

India's Number 1 Education App

MATHS

BOOKS - SAI MATHS (TELUGU ENGLISH)

FUNCTIONS AND MATHEMATICAL INDUCTION

Problems

1. If $\mathsf{f}:N o R$ is defined by f(1)=-1 and f(n+1)=3f(n)+2 for

n > 1, then f is

A. one - one

B. onto

C. a constant function

D. f(n) > 0 for n > 1

Answer: C

2. The remainder of
$$n^4-2n^3-n^2+2n-26$$
 when divided by 24 is

B. 21

C. 22

D. 23

Answer: C

3. If $f\!:\!R o R,g\!:\!R o R$ are defined by f(x)=5x-3, $g(x)=x^2+3,$ then $ig(gof^{-1}ig)(3)=$

$$\frac{111}{25}$$

A. $\frac{25}{9}$

c.
$$\frac{9}{25}$$

D.
$$\frac{25}{111}$$

Answer: B

Watch Video Solution

4. If $A=\left\{x\in R/rac{\pi}{4}\leq x\leq rac{\pi}{3}
ight\}$ and f(x)=sinx-x, then f(A) is equal to

A.
$$\left\lfloor \frac{\sqrt{3}}{2} - \frac{\pi}{3}, \frac{1}{\sqrt{2}} - \frac{\pi}{4} \right\rfloor$$

B.
$$\left[-\frac{1}{\sqrt{2}} - \frac{\pi}{4}, \frac{\sqrt{3}}{2} - \frac{\pi}{3} \right]$$

$$\mathsf{C.}\left[\,-\,\frac{\pi}{3},\,\frac{-\pi}{4}\right]$$

D.
$$\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$$

Answer: A

5. The value of the sum 1.2.3+2.3.4+3.4.5+... upto n terms is equal to

A.
$$rac{1}{6}n^2ig(2n^2+1ig)$$

B.
$$\frac{1}{6} (n^2 - 1)(2n - 1)(2n + 3)$$

C.
$$rac{1}{8}ig(n^2+1ig)ig(n^2+5ig)$$

D.
$$\frac{1}{4}n(n+1)(n+2)(n+3)$$

Answer: D

Watch Video Solution

6. If $x=\frac{1}{5}+\frac{1.3}{5.10}+\frac{1.3.5}{5.10.15}+\ldots\infty$ then find $3x^2+6x$.

A. 1

B. 2

C. 3

D. 4

Answer: B

Watch Video Solution

7. If R is the set of all real numbers and $f: R-\{2\}
ightarrow R$ is defined by $f(x)=rac{2+x}{2-x}$ for $x\in R-\{2\}$

A.
$$R - \{-2\}$$

B. R

C. $R - \{1\}$

D. $R - \{-1\}$

Answer: D

View Text Solution

8. Let Q be the set of all rational number in [0,1] and $f\colon [0,1] o [0,1]$ be $f(x) = \left\{egin{array}{ll} x & ext{ for } & x \in Q \ 1-x & ext{ for } & x
ot\in Q \end{array}
ight.$ Then the set $S = \{x \in [0,1] (fof)(x) = x\}$ is equal to

 $\mathsf{B}.-Q$

A. [0, 1]

 $\mathsf{C.}\left[0,1\right]-Q$

D.

Answer: A

9.
$$\sum_{k=1}^{2n+1} {(-1)^{k-1} k^2}$$
 equals to

A.
$$(n-1)(2n-1)$$

B.
$$(n+1)(2n+1)$$

$$\mathsf{C.}\,(n+1)(2n-1)$$

D.
$$(n-1)(2n+1)$$

Answer: B

View Text Solution

10. If $f(x) = (p-x^n)^{1/n}, \, p>0$ and n is a positive integer, then f[f(x)] is equal to

A. x

 $B. x^n$

 $\mathsf{C.}\,p^{1\,/\,n}$

D. $p-x^n$

Answer: A

View Text Solution

11. The value of $\left\{x\in R\Big[\log(1.6)^{1-x^2}-(0.625)^{6\,(\,1\,+\,8\,)}\,\Big]\in R
ight\}$

$$\cup$$
 $(7, \infty)$

A. $(-\infty, -1) \cup (7, \infty)$

B. (-1, 5)

C.(1,7)

