$\mathrm{D.}\ \frac{\pi}{6}$$

Answer: A



View Text Solution

**39.** 
$$\left(\bar{a}+2\bar{b}-\bar{c}\right)\left(\bar{a}-\bar{b}\right) imes\left(\bar{a}-\bar{b}-\bar{c}\right)$$
 is equal to

$$\mathsf{A.} - \begin{bmatrix} - & - \\ a & b & c \end{bmatrix}$$

$$\mathsf{B.}\,2{\left[ {\overset{-}{a}\,\overset{-}{b}\,\overset{-}{c}} \right]}$$

$$\mathsf{C.}\,3{\left[{ar{a}\,ar{b}\,c}\right]}$$

D. 
$$\overline{0}$$

**Answer: C** 



**40.** If  $\overset{-}{u}=\overset{-}{a}-\overset{-}{b},\overset{-}{v}=\overset{-}{a}+\overset{-}{b},\left|\overset{-}{a}\right|=\left|\overset{-}{b}\right|=2, \quad ext{then} \quad \left|\overset{-}{u}\times\overset{-}{v}\right| \text{ is equal to}$ 

A. 
$$2\sqrt{16-\left(\stackrel{-}{a}.\stackrel{-}{b}\right)^2}$$
B.  $\sqrt{16-\left(\stackrel{-}{a}.\stackrel{-}{b}\right)^2}$ 
C.  $2\sqrt{4-\left(\stackrel{-}{a}.\stackrel{-}{b}\right)^2}$ 
D.  $\sqrt{4-\left(\stackrel{-}{a}.\stackrel{-}{b}\right)^2}$ 

#### **Answer: A**



#### View Text Solution

**41.** If the angle heta between the vectors  $\overrightarrow{a}=2x^2\hat{i}+4x\hat{j}+\hat{k}$  and  $\overset{-}{b}=7\hat{i}-2\hat{j}+x\hat{k}$  is such that

$$90^{\circ} < heta < 180^{\circ}$$
 , then x lies in the interval

$$A.\left(0,\frac{1}{2}\right)$$

$$\mathsf{B.}\left(\frac{1}{2},1\right)$$

C. 
$$\left(1, \frac{3}{2}\right)$$
D.  $\left(\frac{1}{2}, \frac{3}{2}\right)$ 

#### Answer: A



**View Text Solution** 

42. Let OA, OB, OC be the co-terminal edges of a rectangular parallelopiped of volume V and let p be the vertex opposite to O. Then,

$$\left|\overrightarrow{APBPCP}
ight|$$
 is equal to

- A. 2V
- **B. 12V**
- $C. 3\sqrt{3}V$
- D. 0

#### Answer: A



**43.** In a quadrilateral ABCD, the point P divides DC in the ratio 1:2 and Q is the mid point of AC. If  $\overrightarrow{AB}+2\overrightarrow{AD}+\overrightarrow{BC}-2\overrightarrow{DC}=k\overrightarrow{PQ}$  then k is equal to

**44.** If  $\overrightarrow{a}=-\hat{i}+\hat{j}+2\hat{k}, \overrightarrow{b}=2\hat{i}-\hat{j}-\hat{k}$  and  $\overrightarrow{c}=-2\hat{i}+\hat{j}+3\hat{k}$ ,

$$A. - 6$$

$$\mathsf{B.}-4$$

#### Answer: A



then the angle between 
$$2\overset{-}{a}-\overset{-}{c}$$
 and  $\overset{-}{a}+\overset{-}{b}$  is

A. 
$$\frac{\pi}{4}$$

B. 
$$m_3 < m_1 < m_2 < m_4$$

Answer: A

C.  $m_3 < m_4 < m_1 < m_2$ 

D.  $m_3 < m_4 < m_2 < m_1$ 

A. 
$$m_3 < m_1 < m_4 < m_2$$

**Answer: B** 

C.  $\frac{\pi}{2}$ 

D.  $\frac{3\pi}{2}$ 

, then the correct order of  $m_1,\,m_2,\,m_3,\,m_4$  is

**45.** If  $m_1, m_2, m_3, m_4$  are respetively the magnitudes of the vectors

 $ar{a_1} = 2\,ar{i} - ar{j} + ar{k}, ar{a_2} = 3\,ar{i} - 4\,ar{j} - 4\,ar{k}, ar{a_3} = -\,ar{I} + ar{j} - ar{k}, ar{a_4} = -\,ar{i} + 3\,ar{j}$ 

