

MATHS

BOOKS - SAI MATHS (TELUGU ENGLISH)

APPLICATIONS OF DERIVATIVES

Problems

1. Two particles P and Q located at the points

with coordinates

 $P(t^3-16t-3), Q(t+1, t^3-6t-6)$ are moving in a plane. The minimum distance between them in their motion is

- A. 1
- B. 5
- C. 169
- D. 49

Answer: D

2. Define
$$f(x) = \begin{cases} x & (0 \le x \le 1) \\ 2 - x & (1 \le x \le 2) \end{cases}$$

Then Rolle's theorem is not applicable to f(x) because

- A. f(x) is not defined everywhere on [0, 2]
- B. f(x) is not continuous on [0, 2]
- C. f(x) is not differentiable on (1, 2)
- D. f(x) is not differentiable on (0, 2)

Answer: D

3. An equilateral triangle is of side 10 units. In measuring the side, an error of 0.05 units is made. Then the percentage error in the area of the triangle is

- A. 5
- B. 4
- C. 1
- D. 0.5

Answer: C

4. If the lines y=-4x+b are tangents to the curve $y=\frac{1}{x}$, then b =

A.
$$\pm 4$$

$$\mathsf{B}.\pm 2$$

$$\mathsf{C}.\pm 1$$

$$D.\pm 8$$

Answer: A

5. The volume of a sphere is increasing at the rate of 1200 c.cm/sec. The rate of increase in its surface area when the radius is 10 cm is

- A. 120 sq.cm/sec
- B. 240 sq.cm/sec
- C. 200 sq.cm/sec
- D. 100 sq.cm/sec

Answer: B

Watch Video Solution

6. The slope of the tangent to the curve

$$y=\int_0^x rac{dt}{1+t^3}$$
 at the point where x = 1 is

A.
$$\frac{1}{4}$$

B.
$$\frac{1}{3}$$

c.
$$\frac{1}{2}$$

D. 1

Answer: C

7. If $x^2+y^2=25$, then $\log_5[Max(3x+4y)]$

is

A. 2

B. 3

C. 4

D. 5

Answer: A

8. If f is defined in [1, 3] by $f(x) = x^3 + bx^2 + ax$ such that f(1)-f(3)=0 and f'(c) =0 where $c=2+rac{1}{\sqrt{3}}$, then (a, b) =

A.
$$(-6, 11)$$

$$\mathsf{B.}\left(2-\frac{1}{\sqrt{3}},2+\frac{1}{\sqrt{3}}\right)$$

D.(6,11)

C. (11, -6)

Answer: C

9. If the curves
$$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$$
 and

$$rac{x^2}{25}+rac{y^2}{16}=1$$
 cut each other orthogonally, then a^2-b^2 equals to

A. 9

B. 400

C. 75

D. 41

Answer: A

10. The condition that $f(x) = ax^3 + bx^2 + cx + d$ has no extreme value, is

A. $b^> 3ac$

B. $b^> 4ac$

 $\mathsf{C}.\,b^{=}3ac$

D. $b^{<}3ac$

Answer: D

11. If there is an error of ± 0.04 cm in the measurement of the diameter of a sphere, then the approximate percentage error in its volume, when the radius is 10 cm, is

$$A. + 1.2$$

$$\mathrm{B.}\pm0.06$$

$$\mathsf{C.}\pm0.006$$

$$\mathsf{D.}\pm0.6$$

Answer: D

View Text Solution

12. The value of c in the Langrange's mean value theorem for $f(x)=\sqrt{x-2}$ in the interval [2,6] is

A.
$$\frac{9}{12}$$

$$\mathsf{B.}\;\frac{5}{2}$$

Answer: C

View Text Solution

13. The relation between pressure p and volume V is given by $pV^{\frac{1}{4}}=$ constant. If the percentage decrease in volume is $\frac{1}{2}$, then the percentage increase in pressure is

A.
$$-\frac{1}{8}$$

B.
$$\frac{1}{16}$$

c.
$$\frac{1}{8}$$

D.
$$\frac{1}{2}$$

Answer: C

14. If the curves
$$x^2+py^2=1$$
 and $qx^2+y^2=1$ are orthogonal to each other, then

A.
$$p-q=2$$

$$\mathsf{B.}\,\frac{1}{p}-\frac{1}{q}=2$$

C.
$$\dfrac{1}{p}+\dfrac{1}{q}={}-2$$

D. $\dfrac{1}{p}+\dfrac{1}{q}=2$

Answer: D

View Text Solution

15. The focal length of a mirror is given by

$$rac{2}{f}=rac{1}{v}-rac{1}{u}.$$
 In finding the values of u and v,

the errors are equal to 'p'. Then, the relative

error in f is

D.
$$p \left(\frac{1}{u} - \frac{1}{v} \right)$$

A. $\frac{p}{2}\Big(rac{1}{u}+rac{1}{v}\Big)$

B. $\frac{p}{2}\left(\frac{1}{u}+\frac{1}{v}\right)$

C. $\frac{p}{2} \left(\frac{1}{u} - \frac{1}{v} \right)$

View Text Solution

16. The coordinates of the point P on the curve $x=a(\theta+\sin\theta), y=a(1-\cos\theta),$ where the tangent is inclined at an angle $\frac{\pi}{4}$ to x-axis, are

