

MATHS

BOOKS - SAI MATHS (TELUGU ENGLISH)

MEASURES OF DISPERSION AND PROBABILITY

Problems

1. The probability of a coin showing head is p and then 100 such coins are tossed. If the probability of 50 coins showing head is same as the probability of 51 coins showing head then p equals

A. $\frac{1}{2}$

$$\frac{49}{100}$$

c.
$$\frac{51}{101}$$
D. $\frac{50}{101}$

Answer: C

Watch Video Solution

4P(X=4)=P(X=2), then p is s

2. X is a binomial variate with parameters n=6 and p. If

- $\mathsf{A.}\;\frac{1}{2}$

 - $\mathsf{B.}\;\frac{1}{3}$
 - $\mathsf{C.}\ \frac{1}{4}$
 - D. $\frac{1}{6}$

Answer: B

Watch Video Solution

- **3.** In a certain colleage, 4% of men and 1% of women are taller than 1.8m. Also, 60% of students are women. If a student selected at random is found to be taller than 1.8 m, then the probability that the student being a woman is
 - A. $\frac{3}{11}$
 - B. $\frac{5}{11}$
 - C. $\frac{6}{11}$
 - D. $\frac{8}{11}$

Answer: A

P(A) = 0.1the n, P $\left(\overline{A} \cap \overline{B}\right)$ =

4. If A and B are two events such that
$$P(A/B) = 0.6$$
, $P(B/A) = 0.3$,

$$\mathsf{B.}\ 0.12$$

Answer: A

View Text Solution

If A and B are

$$P(A \cup B) = \frac{5}{6}, P(\overline{A}) = \frac{1}{4} \text{ and } P(B) = \frac{1}{3}, \text{then} A \text{ and } B$$

events such

that

- A. Mulually exclusive
- B. independent
- C. Exhaustive events
- D. Exhaustive and independent

Answer: B

Watch Video Solution

6. Two teams A and B have the same mean and their coefficients of variance are 4, 2 respectively. If σ_A , σ_B are the standard deviations of teams A, B respectively then the relation between item is

A.
$$\sigma_A=\sigma_B$$

B.
$$\sigma_B=2\sigma_A$$

C.
$$\sigma_A=2\sigma_B$$

D.
$$\sigma_B=4\sigma_A$$
 s

Answer: C

Watch Video Solution

7. In a date the number i is repeated i times for i =1,2...., n .

Then the mean of the data is

A.
$$\frac{2n+1}{6}$$

B.
$$\frac{2n+1}{4}$$

c.
$$\frac{2n+1}{3}$$

$$\frac{n+1}{2}$$

Answer: C

View Text Solution

- **8.** The arithmetic mean of the observations 10, 8, 5, a, b is 6 and their variance is 6.8. Then ab=
 - A. 6
 - C. 3

B. 4

D. 12

Answer: D

9. If the median of the data 6, 7, x-2, x, 18, 21 written in ascending order is 16, then the variance of that data is

- A. $30\frac{1}{5}$
- B. $31\frac{1}{3}$
- C. $32\frac{1}{2}$
- D. $33\frac{1}{3}$

Answer: B

Watch Video Solution

10. Two persons A and B are rolling die on the condition that the person who gets 3 will win the game. If A starts the game,

then find the probabilities of A and B respectively to win the game.

A.
$$\frac{6}{11}$$
, $\frac{5}{11}$

B.
$$\frac{5}{11}$$
, $\frac{6}{11}$

c.
$$\frac{8}{11}$$
, $\frac{3}{11}$

D.
$$\frac{3}{11}$$
, $\frac{8}{11}$

Answer: A

11. The letters of the word 'QUESTION' are arranged in a row at random. The probability that there are exactly two letters between Q and S is

A.
$$\frac{1}{14}$$

B.
$$\frac{5}{7}$$

D.
$$\frac{5}{28}$$

Answer: D

12. If
$$\frac{1+3P}{3}$$
, $\frac{1-2P}{2}$ are probabilities of two mutually exclusive events, then P lies in the interval.