**46.** Suppose  $\overrightarrow{a}=\lambda \hat{i}-7\hat{j}+3\hat{k}, \ \overleftarrow{b}=\lambda \hat{i}+\hat{j}+2\lambda \hat{k}.$  If the angle between  $\overleftarrow{a}$  and  $\overleftarrow{b}$  is greater than  $90^\circ$  then  $\lambda$  satisfies the inequality

A. 
$$-7 < \lambda < 1$$

B. 
$$\lambda > 1$$

$$\mathsf{C.}\,1 < \lambda < 7$$

D. 
$$-5 < \lambda < 1$$

### Answer: A



#### View Text Solution

**47.** The volume of the tetrahedron having the edes  $\hat{i}+2\hat{j}-\hat{k},\,\hat{i}+\hat{j}+\hat{k},\,\hat{i}-\hat{j}+\lambda\hat{k}$  as coterminous, is  $\frac{2}{3}$  cubic unit. Then

$$\lambda$$
 equals

- A. 1
- B. 2
- C. 3
- D. 4

### **Answer: A**



# Watch Video Solution

- 48. The position vectors of P and Q are respectively a and b. If R is a point on  $\overrightarrow{PQ}$  such that  $\overrightarrow{P}R=5\overrightarrow{P}Q$ , then the position vector of R is
  - $\overline{A.5b} \overline{4a}$
  - $\bar{\mathsf{B.5b} + 4a}$
  - $ar{\mathsf{C.4}b} ar{b} ar{a}$
  - D.  $4\overline{b} + 5\overline{a}$

# Answer: A

**49.** If the points with position vectors  $60\hat{i}+3j$ ,  $40\hat{i}-8\hat{j}$  and  $a\hat{i}-52\hat{j}$  are collinear, then a is equal to

$$\mathsf{A.}-40$$

$$B. - 20$$

D. 40

#### Answer: A



50.

Watch Video Solution

 $2\hat{i}-\hat{k}+\hat{k},\,\hat{i}-3\hat{j}-5\hat{k}\, ext{ and }\,3\hat{i}-4\hat{j}-4\hat{k},\, ext{then }\,\cos^2A$  is equal to

points vectors of A,B and C are respectively

A. 0

If the

B. 
$$\frac{6}{41}$$
C.  $\frac{35}{41}$ 

D. 1

# **Answer: C**



View Text Solution

# Column I

# (A) $\vec{a}.\vec{b}$

then match the following columns

- (B)  $\vec{b} \cdot \vec{c}$
- (C)  $[\vec{a} \ \vec{b} \ \vec{c}]$ (D)  $\vec{b} \times \vec{c}$

# Column II

1. ã.d

**51.** If  $\overrightarrow{a} = \hat{i} + \hat{k}$ ,  $\hat{k}$ ,  $\overset{-}{b} = \hat{i} - \hat{j} + \hat{k}$ ,  $\overset{-}{c} = \hat{i} + \hat{j} - \hat{k}$  and  $\overset{-}{d} = \hat{i} - \hat{j} - \hat{k}$ ,

- 2. 3
- 5.d  $4. \qquad 2\hat{i}-2\hat{k}$
- 5.  $2\hat{j} + 2\hat{k}$
- 6. 4

A. 
$$a \ 3 \ 1 \ 2 \ 6$$
B.  $A \ B \ C \ D$ 
b  $3 \ 1 \ 6 \ 5$ 

A B C

C. 
$$\begin{pmatrix} A & B & C & D \\ c & 1 & 3 & 2 & 6 \\ & A & B & C & D \\ d & 1 & 3 & 6 & 4 \end{pmatrix}$$

# **Answer: B**



# **52.** Let $\stackrel{-}{a}$ be a unit vector $\stackrel{-}{b}=2\hat{i}+\hat{j}-\hat{k}$ and $\stackrel{-}{c}=\hat{i}+3\hat{k}$ . Then maximum value of $\begin{bmatrix} -a & b & c \end{bmatrix}$ is

A. 
$$-1$$

B.  $\sqrt{10} + \sqrt{6}$ 

C. 
$$\sqrt{10}-\sqrt{6}$$

D. 
$$\sqrt{59}$$

# Answer: D



**53.** Let 
$$a=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}$$

Assertion (A) The identity

$$\left|\overrightarrow{a} imes\hat{i}
ight|^2+\left|\overrightarrow{a} imes\hat{j}
ight|^2+\left|\overrightarrow{a} imes\hat{k}
ight|^2=2{\left|\overrightarrow{a}
ight|}^2 ext{ holds for } \overrightarrow{a}.$$