A.
$$\left[a\Big(rac{\pi}{4}-1\Big),a
ight]$$

$$\mathsf{B.}\left[a\Big(\frac{\pi}{2}+1\Big),a\right]$$

C.
$$\left(a\frac{\pi}{2},a\right)$$

$$\mathsf{D}.\left(a,a
ight)$$

Answer: B

iew Text Solution

17. If Δ is the area of the triangle formed by the positive x-axis and the normal and tangent

to the circle $x^2+y^2=4$ $\left(1,\sqrt{3}\right)$, then Δ is equal to

A.
$$\frac{\sqrt{3}}{2}$$

B.
$$\sqrt{3}$$

$$\mathsf{C.}\,2\sqrt{3}$$

Answer: C

18. If the volume of a shpere increases at the rate of 2π cm^3/s , then the rate of increase of its radius (in cm/s), when the volume is 288π cm^3 , is

A.
$$\frac{1}{36}$$

B.
$$\frac{1}{72}$$

c.
$$\frac{1}{18}$$

D.
$$\frac{1}{9}$$

Answer: B

AIGM TEXT POLITION

19. If $1^\circ=lpha$ radians, then the approximate value of $\cos(60^\circ1')$

A.
$$rac{1}{2}+rac{lpha\sqrt{3}}{120}$$

$$\mathsf{B.}\,\frac{1}{2}-\frac{\alpha}{120}$$

$$\mathsf{C.}\ \frac{1}{2}-\frac{\alpha\sqrt{3}}{120}$$

D.
$$\frac{1}{2}+\frac{lpha}{120}$$

Answer: C

20. If the distance s travelled by a particle in time ti is given by $s=t^2-2t+5$, then its acceleration is

A. 0

B. 1

C. 2

D. 3

Answer: C

21. The length of the subtangent at any point

 x_1,y_1 on the curve $y=5^x$

A.
$$5x_1$$

B. $y_1 5 x_1$

 $\mathsf{C.}\log_e 5$

D.
$$\frac{1}{\log_e 5}$$

Answer: C

22. The height of the cone of maximum volume

inscribed in a sphere of radius R is

A.
$$\frac{R}{3}$$

$$\mathsf{B.}\,2\frac{R}{3}$$

$$\mathsf{C.}\,4\frac{R}{3}$$

D.
$$\frac{4R}{\sqrt{3}}$$

Answer: C

23. The longest distance of the point (a, 0)

from the curve $2x^2+y^2=2x$ is

A.
$$1 + a$$

B.
$$|1 - a|$$

C.
$$\sqrt{1-2a+2a^2}$$

D.
$$\sqrt{1-2a+3a^2}$$

Answer: C

24. If m_1 and m_2 are the roots of the equation

$$x^2 + (\sqrt{3} + 2)x + (\sqrt{3} - 1) = 0$$

then the area of the triangle formed by the lines $y=m_1x$, $y=m_2x$ and y=c

A.
$$\left(\frac{\sqrt{33}-\sqrt{11}}{4}\right)$$
. c^2

B.
$$\left(\frac{\sqrt{33}+\sqrt{11}}{4}\right)$$
. c^2

C.
$$\left(rac{\sqrt{11}-\sqrt{33}}{2}
ight)$$
. c^2

D.
$$\frac{\sqrt{33}}{2}$$
. c^2

Answer: B

25. There is an error of ± 0.04 cm in the measurement of the diameter of a sphere. When the radius is 10 cm, the percentage error in the volume of the sphere is

A.
$$\pm 1.2$$

$$\mathrm{B.}\pm1.0$$

$$\mathsf{C.}\pm0.8$$

$$\mathsf{D}.\pm0.6$$

Answer: D

View Text Solution

26. The function $f(x) = x^3 + ax^2 + bx + c$,

$$a^2 \leq 3b$$
 has

A. one maximum value

B. one maximum value

C. no extreme value

D. one maximum and one minimum value

Answer: C

View Text Solution

27. The maximum value of $\frac{\log x}{x}$, `0

A. ∞

B. e

C. 1

D. e^{-1}

Answer: D

28. The equation of the normal to the curve

$$y^4=ax^3$$
 at (a, a) is

$$\mathsf{A.}\,x+2y=3a$$

$$B. 3x - 4y + a = 0$$

$$\mathsf{C.}\,4x+3y=7a$$

D.
$$4x - 3y = 0$$

Answer: C

View Text Solution

29. The angle between the curves $y^2=4x+4$ and $y^2=36(9-x)$ is

A. 30°

B. 45°

C. 60°

D. 90°

Answer: D

30. If m and M respectively denote the minimum and maximum of $f(x)=(x-1)^2+3$ for $x\in[-3,1]$, then the ordered pair (m, M) is equal to