D. (-1, 7)

Answer: D

View Text Solution

 $f\{(gx)\} = \left(\sin\sqrt{x}
ight)^2$, then a possible choice for f and g is

A. $f(x) = x^2, g(x) = \sin \sqrt{x}$

12. If $f\!:\!R o R^2$ and $R^+ o R$ are such that $g\{f(x)\}=|\!\sin\!x|$ and

B. $f(x) = \sin x, g(x) = |x|$

C. $f(x) = \sin^2 x, g(x) = \sqrt{x}$

D. $f(x) = x^2, q(x) = \sqrt{x}$

Answer: C

13. Define
$$f\colon Z o Z$$
 by $f(x)=\left\{egin{array}{ll} x\,/\,2 & (ext{x is even}) \ 0 & (ext{x is odd}) \end{array}
ight.$ then f is

Answer: A

14. If
$$\frac{1}{2\times 4}+\frac{1}{4\times 6}+\frac{1}{6\times 8}+\ldots$$
 (n terms) $=\frac{kn}{n+1}$, then k is equal to

A.
$$\frac{1}{4}$$

$$B. \frac{1}{2}$$

C. 1

D. $\frac{1}{8}$

Answer: A

View Text Solution

15. If $f\!:\![2,\infty) o B$ defined by $f(x)=x^2-4x+5$ is a bijection, then

B =

A. $[0, \infty)$

 $B.[1,\infty)$

 $C.[4,\infty)$

 $D.[5,\infty)$

Answer: B

16. If $f\!:\!R o R$ is defined by $f(x)=\left[rac{x}{5}
ight]$ for $x\in R$, where [y] denotes

the greatest integer not exceeding y, then $\{f(x)\!:\!|x|<71\}$ is equal to

- A. $\{\,-14,\,-13,\ldots 0,\ldots\,,13,14\}$
- B. $\{-14, -13, ..., 0, ..., 14, 15\}$
- C. $\{-15, -14, \dots, 0, \dots, 14, 15\}$
- D. $\{-15, -14, \dots, 0, \dots, 13, 14\}$

Answer: D

View Text Solution

- **17.** If a,b and n are natural numbers, then $a^{2n-1}+b^{2a-1}$ is divisible by
- A. a+b
 - B. a-b
 - $\mathsf{C.}\,a^3+b^3$
 - D. a^2+b^2

Answer: A

View Text Solution

If

- f(0) = 0, f(1) = 1, f(2) = 2 and f(x) = f(x-2) + f(x-3) for x = 3

18.

- then f(9) =
 - A. 12
 - C. 14

B. 13

D. 10

Answer: D

19. Let R denote the set of all real numbers and R^{\pm} denote the set of all positive real numbers. For the subsets A and B of R define $f\!:\!A o B$ by

 $f(x) = x^2$ for $x \in A$. Observe the two lists given below

Column I Column II

 $A=R^+, B=R$ A. f is one-one and onto, if 1. B. f is one-one but not onto, if 2. A = B = R

3. $A=R, B=R^+$ C. f is onto but not one-one, if 4. $A = B = R^+$

f is neither one-one nor onto, if

B. A-4, B-2, C-1, D-3

C. A-4, B-1, C-3, D-2

D. A-4, B-2, C-3, D-1

Answer: C

D.

View Text Solution

20. The numbers $a_n = 6^n - 5n$ for $n = 1, 2, 3, \ldots$ whrn divided by 25 leave the remainder

B. 7

C. 3

D. 1

Answer: D

View Text Solution

21. If $f\!:\![2,3] o\mathbb{R}$ is defined by $f(x)=x^3+3x-2$, then the range f(x) is contained in the interval :

A. [1, 12]

B. [12, 34]

C. [35, 50]

D. [-12, 12]

Answer: B

22.
$$\left\{x\in\mathbb{R}\colon rac{2x-1}{x^3+4x^2+3x}\in\mathbb{R}
ight\}=$$

A.
$$R-\{0\}$$

B.
$$R - \{0, 1, 3\}$$

C.
$$R - \{0, -1, -3\}$$

D.
$$R - \left\{0, \ -1, \ -3, \ + rac{1}{2}
ight\}$$

Answer: C

23. Using mathematical induction, the numbers $a_n\,{}'s$ are defined by,

$$a_0=1, a_{n+1}=3n^2+n+a_n, (n\geq 0).$$

Then, a_n is equal to

A.
$$n^3 + n^2 + 1$$

B. $n^3 + n^2 + 1$

C. $n^3 - n^2 + 1$

D. $n^3 - n^2$

Answer: B

View Text Solution

24. If $\mathbb{R} o C$ is defined by $f(x) = e^{2ix} f$ or $x \in \mathbb{R}$ then, f is (where C denotes the set of all complex numbers)