Reason (R)  $\overrightarrow{a} imes \hat{i} = a_3 \hat{j} - a_2 \hat{k}$ ,

$$\overrightarrow{a} imes \hat{j} = a_1 \hat{k} - a_3 \hat{i}$$
 ,

$$\overrightarrow{a} imes \hat{k} = a_2 \hat{i} - a_1 \hat{j}$$

A. Both A and R are true and R is the correct explanation of (A)

B. Both A and R are true and R is not the correct explanation of (A)

C. (A) is true but (R) is false

D. A is false but R is true

#### Answer: A



## **View Text Solution**

**54.** If the point whose position vectors are

$$2\hat{i}+\hat{j}+\hat{k}, 6\hat{i}-\hat{j}+2\hat{k}$$
 and  $14\hat{i}-5\hat{j}+p\hat{k}$  collinear, then the value of



**56.** If 
$$\overrightarrow{a} = \overline{i} - \overline{j} - \overline{k}$$
 and  $\overrightarrow{b} = \lambda \hat{i} - 3\hat{j} + \hat{k}$  and the orthogonal projection of  $\overrightarrow{b}$  on  $\overrightarrow{a}$  is  $\frac{4}{3}(\hat{i} - \hat{j} - \hat{k})$ , then  $\lambda$  is equal to

- A. 0
- B. 2
- C. 12
- D. 1



#### View Text Solution

57. The volume (in cubic unit) of the tetrahedron with edges  $\hat{i}+\hat{j}+\hat{k},\,\hat{i}-\hat{j}+\hat{k}$  and  $\hat{i}-2\hat{j}-\hat{k}$  is

B.2/3

C.1/6

D.1/3

#### **Answer: B**



Watch Video Solution

# **58.** If a + b + c = 0 and |a| = 3, |b| = 4 and |c| = $\sqrt{37}$ the angle between a and b is

A.  $\frac{\pi}{4}$ 

B.  $\frac{\pi}{2}$ 

C.  $\frac{\pi}{6}$ 

D.  $\frac{\pi}{3}$ 

#### Answer: D



**59.** The position vector of a point lying on the line joining the points whose position vectors are  $\hat{i}+\hat{j}-\hat{k}$  and  $\hat{i}-\hat{j}+\hat{k}$  is

- A.  $\hat{j}$
- B.  $\hat{i}$
- C.  $\hat{k}$
- D.  $\hat{0}$

#### **Answer: B**



View Text Solution

- **60.** If  $\hat{i}-2\hat{j},3\hat{j}+4\hat{k}$  and  $\lambda\hat{i}+3\hat{j}$  are coplanar, then  $\lambda$  is equal to
  - **A.** -1
  - B.1/2
  - C. 3/2

#### Answer: C



Watch Video Solution

- **61.** If the volume of parallelopiped with conterminus edges  $4\hat{i}+5\hat{j}+\hat{k},\ -\hat{j}+\hat{k}$  and  $3\hat{i}+9\hat{j}+p\hat{k}$  is 34 cubic units then p is equal to
  - A. -4
  - B. 13
  - C. 13
  - D. 6

#### **Answer: A**



**62.** If 
$$\overrightarrow{a}$$
 .  $\hat{i}+\overrightarrow{a}$  .  $\left(2\hat{i}+\hat{j}\right)=\overrightarrow{a}$  .  $\left(\hat{i}+\hat{j}+3\hat{k}\right)=1$  then  $\overrightarrow{a}$  is equal to

B. 
$$\left(3\hat{i}+3\hat{j}+\hat{k}
ight)/3$$

Answer: D

A.  $\hat{i}-\hat{k}$ 

D. 
$$\left(3\hat{i}-3\hat{j}+\hat{k}
ight)/3$$

C.  $\left(\hat{i}+\hat{j}+\hat{k}
ight)/3$ 

**63.** If the vector 
$$\overrightarrow{a}=2\hat{i}+3\hat{j}+6\hat{k}$$
 and  $\overrightarrow{b}$  are collinear  $\left|\overrightarrow{b}\right|=21,$  then  $\overrightarrow{b}$  is equal to