A.
$$\left[-rac{1}{3},rac{1}{2}
ight]$$

$$\mathsf{B.}\left[\,-\,\frac{1}{2},\frac{1}{2}\,\right]$$

$$\mathsf{C.}\left[-\frac{1}{3},\frac{2}{3}\right]$$

D.
$$\left[-\frac{1}{3}, \frac{2}{3}\right]$$

Answer: A

Watch Video Solution

- 13. The probability that an event does not happen in one trial is 0.8 The probability that the event happens atmost once in
- three trials is
 - A. 0.896
 - B. 0.791
 - C. 0.642
 - D. 0.592

Answer: A

14. If the mean and veriance of a binomial veriate X are 8 and

4 respectively , then P(X < 3) equals to

A.
$$\frac{265}{2^{15}}$$

B.
$$\frac{137}{2^{14}}$$

c.
$$\frac{137}{2^{16}}$$

D.
$$\frac{265}{2^{16}}$$

Answer: C

View Text Solution

15. A candidate take three tests in succession and the probability of passing the first test is p. The probability of passing ech succeeding test p or $\frac{p}{2}$ according as he passes or fails in the preceding one. The candidate is selected if he passes at least two tests. The probability that the candidate is selected is

A.
$$p^2(2-p)$$

C.
$$P + p^2 + p^3$$

D.
$$p^2(1-p)$$

Answer: C

16. A six-faced unbiased die is thrown twice and the sum of the numbers appearing on the upper face is observed to be 7. The probability that the number 3 has appeared at least once , is

- A. 43835
- $\mathsf{B.}\,\frac{1}{2}$
- c. $\frac{1}{3}$
- D. $\frac{1}{4}$

Answer: C

Watch Video Solution

17. If A,B,C are mutually exclusive and exhaustive events of a random experiment such that P(B) =

A.
$$\frac{10}{13}$$

 $\frac{3}{2}P(A)$ and $P(C)=\frac{1}{2}P(B)$ then $P(A\cup C)$ =

 $\Sigma x_i^2 = 400 \, ext{ and } \, \Sigma x_i = 80 \, ext{then the least value of n is}$

that

18. If
$$x_1, x_2, \ldots x_n$$
 are n observations such

B. $\frac{3}{13}$

C. $\frac{6}{13}$

D. $\frac{7}{13}$

Watch Video Solution

A. 18

B. 12

- C. 15
- D. 16

Answer: D

Watch Video Solution

19. The mean of four observations is 3. If the sum of the squares of these observations is 48 then their standard deviation is

- A. $\sqrt{7}$
- $\mathrm{B.}~\sqrt{2}$
- C. $\sqrt{3}$
- D. $\sqrt{5}$

Answer: C

Watch Video Solution

20. Two numbers are chosen at random from (1,2,3,4,5,6,7,8) at a time. The probability that smaller of the two numbers is less than 4 is

- A. $\frac{7}{14}$
- B. $\frac{8}{14}$
- c. $\frac{9}{14}$
- D. $\frac{10}{14}$

Answer: C

21. Two fair dice are rolled. The probability of the sum of digits on their faces to be greater than or equal to 10 is

- A. $\frac{1}{5}$
- $\mathsf{B.}\;\frac{1}{4}$
- c. $\frac{1}{8}$
- D. $\frac{1}{6}$

Answer: D

Watch Video Solution

22. A bag contains 2n + 1 coins . It is known that n of these coins have a head on both sides, whereas the remaining n + 1 coins are fair . A coin is picked up at random from the beg and

tossed . If the probability that the toss results in a head is $\frac{31}{42}$, then n is equal to

23. The random variable takes the values 1,2,3,.....m. If

 $P(X=n)=rac{1}{m}$ to each n, then the variance of X is

B. 11

C. 12

D. 13

Answer: A

A.
$$\dfrac{(m+1)(2m+1)}{6}$$

$$\mathsf{B.} \; \frac{m^2-1}{12}$$

$$\mathsf{C.}\,\frac{m+1}{2}$$

D.
$$\frac{m^2+1}{12}$$

Answer: B

Watch Video Solution

24. If X is a Poisson variate and P(X=1)=2P(X=2) them P(X=3)=

A.
$$\frac{e^1}{6}$$

B.
$$\frac{e^2}{2}$$

$$\mathsf{C.}\,\frac{e^{-1}}{2}$$

D.
$$\frac{e^{-1}}{3}$$

Answer: A

Watch Video Solution

25. If X is a random Poisson variate such that

$$lpha=P(X=1)=P(X=2)$$
 then P(X=4)=

A. 2α

 $\operatorname{B.}\frac{\alpha}{3}$

C. $lpha^{-2}$

D. αe^2

Answer: B

26. X follows a binomial distribution with parameters n and p

where 0 .