A. one-one

B. onto

C. one-to-one and onto

D. neither one-one nor onto

Answer: D

25. If
$$f{:}[-6,6] o\mathbb{R}$$
 defined by $f(x)=x^2-3$ for $x\in R$ then $(fofof)(-1)+(fofof)(0)+(fofof)(1)=$

A.
$$f(4\sqrt{2})$$

B.
$$f(3\sqrt{2})$$

C.
$$f(2(\sqrt{2})$$

D.
$$f(\sqrt{2})$$

Answer: A

26. If
$$f\colon Rr \to \mathbb{R}$$
 and $g\colon \mathbb{R} \to \mathbb{R}$ are defined by $f(x)=|x|$ and $g(x)=[x-3]$ for $x\in \mathbb{R},$ then $\{g(f(x))\colon -8/5 < x < 8/5\}=$

A.
$$\{0, 1\}$$

C.
$$\{-3, -2\}$$

D.
$$\{2, 3\}$$

Answer: C

Watch Video Solution

27. For any integer $n \geq 1$, the sum $\sum_{k=1}^n k(k+2)$ is equal to

A.
$$\frac{n(n+1)(n+2)}{6}$$

$$\mathsf{B.} \; \frac{n(n+1)(2n+1)}{6}$$

c.
$$\frac{n(n+1)(2n+7)}{6}$$

D.
$$\frac{n(n+1)(2n+9)}{6}$$

Answer: C

View Text Solution

28. If $f\!:\!R o R$ is defined by $f(x)=rac{1}{2-\cos 3x}$ for each $x\in R$ then the range of f is

29. If $f\!:\!R o R$ and $g\!:\!R o R$ are defined by $f(x)=x-\{x\}$ and

A.
$$\left(\frac{1}{3}, 1\right)$$
B. $\left[\frac{1}{3}, 1\right]$

C. (1, 2)

D. [1, 2]

Answer: B

- g(x) = [x] for $x \in R$, where [x] is greatest integer not exceeding x, then for every $x \in R, f(g(x))$ is equal to
 - A. x
 - B. 0

C. f(x)

D. g(x)

Answer: B

View Text Solution

30. If $S_n=1^3+2^3+\ldots+n^3$ and $T_n=1+2+\ldots\ldots+n$, then

A. $S_n=T_{n^3}$

B. $S_n=T_{n^2}$

 $\mathsf{C.}\,S_n=T_n^2$

D. $S_n=T_n^3$

Answer: C

View Text Solution

31. If $f\colon \mathbb{R} o \mathbb{R}$ is defined by $f(x) = x - [x] - rac{1}{2}$ for $x \in \mathbb{R}$, where [x]

is the greatest integer not exceeding x, then $\left\{x\in\mathbb{R}\!:\!f(x)=rac{1}{2}
ight\}=$

A. z, the set of all integers

B. N, the set of all natural numbers

C. ϕ , an empty set

D.R

Answer: C

Watch Video Solution

32. If $f: R \to R$ is defined by f(x)=[2x]-2[x] for $x \in R$, then the range of f is (Here [x] denotes the greatest integer not exceding x)

A.
$$\{x\in R\!:\!0\leq x\leq 1\}$$

$$\mathsf{C.}\left\{x\in R\!:\!x>0\right\}$$

$$\mathsf{D.}\left\{x\in R\!:\!x\leq 0\right\}$$

Answer: B

Watch Video Solution

33. If
$$f\!:\!R o R$$
 is defined by

$$f(x) = \left\{ egin{aligned} x + 4 & ext{for} & x < -4 \ 3x + 2 & ext{for} & -4 \leq x < 4 \ x - 4 & ext{for} & x \geq 4 \end{aligned}
ight.$$

then match the following columns and choose the correct answer.

column I column II
(A) f(-5) + f(-4) (1) 14
(B) f(|f(-8)|) (2) 4
(C) f(f(-7)) + f(3) (3) -11

 $egin{array}{cccc} (C) & f(f(-7)) + f(3) & (3) & -11 \ (D) & f(f(f(0))) + 1 & (4) & -1 \ & & (5) & 5 \ & & (6) & 0 \ \end{array}$