A. 
$$\pm \left(2\hat{i}\,+3\hat{j}\,+6\hat{k}
ight)$$

B. 
$$\pm 3 \Big( 2\hat{i} + 3\hat{j} + 6\hat{k} \Big)$$

C. 
$$\left(\hat{i}+\hat{j}+\hat{k}
ight)$$

D. 
$$\pm 21 \Big( 2\hat{i} + 3\hat{j} + 6\hat{k} \Big)$$



View Text Solution

**64.** If  $\overrightarrow{a}$  and  $\overrightarrow{b}$  are unit vectors, then the vectors  $\left(\overrightarrow{a} + \overrightarrow{b}\right) \times \left(\overrightarrow{a} \times \left(\overrightarrow{b}\right)\right)$  is parallel to the vector.

A. 
$$\overrightarrow{a}-\overrightarrow{b}$$

B. 
$$\overrightarrow{a} + \overrightarrow{b}$$

C. 
$$2\overrightarrow{a}-\overrightarrow{b}$$

D. 
$$2\overrightarrow{a} + \overrightarrow{b}$$

#### Answer: A



Watch Video Solution

**65.** Statement I Two non-zero, non-collinear vectors are linearly independent

Statement II Any three coplanar vectors are linearly dependent

Which of the above statement is/are true?

- A. Only I
- B. Only II
- C. Both I and II
- D. Neither I nor II

#### **Answer: C**



View Text Solution

66. Match the columns and choose the correct answer.

#### Column I

- (A) [ã b c]
- (B)  $(\vec{c} \times \vec{a}) \times \vec{b}$
- $(C) \quad \vec{a} \times (\vec{b} \times \vec{c})$
- (D) ã.b

#### Column II

- 1.  $|\vec{a}| |\vec{b}| \cos(\vec{a} \vec{b})$ 
  - 2.  $(\vec{a}.\vec{c})\vec{b} (\vec{a}.\vec{b})\vec{c}$
  - 3.  $\vec{a} \cdot \vec{b} \times \vec{c}$
  - 4.  $|\vec{a}| |\vec{b}|$
  - 5.  $(\vec{b}.\vec{c})\vec{a} (\vec{a}.\vec{b})\vec{c}$



#### **Answer: C**



# **View Text Solution**

# as a linear combination of the other two

Reason (R) Any three coplanar vectors are linearly

A. Both A and R are true and R is the correct explanation of (A)

67. Assertion (A): Three vectors are coplanar if one of them is expressible

B. A is true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true



**View Text Solution** 

**68.** The points collinear (1,-2,-3) and (2,0,0) among the following is

- A. (0,4,6)
- B. (0,-4,-5)
- C. (0,-4,-6)
- D. (0,-4,6)

#### **Answer: C**



**View Text Solution** 

**69.** If  $\hat{i}+2\hat{j}+3\hat{k}, 3\hat{i}+2\hat{j}+\hat{k}$  are the sides of a parallelogram, then a unit vector is prallel to one of the diagonals of the parallelogram, is

D. 
$$2\overset{-}{BG}$$

A.  $rac{\hat{i}+\hat{k}+\hat{k}}{\sqrt{3}}$ 

B.  $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$ 

c.  $\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$ 

D.  $\dfrac{-\,\hat{i}\,+\hat{k}+\hat{k}}{\sqrt{3}}$ 

**View Text Solution** 

**70.** If G is the centroid of the  $\ \triangle \ ABC, \ \ ext{then} \ \ ar{GA} + ar{BG} + ar{GC}$ 

**Answer: A** 

A. 2GB

B.  $2\overline{G}A$ 

 $\mathsf{C}.\stackrel{\longrightarrow}{0}$ 



# Answer: D



**71.** if the vectors  $\hat{i}+3\hat{j}+4\hat{k},$   $\lambda\hat{i}-4\hat{j}+\hat{k}$  are othogonal to each other.

Then  $\lambda$  is equal to

- A. 5
- B. 5
- C. 8
- D. 8

#### **Answer: C**



**72.** The vector 
$$\overrightarrow{c}$$
 .  $\left(\overrightarrow{b}+\overrightarrow{c}\right) imes\left(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right)$  is equal to