If $\dfrac{P(X=r)}{P(X=n-r)}$ is independent of n and r then p=

- A. $\frac{1}{2}$
- $\mathsf{B.}\;\frac{1}{3}$
- $\mathsf{C.}\ \frac{1}{4}$
- D. $\frac{1}{8}$

Answer: A

Watch Video Solution

27. In an entrance test there are multiple choice questions,

then the probability that he was guessing is

A.
$$\frac{37}{40}$$

B.
$$\frac{1}{37}$$

c.
$$\frac{36}{37}$$

D.
$$\frac{1}{9}$$

Answer: B

View Text Solution

28. There are four machines and it is known that exactly two of them are faulty. They are tested one by one, in a random order till both the faulty machines are identified. Then, the probability that only two tests are needed is,

A.
$$\frac{1}{3}$$

- $\mathsf{C.}\,\frac{1}{2}$
- D. $\frac{1}{4}$

Answer: A

View Text Solution

- 29. A fair coin is tossed 100 times . The probability of getting tails an odd number of times is
 - A. $\frac{1}{2}$
 - $\mathsf{B.}\;\frac{1}{4}$
 - c. $\frac{1}{8}$

Answer: A

View Text Solution

30. A class has fifteen boys and five girls. Suppose three students are selected at random from the class. The probability that there are two boys and one girl is

- A. $\frac{35}{76}$
- $\mathsf{B.}\ \frac{35}{38}$
- c. $\frac{7}{76}$
- D. $\frac{35}{72}$

Answer: A

31. Seven white balls and three black balls are randomly arranged in a row. The probability that no two black balls are placed adjacently is

- $\mathsf{A.}\ \frac{1}{2}$
- B. $\frac{7}{15}$
- $\mathsf{C.}\;\frac{2}{15}$
- D. $\frac{1}{3}$

Answer: B

Watch Video Solution

32. Let A and B be events in a sample space S such that

P(A)=0.5 , P(B)=0.4 and $P(A \cup B) = 0.6$. Observe the

following lists:

i) $P(A \cap B)$ ii) $P(A \cap B)$

List I

iii) $P(\overline{A} \cap B)$ iv) $P(\overline{A} \cap \overline{B})$ List II

a) 0·4

b) 0.2

c) 0·3d) 0·1

A. (i) (ii) (iii) (iv)

(1) (2) (3) (4) (i) (ii) (iii) (iv)

c. (3) (2) (1) (4)

D. $\frac{(i)}{(3)} \frac{(ii)}{(1)} \frac{(iii)}{(2)} \frac{(iv)}{(4)}$

Answer: B

Watch Video Solution

33. The probability that an idividual suffers a bad reaction from an injection is 0.001. The probability that out of 2000

individulas exactly three will suffer bad reaction is

- A. $\frac{1}{e^2}$
- B. $\frac{2}{3e^2}$
- C. $\frac{8}{3e^2}$
- D. $\frac{4}{3e^2}$

Answer: D

Watch Video Solution

34. A urn A contains 3 white and 5 black balls. Another urn B contains 6 white and 8 black balls. A ball is picked from A at random and then transferred to B. Then a ball is picked at random from B. The probability that it is a white ball is

A.
$$\frac{14}{40}$$

B.
$$\frac{15}{40}$$

c.
$$\frac{16}{40}$$

D. $\frac{17}{40}$

Answer: D

35. If A(i=1,2,3....n) are n independent events with P(A) =
$$\frac{1}{1+i}$$
 for each i , then the probability that none of A, occur is :