A. A-3, B-6, C-2, D-5

B. A-3, B-4, C-2, D-5

C. A-4, B-3, C-2, D-1

D. A-3, B-6, C-5, D-2

Answer: A

Watch Video Solution

34. For all integers, $n \geq 1$ which of the following is divisible by 9.

- A. $8^n + 1$
- B. $4^n 3n 1$
- C. $3^{2n} + 3n + 1$
- D. $10^{n} + 1$

Answer: B

View Text Solution

35. $\{x \in R \colon [x-|x|=5\}$ is equal to

A. R, the set of all real numbers

B. ϕ , an empty set

C. $\{x \in R : < 0\}$

D. $\{x \in R : \ge 0\}$

Answer: B

View Text Solution

36. The function $f\colon C o C$ defined by $f(x)=\dfrac{ax+b}{cx+d}$ for $x\in C$, where bd eq 0 reduces to a constant function, if

A.a=c

B.b=d

C. ad = bc

D. ab = cd

Answer: C

View Text Solution

37. If N denotes the set of all positive integers and if $f\colon N\to N$ is defined by f(n)= the sum of positive divisors of n then, $f\Big(2^k3\Big)$, where k is a positive integer, is

A.
$$2^{k+1} - 1$$

B.
$$2\Big(2^{k+1}-1\Big)$$

C.
$$3ig(2^{k+1}-1ig)$$

D.
$$4ig(2^{k+1}-1ig)$$

Answer: D

View Text Solution

38. $\{n(n+1)(2n+1): n \in 1\} \subset$

A. $\{6k\colon k\in I\}$

B. $\{12k\!:\!k\in I\}$

C.
$$\{18k \colon k \in I\}$$

D.
$$\{24k \colon k \in I\}$$

Answer: A

View Text Solution

39. If $f\colon N \to Z$ is defined by

$$=3k \qquad \quad , \;\; k \in Z$$

$$f(x) = \left\{ egin{array}{ll} 2 ext{ if } & n = 3k & , & k \in Z \ 10 ext{ if } & n = 3k+1 & , & k \in Z \ 0 ext{ if } & n = 3k+2 & , & k \in Z \end{array}
ight.$$

then $\{n \in N \colon f(n) > 2\}$ is equal to

B. {1, 4, 7}

D. {7}

Answer: B

View Text Solution

40. The function $f\!:\!R o R$ is defined by $f(x)=3^{-x}.$ Observe the

I. f is one - one

following statements

1.115 0116 0116

II. f is onto

III. F is a decreasing function

Out of these, true statements are :

A. only, I, II

B. only II, III

C. only I, III

D. I, II, III

Answer: C

B. 3

D. 1

Answer: C

Watch Video Solution

42. If
$$f(x) = \left\{ egin{array}{ll} [x], & ext{if} & -3 < x \leq -1 \ |x|, & ext{if} & -1 < x < 1 \ |[x]|, & ext{if} & 1 \leq x < 3 \end{array}
ight.$$

then the set $\{x: f(x) \geq 0\}$ is equal to

A.
$$(-1, 3)$$

$$\mathsf{B.}\,[\,-1,3)$$

$$\mathsf{C.}\,(\,-1,3]$$

D.
$$[-1, 3]$$

Answer: A

View Text Solution

- **43.** $\sum_{k=1}^{5} rac{1^3+2^3+\ldots+k^3}{1+3+5+\ldots+(2k-1)}$ is equal to
 - A. 22.5
 - B.24.5
 - C.28.5
 - D. 32.5

Answer: A

View Text Solution

44. If $f\colon \mathbb{R} o \mathbb{R} ext{ and } g\colon \mathbb{R} o \mathbb{R}$ are defined by $f(x)=2x+3 \ {
m and} \ g(x)=x^2+7$, then the values of x such that q(f(x)) = 8 are

$$B. -1, 2$$

$$C. -1, -2$$

D. 1,
$$-2$$

Answer: C

Watch Video Solution

$$f(x)=egin{cases} -1 & ext{for} & -2 \leq x \leq 0 \ x-1 & ext{for} & 0 \leq x \leq 2 \end{cases}, \ \{x \in [-2,2]\colon x \leq 0 ext{ and } f(|x|)=x\}=$$

45. Suppose $f\colon\![-2,2] o\mathbb{R}$ is

defined

by

then

A.
$$\{-1\}$$

$$\mathsf{C.}\left\{\,-\,\frac{1}{2}\right\}$$

D.
$$\phi$$

Answer: C

Watch Video Solution

46. If $f\colon R o R$ and $g\colon R o R$ are given by f(x)=|X| and g(x)=[x] for each $x\in R$ then $\{x\in R\colon g(f(x))\le f(g(x))\}$ is equal to

