

India's Number 1 Education App

MATHS

BOOKS - SAI MATHS (TELUGU ENGLISH)

MOCK TEST 1

Mathematics

1. If
$$f\!:\!R$$
 to R is defined by $f(x)=x^2-6x+4$ then , $f(3x+4)$ =

A.
$$3x^2 + 2x + 2$$

B.
$$9x^2 + 6x - 4$$

$$\mathsf{C.}\,2x+2$$

D.
$$x^2 + 6x + 9$$

Answer: B

2. The domain of
$$\frac{\sqrt{7+x}+\sqrt{7-x}}{x}$$
 is

A.
$$[\,-7,0)\cup(0,7]$$

Answer: A

Watch Video Solution

3. 4^n-3n+k is divisible by 9 for $n\in N$. Then the numerically least -ve integral value of k is ,

$$A.-5$$

$$B. -1$$

C. -3

D. 0

Answer: B

View Text Solution

- **4.** If $A = \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 2 \\ 1 & 3 \end{bmatrix}$ then $AB = \begin{bmatrix} 3 & 2 \\ 1 & 3 \end{bmatrix}$
 - A. $\begin{bmatrix} 9 & 16 \\ 13 & 20 \end{bmatrix}$
 - $\mathsf{B.} \left[\begin{array}{cc} 7 & 14 \\ 14 & 28 \end{array} \right]$
 - $\mathsf{C.} \left[\begin{matrix} 10 & 14 \\ 14 & 24 \end{matrix} \right]$
 - D. $\begin{bmatrix} 13 & 14 \\ 15 & 16 \end{bmatrix}$

Answer: B

5. The inverse of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ is,

A.
$$\begin{bmatrix} -2 & -1 & 1 \\ 1 & 0 & 1 \\ 2 & -1 & -2 \end{bmatrix}$$
B.
$$\begin{bmatrix} -2 & 1 & 1 \\ -1 & 0 & 1 \\ 2 & -1 & -2 \end{bmatrix}$$
C.
$$\begin{bmatrix} 2 & 1 & 1 \\ -1 & 0 & 1 \\ 2 & -1 & -2 \end{bmatrix}$$
D.
$$\begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -2 & 1 & 2 \end{bmatrix}$$

Answer: D

Watch Video Solution

6. The equations x + y + z = 0, x + 2y - 4z = 0, 2x - y - z = 0 have

A. no solution

B. infinity many solution

C. unique solution

D. none

Answer: C

Watch Video Solution

7. If a,b,c are the position vectors of the vertices of a triangle ABC , then the position vector of its centriod is

A.
$$\frac{a+b+c}{3}$$

B.
$$\frac{a-b+c}{3}$$

$$\mathsf{C.} - \frac{a+b+c}{3}$$

D.
$$\frac{a-b-c}{3}$$

Answer: A

View Text Solution

8. If the position vector of P,Q are I + j + k and I + 4j + 7k respectively then the position vector of the point which divides \overline{PQ} in the ratio 2 : 1 is

A.
$$2i + j + k$$

B.
$$3i + 2j + 4k$$

C.
$$\frac{I+j+k}{3}$$

Answer: D

Watch Video Solution

9. The angle between a diagonal of a cube and the diagonal of a face of the cube is

A.
$$\sin^{-1}\left(\frac{1}{3}\right)$$

B.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

C.
$$\cos^{-1}\left(\sqrt{\frac{2}{3}}\right)$$

D.
$$\cos^{-1}\left(\frac{2}{3}\right)$$

Answer: C

Watch Video Solution

10.
$$(a \times b)^2 + (a. b)^2$$
=

A.
$$(a + b)^2$$

B.
$$a^2b^2$$

$$\mathsf{C.}\left(a-b\right)^2$$

D. ab

Answer: B

11. If a and b are vectors , satisfying |a|=|b|=2 and (a,b)=38, then the area of triangle constructed with the vector a - b and a + b is