A.
$$(-3, 19)$$

B.(3,19)

 $\mathsf{C.}\,(\,-19,3)$

D. (-19, 13)

Answer: B

31. The length of the subtangent at (2, 2) to the curve $x^5=2y^4$, is

$$\mathsf{A.}\;\frac{5}{2}$$

B.
$$\frac{8}{5}$$

$$\mathsf{C.}\ \frac{2}{5}$$

$$\mathsf{D.}\;\frac{5}{8}$$

Answer: B

View Text Solution

32. The lengths of tangent, subtangent, normal and subs normal for the curve $y=x^2+x-1$ at (1, 1) are A, B, C and D respectively, then their increasing order is

A. B, D, A, C

B. B, A, C, D

C. A, B, C, D

D. B, A, D, C

Answer: D

Watch Video Solution

33. The condition for $f(x) = x^3 + px^2 + qx + r(x \in R)$ to have no extreme value, is

A.
$$p^2 < 3q$$

$$\mathtt{B.}\,2p^2 < q$$

C.
$$p^2<rac{1}{4}q$$

D.
$$p^2 < 3q$$

Answer: A

View Text Solution

34. The circumference of a circle is measured as 56 cm with an error 0.02 cm. The percentage error in its area is

A.
$$\frac{1}{7}$$

B.
$$\frac{1}{28}$$

c.
$$\frac{1}{14}$$

D.
$$\frac{1}{56}$$

Answer: C

View Text Solution

35. Statement I $f(x) = xe^{-x}$ has the maximum at x = 1.

Statement II f'(1) = 0 and f''(1) < 0

- A. Both I and II are true and II is the correct explanation for I
- B. Both I and II are true and II is not the correct explanation for I

C. I is true but II is false

D. I is false but II is true

Answer: A

View Text Solution

36. If heta is the angle between the curves xy = 2 and $x^2 + 4y = 0$ then an heta is equal to

A. 1

B. - 1

C. 2

D. 3

Answer: D

View Text Solution

37. In the interval (-3,3) the function $f(x)=rac{x}{3}+rac{3}{x}$, x
eq 0 is

A. Increasing

B. Decreasing

- C. Neither increasing nor decreasing
- D. Partly increasing and partly decreasing

Answer: B

View Text Solution

38. The perimeter of a asector is a constant. If its area is to be maximum, the sectorial angle is

A.
$$\frac{\pi^{\circ}}{6}$$

B.
$$\frac{\pi^c}{4}$$

 $\mathsf{C.}\,4^c$

 $D. 2^c$

Answer: D

View Text Solution

39. If x is real, then minimum value of

$$rac{x^2-x+1}{x^2+x+1}$$
 is

A.
$$\frac{1}{3}$$

B. 3

c.
$$\frac{1}{2}$$

D. 1

Answer: A

View Text Solution

40. The extreme values of $4\cos{\left(x^2\right)}\cos{\left(\frac{\pi}{3}+x^2\right)}\cos{\left(\frac{\pi}{3}-x^2\right)}$ over R, are

$$A. -1, 1$$

B.
$$-2, 1$$

$$C. -3, 3$$

D.
$$-4, 4$$

View Text Solution

41. A stone thrown upwards has its equation of motion $S=490t-4.9t^2$. Then the maximum height reached by it is

- A. 24500
- B. 12500
- C. 12250
- D. 25400

Answer: C

View Text Solution

42. The radius of a circular plate is increases at the rate of 0.01 cm/s when the radius is 12 cm.

Then the rate at which the area increases, is

A. 0.24π sq cm/s

B. 60π sq cm/s

C. 24π sq cm/s

Answer: A

View Text Solution

43. Statement I $f(x) = 2x^3 - 9x^2 + 12x - 3$

is increasing outside the interval (1, 2).

Statement II f'(x) < 0 for $x \in (1, 2)$.