A. 
$$\overrightarrow{c}$$
 .  $Vecb imes \overrightarrow{a}$ 

C. 
$$\overrightarrow{c}$$
 .  $Veca imes \overrightarrow{b}$ 

D. 
$$\overrightarrow{a}$$
 .  $Ve imes \overrightarrow{b}$ 

#### **Answer: A**



## View Text Solution

- **73.** If  $3\hat{i}+3\hat{j}+\sqrt{3}\hat{k},\,\hat{i}+\hat{k},\sqrt{3}\hat{i}+\sqrt{3}\hat{j}+\lambda\hat{k}$  are coplanar, then  $\lambda$  is equal to
  - A. 1
  - B. 2
  - C. 3
  - D. 4

#### **Answer: A**



74. If D,E and F are respectively the mid points of AB, AC and BC in

$$\triangle \ ABC$$
, then  $BE + AF$  is

A. 
$$\stackrel{-}{DC}$$

- B.  $\frac{1}{2} \overset{-}{BF}$
- $\mathsf{C.}\,\,2\overset{-}{BF}$
- D.  $\frac{3}{2} \bar{BF}$

#### Answer: A



View Text Solution

**75.** If  $\overrightarrow{a}$  ,  $\overrightarrow{b}$  ,  $\overrightarrow{c}$  are three non-coplanar vectors, then the vectors equation

$$\overrightarrow{r}=(1-p-q)\overrightarrow{a}+p\overrightarrow{b}+q\overrightarrow{c}$$
 represents a

- A. Straight line
- B. Plane
- C. Plane passing through the origin

D. Sphere

#### **Answer: B**



#### **View Text Solution**

**76.** If a,b,c are three vectors such that a = b + c and the angle between b and c is  $\pi/2$ , then (here a = |a|, b = |b|, c = |c|)

A. 
$$a^2=b^2+c^2$$

$$\mathtt{B.}\,b^2=c^2+a^2$$

$$\mathsf{C.}\,c^2=a^2+b^2$$

D. 
$$2a^2 - b^2 = c^2$$

#### Answer: A



**77.** Let  $\overrightarrow{a} \ m \overrightarrow{v} \ m \overrightarrow{c}$  be the position vectors of the vertices A,B,C

respectively of  $\triangle$  ABC. The vector area of  $\triangle$  ABC is

$$1 \left( \rightarrow \right) \left( \rightarrow \right) \rightarrow \left( \rightarrow$$

A. 
$$\frac{1}{2} \Big\{ \overrightarrow{a} imes \Big( \overrightarrow{b} imes \overrightarrow{c} \Big) + \overrightarrow{b} imes \Big( \overrightarrow{c} imes \overrightarrow{a} \Big) + \overrightarrow{c} imes \Big( \overrightarrow{a} imes \overrightarrow{b} \Big) \Big\}$$

$$\mathsf{B.}\,\frac{1}{2}\!\left\{\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{b}\times\overrightarrow{c}+\overrightarrow{c}\times\overrightarrow{a}\right\}$$
 
$$\mathsf{C.}\,\frac{1}{2}\!\left\{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right\}$$

$$\mathsf{D.}\ \frac{1}{2} \bigg\{ \bigg( \overrightarrow{b} \, . \, \overrightarrow{c} \bigg) \overrightarrow{a} \, + \bigg( \overrightarrow{c} \, . \, \mathit{Veca} \bigg) \overrightarrow{b} \, + \bigg( \overrightarrow{a} \, . \, \overrightarrow{b} \bigg) \overrightarrow{c} \bigg\}$$

**Answer: B** 



**78.** 
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \ \overrightarrow{b} = \overrightarrow{i} + \overrightarrow{j}, \ \overrightarrow{c} = \overrightarrow{i} \ \text{ and } \left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c} = \lambda \overrightarrow{a} + \mu \overrightarrow{b}$$

is equal to

B. 1

C. 2

D.

#### Answer: A



View Text Solution

**79.** If  $\overrightarrow{a}$ .  $\overrightarrow{i} = \overrightarrow{a}$ .  $\left(\overrightarrow{i} + \overrightarrow{j}\right) = \overrightarrow{a}$ .  $\left(\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}\right)$ , then  $\overrightarrow{a}$  is equal to

A.  $\hat{i}$ 

B.  $\hat{j}$ 

C.  $\hat{k}$ 

D.  $\hat{i} + \hat{j} + \hat{k}$ 

#### **Answer: A**



View Text Solution

**80.** I: If three points A, B and C have position vectors (1, x, 3), (3, 4, 7) and

(y, -2, -5) respectively and if they are collinear, then (x, y) = (2, -3)

II: If a = i + 4j, b = 2i - 3j and c = 5i + 9j then c = 3a + b

- A. (2,-3)
- B. (-2,3)
- C. (-2,-3)
- D. (2,-3)