- A. 2 sq. units
- B. 3 sq. units
- C. 1 sq. units
- D. 4 sq. units

Answer: A

12. The volume of the parallelopiped whose edges are given by

$$I+2j+3k, 2i+3j+2k, 2i+3j+k$$
 is

- A. 8
- B. 6
- C. 7

Answer: B

Watch Video Solution

13. The value of $\cos 22 \frac{1^{\circ}}{2}$ is

A.
$$\sqrt{2}+1$$

$$\mathsf{B.}\,\frac{\sqrt{3}+1}{2\sqrt{2}}$$

$$\mathsf{C.}\;\sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}}$$

D. $\frac{\sqrt{\sqrt{2}-1}}{2\sqrt{2}}$

Answer: C

Watch Video Solution

14. The value of $\frac{\tan 70^{\circ} - \tan 20^{\circ}}{\tan 50^{\circ}} =$

B. - 1

$$\mathsf{C}.-2$$

D. 2

Answer: D

Watch Video Solution

15. Solution of $4\cos^2 x + 2\sin^2 x = 3$ is

A.
$$n\pi\pmrac{\pi}{4}$$

B.
$$n\pi\pmrac{\pi}{3}$$

C.
$$n\pi\pmrac{\pi}{6}$$

D.
$$n\pi\pmrac{\pi}{2}$$

Answer: A

View Text Solution

16. If $a_1, a_2, a_3, \ldots, a_n$ is an A.P. with common difference d, then

$$\tan \left[\tan^{-1} \left(\frac{d}{1 + a_1 a_2} \right) + \tan^{-1} \left(\frac{d}{1 + a_2 a_3} \right) + ... \tan^{-1} \left(\frac{d}{1 + a_{n-1} a_n} \right) \right] =$$

A.
$$\dfrac{nd}{1+x_1x_n}$$

B.
$$\dfrac{(n-1)d}{x_1+x_n}$$

D.
$$\frac{(n-1)d}{1+x_1x_n}$$

 $\mathsf{C.}\;\frac{x_n-x_1}{x_n+x_1}$

Answer: D

Watch Video Solution

A.
$$5\sqrt{10}+4\sqrt{12}$$

$$\mathsf{B.}\,4\sqrt{26}+5\sqrt{17}$$

17. If $\sin h^{-1}(4) + \sin h^{-1}(5) = \beta$, then $\sin h(\beta) = \beta$

$$\mathsf{C.}\ 4\sqrt{20}+5\sqrt{15}$$

D.
$$4\sqrt{21}+5\sqrt{11}$$

Answer: B

View Text Solution

- **18.** In a right angled triangle ABC , $r\!:\!R\!:\!r_1$ =
 - A. 1:2:3
 - B. 5:12:10
 - C. 2:5:12
 - D. 7:6:8

Answer: C

View Text Solution

A.
$$\frac{\sqrt{2}-1}{2}$$

B.
$$\sqrt{2}+1$$

C.
$$-rac{\left(\sqrt{2}+1
ight)}{2}$$

D. $rac{\sqrt{2}+1}{2}$

Answer: D

Watch Video Solution

 $\tan^{-1}\left(\frac{1}{3}\right)$ at a point on the ground 50mt from the foot of the tower.

20. A flag staff on top of the tower 30mt of height subtends an angle of -

The height of the flag staff is

Watch Video Solution

21. If
$$K
eq 1$$
 then, $\left| rac{z-z_1}{z-z_2}
ight| = K$ is $lpha$

A. Straight line

B. Ellipse

C. Circle

D. Parabola

Answer: C

View Text Solution

22. If, $\left(rac{2+2i}{2-2i} ight)^3+\left(rac{2-2i}{2+2i} ight)^3=lpha+ib$, then lpha and b are

A. 0, 0

B.0, 1

C. 1, 1

D. ,1,2`

Answer: A

If

23.

$$\cos(2lpha-eta-\gamma)+\cos(2eta-\gamma-lpha)+\cos(2\gamma-lpha-eta)=$$

 $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$

then

- A. 3
- B. 2

C. 1

D. 0

Answer: A

Watch Video Solution

- **24.** If ω is a complex cube root of unity , then $\cos\left[\left(\omega^7+\omega^{11}\right)\pi+\frac{\pi}{3}\right]$
 - A. 3
 - B. 2