D. 1.2π sq cm/s

A. Both I and II are true and II is the correct explanation for I

B. Both I and II are true and II is not the correct explanation for I

C. I is true but II is false

D. I is false but II is true

Answer: B

View Text Solution

44. A particle moves along the curve $y=x^2+2x$. Then the point on the curve such that x and y coordinates of the particle change with the same rate, is

$$\mathsf{B.}\left(\frac{1}{2},\frac{5}{2}\right)$$

$$\mathsf{C.}\left(-\frac{1}{2},\,-\frac{3}{4}\right)$$

D.
$$(-1, -1)$$

Answer: C

View Text Colution

view lext solution

45. A point is moving on $y = 4 - 2x^2$. The x-coordinate of the point is decreasing at the rate of 5 units per second. Then the rate at which y coordinate of the point is changing when the point is at (1, 2), is

A. 5 unit/s

B. 10 unit/s

C. 15 unit/s

D. 20 unit/s

Answer: D

View Text Solution

46. If $f\colon R\to R$ is an even function having derivatives of all orders, then an odd function among the following is

A. f'

 $\mathsf{B}.\,f$ '''

 $\mathsf{C}.\,f'+f''$

D. f '' + f '''

Answer: B

Watch Video Solution

- **47.** Match the column I (the curve $2y^2=x+1$
-) with column II (the slope of normals)

Column I

(B)
$$\left(0, \frac{1}{\sqrt{2}}\right)$$

(C)
$$(1,-1)$$

(D)
$$(3, \sqrt{2})$$

Column II

(1)
$$-4\sqrt{2}$$

(5)
$$-2\sqrt{2}$$

A.
$$(A) - 2$$
, $(B) - 4$, $(C) - 3$, $(D) - 1$

 ${\sf B.}\,(A)-2,(B)-5,(C)-3,(D)-1$

 $\mathsf{C.}\,(A)-2,(B)-3,(C)-5,(D)-1$

D. (A) - 2, (B) - 5, (C) - 1, (D) - 3

Answer: B

48. The sum of two numbers is 20. If the product of the square of one number and cube of the other is maximum, then the numbers are

- A. 12, 8
- B. 3, 4
- C. 9, 12
- D. 15, 18

View Text Solution

49. A minimum value of $\int_0^x \left(te^{t^2}\right) dt$ IS

A. 0

- B. 1
- C. 2
- D. 3

View Text Solution

50. Gas is being pumped into a spherical balloon at the rate of $30ft^3\,/\,\,{
m min}$. The rate at which the radius increase when it reaches the value 15 ft. is

A.
$$rac{1}{30\pi}ft/ ext{ min}$$

B.
$$\frac{1}{15\pi}ft/\min$$

C.
$$rac{1}{20}ft/ ext{ min}$$

D.
$$\frac{1}{25} ft / \min$$

View Text Solution

51. The angle between the curves $y = \sin x$

and $y = \cos x$ is

A.
$$\tan^{-1}(2\sqrt{2})$$

B.
$$\tan^{-1}(3\sqrt{2})$$

C.
$$\tan^{-1}(2\sqrt{3})$$

D.
$$\tan^{-1}(5\sqrt{2})$$

View Text Solution

52. The minimum value of $2x^2 + x - 1$ is

A.
$$-rac{1}{4}$$

$$\mathsf{B.}\;\frac{3}{2}$$

$$c. - \frac{9}{8}$$

$$\mathsf{D.}\,\frac{9}{8}$$

Answer: C

Watch Video Solution

53. If
$$\log(1+x)-rac{2x}{2+x}$$
 is increasing, then

A.
$$0 < x < \infty$$

$$\mathtt{B.} - \infty < x < 0$$

$$\mathsf{C}.-\infty < x < \infty$$

$$D. -1 < x < 2$$

View Text Solution

54. The function $f(x) = xe^{-x}, \ \forall (x \in R)$ attains a maximum value at x equals to

A. 1

B. 2

$$\mathsf{C.}\;\frac{1}{e}$$

View Text Solution

55. The two curves $x=y^2, xy=a^3$ cut orthogonally at a point, then a^2 is equal to

A.
$$\frac{1}{3}$$

$$\mathsf{B.}\;\frac{1}{2}$$

C. 1

D. 1

Answer: B

View Text Solution

56. The approximate value of $\left(1.0002\right)^{3000}$ is

A. 1.2

B. 1.4

C. 1.6

D. 1.8

Answer: C

View Text Solution

57. The minimum value of (x-lpha)(x-eta) is

A. 0

B. $\alpha\beta$

C. $\frac{1}{4}(\alpha-\beta)^2$

D. $-\frac{1}{4}(\alpha-\beta)^2$

Answer: D

View Text Solution

58. The equation of tangent to the curve

$$6y = 7 - x^3$$
 at (1, 1), is

A.
$$2x + y = 3$$

$$B. x + 2y = 3$$

C.
$$x + y = -1$$

D.
$$x + y + 2 = 0$$

Answer: B

View Text Solution

59. The maximum value of xy subject to

$$x+y=7$$
, is

- A. 10
- B. 12
- C. $\frac{49}{4}$
- D. $\frac{55}{4}$

Answer: C

Watch Video Solution