A.
$$\frac{n-1}{n+1}$$

B.
$$\frac{n}{n+1}$$

C.
$$\frac{n}{n+2}$$

$$\mathsf{D.}\; \frac{1}{n+1}$$

Answer: D

Watch Video Solution

36. Suppose that A and B are two independent events such

that $P(A\cap B)=rac{3}{25}$ and $P(A)=rac{8}{25}$ Then P(B) =

A.
$$\frac{11}{25}$$

B.
$$\frac{3}{11}$$

c.
$$\frac{1}{11}$$

D.
$$\frac{9}{11}$$

Answer: A

37. Suppose that a random variable X follows Poisson distribution . If P(X=1)=P(X=2) then P(X=5)=

A.
$$\frac{2}{3}e^{-2}$$

B.
$$rac{3}{4}e^{-2}$$

C.
$$\frac{4}{15}e^{-2}$$

D.
$$\frac{7}{8}e^{-2}$$

Answer: C

Watch Video Solution

38. If the mean and variance of a binomial variable X are 2 and

1 respectively, then $P(X \geq 1) =$

 $\mathsf{B.}\ \frac{15}{16}$

c. $\frac{7}{8}$

D. $\frac{4}{5}$

 $P(A \cup B) = \frac{4}{5}, P(\overline{A} \cup \overline{B}) = P(\overline{A} \cap \overline{B}) \frac{7}{10}$ and $P(B) = \frac{2}{5}$

A.
$$\frac{9}{10}$$
B. $\frac{8}{10}$

c.
$$\frac{7}{10}$$

$$\mathrm{D.}\,\frac{3}{5}$$

Answer: D

Watch Video Solution

40. The probability of choosing randomly a number c from the set {1,2,3,...,9} such that the quadratic equation

$$x^2+4x+c=0$$
 has real roots is

A.
$$\frac{1}{9}$$

B.
$$\frac{2}{9}$$

$$\mathsf{C.}\ \frac{3}{9}$$

D.
$$\frac{1}{9}$$

Answer: D

41. Suppose that E_1 and E_2 are two events of a random experiment such that

$$P(E_1) = rac{1}{4}, P(E_2 \mid E_2) = rac{1}{2} ext{ and } P(E_1 \mid E_2) = rac{1}{4}.$$

Observe the lists given below:

List I	List II
A) $P(E_2)$	i) 1/4
B) $P(E_1 \cup E_2)$	ii) 5/8
C) $P(\overline{E_1} \mid \overline{E_2})$	iii) 1/8
D) $P(E_1 E_2)$	iv) 1/2
	v) 3/8
	vi) 3/4

The correct matching of the list I from the list II is:

A.
$$(A)$$
 (B) (C) (D) (a) (ii) (iii) (vi) (i)

B.
$$(A)$$
 (B) (C) (D)
C. (A) (iv) (v) (vi) (i)
 (A) (B) (C) (D)
 (a) (iv) (ii) (vi) (i)
 (A) (B) (C) (D)
D. (a) (i) (ii) (iii) (iii) (i)

Answer: C

4P(X = 4) = P(X = 2), then p is s

42. X is a binomial variate with parameters n=6 and p. If

A.
$$\frac{1}{3}$$

$$\frac{1}{2}$$

B.
$$\frac{1}{2}$$
C. $\frac{2}{3}$
D. $\frac{3}{4}$

Answer: A

Watch Video Solution

43. If A and B are two independent events of a random experiment such that $P(A\cap B)=\frac{1}{6}$ and $P(\overline{A}\cap \overline{B})=\frac{1}{3}$, then P(A)=

A.
$$\frac{1}{4}$$

$$\mathsf{B.}\;\frac{1}{3}$$

$$\mathsf{C.}\ \frac{1}{2}$$

$$\mathsf{D.}\;\frac{2}{3}$$

Answer: A

44. Let S be the sample space of the random experiment of throwing simultaneously two unbaised dice with six faces (numbered 1 to 6) and let E_1 ={(a,b), ε S:ab =k} for $k \geq 1$

A.
$$p_1 < p_{30} < p_4 < p_6$$

B.
$$p_{36} < p_6 < p_2 < p_4$$

C.
$$p_1 < p_{11} < p_4 < p_6$$

D.
$$p_{36} < p_{11} < p_6 < p_4$$

Answer: A::C

Watch Video Solution

45. Fpr L=1,2,3 the box B_k contains k red balls and (k+1) white

balls . Let
$$P(B_1)=rac{1}{2}$$
 , $P(B_2)=rac{1}{3}, P(B_3)=rac{1}{6}$. A box is

selected at random and a ball is drawn from it . If a red ball is drawn, then the probability that it has come from box B_2 is