#### **Answer: A**



**Watch Video Solution** 

**81.** The orthogona projection of  $\bar{a}$  on  $\bar{b}$  is

A. 
$$\frac{\left(\overrightarrow{a}.\overrightarrow{b}\right)\overrightarrow{a}}{\left|\overrightarrow{a}\right|^2}$$

B. 
$$\frac{\left(\overrightarrow{a}.\overrightarrow{b}\right)\overline{b}}{\left|\overrightarrow{b}\right|^{2}}$$
C. 
$$\frac{\overrightarrow{a}}{\left|\overrightarrow{a}\right|^{2}}$$
D. 
$$\frac{\overrightarrow{b}}{\left|\overrightarrow{b}\right|}$$



# **View Text Solution**

- 82. If the position vectors of the vertices of a triangle are 2i j + k, i 3j k
- 5k, 3i 4j 4k then it is
  - A. Equilateral
  - **B.** Isosceles
  - C. Right angles isosceles
  - D. Right angled

#### **Answer: D**



Watch Video Solution

83. If [a b c] = 3, then the volume (in cube units) of the parallelopiped with

2a + b, 2b + c and 2c + a as coteminous edges is

- A. 15
- B. 22
- C. 25
- D. 27

#### Answer: D



**84.** 
$$\left(\overrightarrow{a} + \overrightarrow{b}\right)$$
.  $\left(\overrightarrow{b} + \overrightarrow{c}\right) \times \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right)$  is equal to

$$\mathsf{B.} - \left[\overrightarrow{a} \, \overrightarrow{b} \, \overrightarrow{c}\right]$$

$$\operatorname{C.2}\!\left[\overrightarrow{a} \, \overrightarrow{b} \, \overrightarrow{c}\right]$$

$$\operatorname{D.}\left[\overrightarrow{a} \, \overrightarrow{b} \, \overrightarrow{c}\right]$$

#### Answer: D



# View Text Solution

**85.** If 
$$\overrightarrow{a}=\hat{i}+4\hat{j}, \ \overrightarrow{b}=2\hat{i}-3\hat{j}, \ \overrightarrow{c}=5\hat{i}+9\hat{j} \ \ ext{then} \ \ \overrightarrow{c}$$
 is equal to

A. 
$$2\overrightarrow{a}+b$$

B. 
$$\overrightarrow{a} + 2\overrightarrow{b}$$

$$\mathsf{C.}\, 3\overrightarrow{a} + \overrightarrow{b}$$

D. 
$$3veac+3\overline{b}$$

#### Answer: C



**86.** ABCD is a parallelogram, with AC, BD as diagonals, then AC-BD is equal to

A. 
$$4\overset{-}{AB}$$

B. 
$$\overset{-}{AB}$$

$$\mathsf{C}.\,3\overset{-}{AB}$$

$$\mathsf{D.}\,2AB$$

#### **Answer: D**



Watch Video Solution

**87.** If  $\overrightarrow{a}=\hat{i}+\hat{j}+t\hat{k},$   $\overrightarrow{b}=\hat{i}+2\hat{j}+3\hat{k}$  then the value of 't for which  $\left(\overrightarrow{a}+\overrightarrow{b}\right)$  and  $\left(\overrightarrow{a}-\overrightarrow{b}\right)$  are perpendicular are

A. 
$$\pm 2$$

B. 
$$\pm 2\sqrt{3}$$

$$\mathsf{C}.\pm 3\sqrt{2}$$

$${\rm D.}\pm3$$



View Text Solution

**88.** If heta is the angled between

$$\overrightarrow{a}$$
 and  $\overrightarrow{b}$  and  $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = \left|\overrightarrow{a} \cdot \overrightarrow{b}\right|$ , then  $\theta$  is equal to

C. 
$$\frac{\pi}{2}$$

D. 
$$\frac{\pi}{4}$$

#### **Answer: D**



- **89.**  $\left[\hat{i}-\hat{j}\hat{j}-\hat{k}\hat{k}-\hat{i}
  ight]$  is equal to
  - A. 0
    - B. 1
    - C. 2
    - D. 3

### **Answer: A**



# View Text Solution

**90.** If the four vectors a,b,c,d are coplanar, then (a imes b) imes (c imes d) =

- - A. 0

B. 1

- C.  $\overrightarrow{a}$
- D. vecb`

#### **Answer: A**