A.
$$z \cup (-\infty,0)$$

B.
$$(-\infty,0)$$

C. z

D. R

Answer: D

View Text Solution

47. The period of the function $f(heta) = \sin rac{ heta}{3} + \cos rac{ heta}{2}$ is

A.
$$3\pi$$

B. 6π

 $\mathsf{C.}\,9\pi$

D. 12π

Answer: D

Watch Video Solution

48. If
$$t_n=rac{1}{4}(n+2)(n+3)$$
 for n = 1, 2, 3,... $rac{1}{t_1}+rac{1}{t_2}+\ldots+rac{1}{t_{2003}}$ is equal to

then

A.
$$\frac{4006}{3006}$$

B. $\frac{4003}{3007}$

c. $\frac{4006}{3008}$

D. $\frac{4006}{3009}$

Answer: D

49. Let
$$A=\{x\in R\colon x
eq 0,\ -4\le x\le 4\}\ ext{and}\ f\colon A o R$$
 is defined by $f(x)=rac{|x|}{x}$ for $x\in A.$ Then the range of f is

A.
$$\{1, -1\}$$

B.
$$\{x : 0 \le x \le 1\}$$

C.
$$\{1\}$$

D.
$$\{x \colon -4 \le x \le 0\}$$

Answer: A

Watch Video Solution

50. If
$$f(x)=rac{\cos^2x+\sin^4x}{\sin^2x+\cos^4x}$$
 for $x\in R$ then $f(2002)=$

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

function $f: R \to R$ defined The 51. by

$$f(x) = \cos^2 x + \sin^4 x \;\; ext{for} \;\; x \in R. \; ext{Then} \; f(R) =$$

A.
$$\left(\frac{3}{4}, 1\right]$$

B.
$$\left[\frac{3}{4},1\right)$$

$$\mathsf{C.}\left[\frac{3}{4},1\right]$$

D.
$$\left(\frac{3}{4},1\right)$$

Answer: C

52. If $f\!:\!R o$ and $g\!:\!R o R$ are defined by f(x)=3x-4 and

$$g(x)=2+3x$$
 then $\Big(g^{-1} \ \ ext{of}^{-1}\Big)(5)=$

A. 1

B. $\frac{1}{2}$

C. $\frac{1}{3}$ D. $\frac{1}{4}$

Answer: C

Watch Video Solution

53. If $f(x)=\sin^2\left(\frac{\pi}{8}+\frac{x}{2}\right)-\sin^2\left(\frac{\pi}{8}-\frac{x}{2}\right)$, then the period of f is

A. $\frac{\pi}{3}$

B. $\frac{\pi}{2}$

 $\mathsf{C}.\,\pi$

D. 2π

Answer: D

Watch Video Solution

54. If
$$f(x) = \left(25 - x^4
ight)^{1/4}$$
 for $0 < x < \sqrt{5}$ then $f\!\left(f\!\left(rac{1}{2}
ight)
ight) =$

A.
$$2^{-4}$$

$${\rm B.}\,2^{-3}$$

$$\mathsf{C.}\,2^{-2}$$

D.
$$2^{-1}$$

Answer: D

Watch Video Solution

55. Define $f\colon Z o Z$ by $f(x)=egin{cases} x/2 & ext{(x is even)} \ 0 & ext{(x is odd)} \end{cases}$ then f is

A. onto but not one-one

B. one-one but onto

C. one-one and onto

D. neither one-one nor onto

Answer: A

Watch Video Solution

Let $f \colon R o R$ be defined 56.

 $f(x) = ig\{(x+2, (x \le \, -1)), ig(x^2, (\, -1 \le x \le 1)ig), (2-x), (x \ge 1)ig).$

by

Then the value of f(-1.75)+f(0.5)+f(1.5) is

A. 0

B. 1

C. 2

D. -1

Answer: B

57. Two functions
$$f\!:\!R o R,g\!:\!R o R$$
 are defined as follows :

37. Two functions
$$j: R \to R, y: R \to R$$
 are defined as follows

$$f(x) = egin{cases} 0 & ext{(x rational)} \\ 1 & ext{(x irrational)} \end{cases}, \quad g(x) = egin{cases} -1 & ext{(x rational)} \\ 0 & ext{(x irrational)} \end{cases}$$
 then $(fog)(\pi) + (gof)(e) =$

58. If $2^3 + 4^3 + 6^3 + \ldots + (2n)^3 = hn^2(n+1)^2$ then h is equal to

B.
$$-1$$

Answer: B

A.
$$\frac{1}{2}$$

B. 1

 $\operatorname{C.}\frac{3}{2}$

D. 2

Answer: D

View Text Solution