- $\text{A. } \frac{35}{78}$
- B. $\frac{14}{39}$
- $\mathsf{C.}\ \frac{10}{13}$
- D. $\frac{12}{13}$

Answer: A

Watch Video Solution

46. The distribution of a random veriable X is given below

`(##SIA_MPC_MAT_C12_E01_050_Q01.png" width="80%">

The value of k is

A.
$$\frac{1}{10}$$

B.
$$\frac{2}{10}$$
C. $\frac{3}{10}$

D.
$$\frac{7}{10}$$

Answer: B

View Text Solution

that

47. If X is a poisson distribution such
$$P(X=1)=P(X=2)$$
then, $P(X=4)=$

A.
$$\frac{1}{2e^2}$$

B.
$$\dfrac{1}{3e^2}$$
C. $\dfrac{2}{3e^2}$

$$\overline{3e^2}$$

$$\frac{1}{e^2}$$

Watch Video Solution

- 48. Four numbers are chosen at random from (1,2,3,.....40). The probability that they are not consecutive is
 - $\mathsf{A.}\ \frac{1}{2470}$

Answer: C

Watch Video Solution

49. If A and B are mutually exclusive events with P(B) $\neq 1$ then $P(A \mid \overline{B})$ is equal to {Here \overline{B} is the complement of the event B)

A.
$$\frac{1}{P(B)}$$

$$\mathsf{B.}\;\frac{1}{1-P(B)}$$

C.
$$\frac{P(A)}{P(B)}$$

D.
$$\frac{P(A)}{1 - P(B)}$$

Answer: D

Watch Video Solution

50. A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour is

- A. $\frac{1}{15}$
- $\mathsf{B.}\;\frac{2}{5}$
- c. $\frac{4}{15}$
- D. $\frac{7}{15}$

Answer: D

Watch Video Solution

51. The mean and standard deviation of a binomial variate X are 4 and $\sqrt{3}$ respectively. Then $P(X=\ \geq 1)=$

$$\mathsf{A.}\,1-\left(\frac{1}{4}\right)^{16}$$

B.
$$1-\left(rac{3}{4}
ight)^{16}$$

C.
$$1-\left(\frac{2}{3}\right)^{16}$$
D. $1-\left(\frac{1}{3}\right)^{16}$

Answer: B

Watch Video Solution

52. In the random experiment of tossing two unbiased dice, let E be the event of getting the sum 8 and F be the event of gettiing even numbers on both the dice. Then,

Statement I Statement II

$$P(E) = \frac{7}{36} \qquad P(F) = \frac{1}{3}$$

Which of the following is a correct statement?

- A. Both I and II are true
- B. Neither I nor II is true
- C. I is true, II is false
- D. I is false, II is true

Answer: B

Watch Video Solution

53. Seven balls are drawn simultaneously from a bag containing 5 white and 6 green balls. The probability of drawing 3 white and 4 green balls is

A.
$$\frac{7}{11c_7}$$

B.
$$\frac{5c_3 + 6c_4}{11c_7}$$

C.
$$\frac{5c_26c_2}{11c_7}$$

D.
$$\frac{6c_35c_4}{11c_7}$$

Watch Video Solution

54. In a book of 500 pages , it is found that there are 250 typing errors . Assume that Poisson law holds for the number of errors per page . Then, the probability that a random sample of 2 pages will contains no error is

A.
$$e^{-0.3}$$

B.
$$e^{\,-0.5}$$

C.
$$e^{-1}$$

 $D.e^{-2}$

Answer: C

Watch Video Solution

55. If A and B are two indepandent events such that

$$P(B)=rac{2}{7}, P(A\cup B^c)=0.8$$
 , then P(A) is equal to

A. 0.1

B. 0.2

C. 0.3

D. 0.4

Answer: C

Watch Video Solution

56. A number n is chosen at random from (1,2,3,4,......1000). The probability that n is a number that leaves remainder 1 when divided by 7 is

- A. $\frac{71}{500}$
- B. $\frac{143}{1000}$
- $\mathsf{C.}\ \frac{72}{500}$
- D. `(71)/(1000)

Answer: B

Watch Video Solution

57. A coin and six faced die, both unbaised are thrown simultaneously. The probability of getting a head on the coin and an odd number on the die is

- A. $\frac{1}{2}$
- $\mathsf{B.}\;\frac{3}{4}$
- C. $\frac{1}{4}$ D. $\frac{2}{3}$

Answer: C

Watch Video Solution

58. A number n is chosen at random from

 $S = \{1,2,3,...,50\}$ Let

C. P(B) < P(A) < P(C)D. P(A) > P(C) > P(B)

C = $\{n \in S \colon n \text{ is a square }\}$. Then , correct order of their

 $\mathsf{A} = \set{n \in S \colon n + \frac{50}{n} > 27}$

probabilities is

Answer: C

 $\mathsf{B} = \{n \in S \colon n \text{ is a prime }\}$ and

A. P(A) < P(B) < P(C)

B. P(A) > P(B) > P(C)

View Text Solution

59. Box A contains 2 black and 3 red balls , while box B contains 3 black and 4 red balls . Out of these two boxes one

is selected at random and the probability of choosing bos A is double that of box B . If a red ball is drawn from the selected box, then the probability that it has come from box B, is

- A. $\frac{21}{41}$
- B. $\frac{10}{31}$
- c. $\frac{12}{31}$
- D. $\frac{13}{41}$

Answer: B

View Text Solution

60. If the range of random veriable X is {0,1,2,3,4....} with $P(X=k)=rac{(k+1)a}{2^k} \;\; ext{for} \;\; k\geq 0$, then a is equal to

$$\cdot \frac{4}{9}$$

c.
$$\frac{8}{27}$$
 D. $\frac{16}{81}$

Answer: B

View Text Solution

61. For a Binomial variate X with n = 6, if P(X = 2) = 9 P(X = 4),

A.
$$\frac{8}{9}$$

B.
$$\frac{1}{4}$$

$$\frac{3}{8}$$

View Text Solution

- **62.** Suppose E and F are two events of a random experiment If the probability of occurrence of E is $\frac{1}{5}$ and the probability of occurrence of F given E is $\frac{1}{10}$, then the probability of non-occurrenece of at least one of the events E anf F, is
 - A. $\frac{1}{18}$
 - B. $\frac{1}{2}$
 - $\mathsf{C.}\ \frac{49}{50}$
 - D. $\frac{1}{50}$

View Text Solution

63. Six faces of an unbiased die are numbered with 2,3,5,7,11 and 13 . If two such dice are thrown , then the probability that the sum on the uppermost foces of the dice is an odd number , is

- A. $\frac{5}{18}$
- B. $\frac{5}{36}$
- c. $\frac{13}{18}$
- D. $\frac{25}{36}$

Answer: A

veril that collection

View lext Solution

64. If X is a Poisson veriate with P(X = 0) = 0.8, then the veriance of X is .

- A. $\log_e 20$
- B. $\log_{10} 20$
- $\mathsf{C.}\log_e 5/4$
- **D**. 0

Answer: C

View Text Solution

65. An unbiased coin is tossed to get 2 points for turning up a head and one point for the tail . If three unbiased conis are

tossed simultaneously, then the probability of getting a total of odd number of points is,

If $P(A \cup B) = 0.8, P(A \cap B) = 0.3$

then

A.
$$\frac{1}{2}$$

$$\mathsf{B.}\;\frac{1}{4}$$

C.
$$\frac{1}{8}$$
D. $\frac{3}{8}$

Answer: A

66.

View Text Solution

$$P(\overline{A}) + P(\overline{B}) =$$

В.	0.5

C. 0.8

D. 0.9

Answer: D

Watch Video Solution

67. An unbiased coin is tossed n times. If the probability of getting atleast one head is greater than 0.8, then the least value of n is

A. 2

B. 3

C. 4

Answer: B

Watch Video Solution

68. A bag X contains 2 white and 3 black balls and another bag Y contains 4 white 2 black balls . One bag is selected at random and a ball is drawn from it . Then , the probability for the vall chosen to be white is ,

- A. $\frac{2}{15}$
- B. $\frac{7}{15}$
- $\mathsf{C.}\ \frac{8}{15}$
- D. $\frac{14}{15}$

View Text Solution

69. For a Poisson veriate X, if P(X = 2) = 3 P(X = 3) then the mean of X is

- A. 1
- $\mathsf{B.}\;\frac{1}{2}$
- c. $\frac{1}{3}$
- D. $\frac{1}{4}$

Answer: A

View Text Solution

70. A random veriate X takes the values 0,1,2,3 and its mean is 1.3 . If P(X = 3) = 2P(X = 1) and P(X = 2) = 0.3, then P(X = 0) is equal to

- A. 0.1
- B. 0.2
- C. 0.3
- D. 0.4

Answer: D

View Text Solution

71. A bag contains 5 black balls 4 white balls and 3 red balls . If a ball is selected at random, the probability that it is a black or a red ball, is

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{4}$$

$$\mathsf{C.}\ \frac{5}{12}$$

$$\mathsf{D.}\,\frac{2}{3}$$

Answer: D

View Text Solution

72. The probability of getting quallifed in IIT JEE EAMCET by student are respectively $\frac{1}{5}$ and $\frac{3}{5}$. The probability that the student gets qualifed for at least one of these tests, is

$$\mathsf{A.}\;\frac{3}{25}$$

$$3. \frac{6}{25}$$

$$\frac{17}{25}$$

$$\mathsf{D.}\;\frac{22}{25}$$

View Text Solution

73. One die and a coiin (both unbiased) are tossed simultaneously. The probability of getting 5 on the top of the die and tail on the coin , is

A.
$$\frac{1}{2}$$

B.
$$\frac{1}{12}$$

c.
$$\frac{1}{6}$$

D.
$$\frac{1}{8}$$

Answer: B

View Text Solution

74. In a Binomial disribution, the probability of getting success is $\frac{1}{4}$ and the standard deviation is 3 . Then its mean is

- A. 6
- B. 8
- C. 10
- D. 12

Answer: D

View Text Solution

75. If the mean of a Poisson distribution is $\frac{1}{2}$, then the ratio of P(X = 3) to P(X = 2) ` is

A. 1: 2

B.1:4

C. 1:6

D. 1:8

Answer: C

is

View Text Solution

76. A random veriable X takes the values 0,1 and 2. If P(X = 1) = P(X=2) and P(X = 0) = 0.4, then the mean of random veriable X

- A. 0.2
- B. 0.7
- C. 0.5
- D. 0.9

Answer: D

View Text Solution

77. In a competition A,B,C are participating . The probability that A wins is twice that of B , the probability that B wins is twice that of C, then probability that A losses is

- A. $\frac{1}{7}$
- B. $\frac{2}{7}$

D.
$$\frac{3}{7}$$

Answer: D

View Text Solution

78. The probability that a number selected at random from theset of number {1,2,3,...100) is a cube ,is

A.
$$\frac{1}{25}$$

$$\mathsf{B.}\;\frac{2}{25}$$

$$\mathsf{C.}\ \frac{3}{25}$$

D.
$$\frac{4}{25}$$

Answer: A

79. The events A and B have probabilities 0.25 and respecitively . The probability that both A and B simultaneously is 0.14 , then the probability that n A nor B occurs, is

- A. 0,39
- B. 0,29
- C. 0.11
- D. 0.25

Answer: A

View Text Solution

80. Two dice are rolled simultaneously . The probability that the sum of the two numbers on the dice is a prime number , is

- A. $\frac{5}{12}$
- B. $\frac{7}{12}$
- c. $\frac{9}{14}$
- D. None of these

Answer: A

View Text Solution

81. Find the Binomial probability distribution whose mean is 3 red veriance is 2 .

$$A. \left(\frac{2}{3} + \frac{1}{3}\right)^9$$

B.
$$\left(\frac{5}{3}+\frac{2}{3}\right)^9$$
C. $\left(\frac{3}{2}+\frac{1}{2}\right)^9$

D. None of these

Answer: A

View Text Solution

82. For a Binomial veriate X , if n = 4 and P(X = 4) = 6 P(X = 2),

then the value of p is

A.
$$\frac{3}{7}$$

$$\mathsf{B.}\;\frac{4}{7}$$

c.
$$\frac{6}{7}$$

$$\frac{5}{7}$$

View Text Solution