 - D. 0

C. 1

Watch Video Solution

25. If $x^8 + 1 = 0$, then X =

A.
$$cis\Big[(2k+1)rac{\pi}{8}\Big], K=0,1,2,3,4,5,6,7$$

B.
$$cis\Big[(2k-1)rac{\pi}{8}\Big], K=0,1,2,3,4,5,6,7$$

C.
$$cis\Big[(3k+1)rac{\pi}{8}\Big], K=0,1,2,3,4,5,6,7$$

D.
$$cis\Big[(3k-1)rac{\pi}{8}\Big], k=0,1,2,3,4,5,6,7$$

Answer: A

Watch Video Solution

26. $\sqrt{a+\sqrt{a+\sqrt{a+\dots \infty}}}=\dots$

A.
$$\frac{1-\sqrt{4a-1}}{2}$$

B.
$$\dfrac{1+\sqrt{4a-1}}{2}$$
C. $\dfrac{1+\sqrt{4a+1}}{2}$
D. $\dfrac{-1-\sqrt{4a+1}}{2}$

Answer: C

Watch Video Solution

27. $y=rac{x^2-4x+1}{x^2-4x+3}$ does not lie between

A.
$$\left[\frac{3}{7}, 1, \right]$$

$$\mathsf{B.}\left(\frac{-3}{7},\;-1\right)$$

$$\mathsf{C.}\left[\frac{-3}{7},\ -1\right]$$

D.
$$\left(\frac{3}{7},1\right)$$

Answer: D

View Text Solution

28. The remainder when $x^5-2x^4+4x^3+3x^2+5x-7$ is divided by x -

1 is

A. 4

B. 3

C. 2

D. 1

Answer: A

is

Watch Video Solution

29. The equation whose roots are reciprocal of $3x^4+2x^2-2x-3=0$

A. $x^4 + 3x^3 - 2x^2 + 3x - 3 = 0$

 $\mathsf{B.}\, 3x^4 + 2x^3 - 2x^2 - 3 = 0$

 $\mathsf{C.}\, 3x^4 - 2x^3 + 2x^2 + 3$

D.
$$3x^4 - 2x^3 - 2x^2 + 3 = 0$$

Answer: B

Watch Video Solution

- **30.** The sum of all 4 digit numbers that can be formed using the digit 0,1
- ,2, 3,4 without using zero is
 - A. 3, 33, 000
 - $\mathsf{B.}\,5,\,55,\,500$
 - $\mathsf{C.}\,6,\,66,\,600$
 - D. 2, 22, 200

Answer: C

View Text Solution

31. How many straight lines can be drawn by joining 15 distinct points on a circle ?

A. 100

B. 95

C. 90

D. 105

Answer: D

Watch Video Solution

32. The term independent of 'x' in the expansion of $\left(x^2+\frac{1}{x}\right)^{12}$ is

A. 505

B. 500

C. 495

Answer: C

Watch Video Solution

- **33.** The sum of (n + 1) terms of the series $\frac{C_0}{2} \frac{C_1}{3} + \frac{C_2}{4}$ is
 - A. $\frac{1}{n(n+1)}$
 - B. $\frac{2}{(n+1)(n+2)}$
 - $\mathsf{C.}\,\frac{1}{n+1}$
 - $D. \frac{1}{n+2}$

Answer: B

Watch Video Solution

34. $\frac{x^2 + 5x + 7}{(x+1)^3} =$

A. $\frac{1}{x+1} + \frac{3}{(x+1)^2} + \frac{3}{(x+1)^3}$

B. $\frac{1}{x+1} + \frac{3}{(x+1)^2} + \frac{2}{(x+1)^3}$

 $\mathsf{C.}\,\frac{2}{x+1}+\frac{1}{{(x+1)}^2}+\frac{3}{{(x+1)}^3}$

D. $\frac{1}{x+1} + \frac{2}{(x+1)^2} + \frac{3}{(x+1)^3}$

35. The range of the series of value 10,12,13,11,7,6 is

Watch Video Solution

Answer: A

A. 7

B. 8

36. Standard deviation of first 'n' natural numbers is

A.
$$\sqrt{rac{n^2+1}{12}}$$

B.
$$\sqrt{\frac{n-1}{nm}}$$

$$\mathsf{C.}\,\sqrt{\frac{n^2-1}{12}}$$

D. none

Answer: C

Watch Video Solution

37. Three persons A,B and C are to speak at a function along with 7 other persons. If the persons speak in random orders the probability that A speaks before B and B speaks before C is

A.
$$\frac{3}{5}$$

$$\mathsf{c.}\,\frac{1}{6}$$

D. none

Answer: C

View Text Solution

38. If p(A)
$$=$$
 $\frac{3}{5}$, $p(B) = \frac{2}{5}$, $P(A \cap B) = \frac{1}{5}$ then, $Pig(\overline{A} \cap \overline{B}ig) =$

A.
$$\frac{6}{5}$$

B. 1

c. $\frac{1}{2}$ D. $\frac{1}{5}$

Answer: D

39. A,B,C are 3 newspaper from a city. 20% of the population red A, 16% read B, 14% read C, 8% both A and B, 5% both A and C, 4% both B and C, 2% all the three. Find the percentage of the populations who read atleast one newspaper.

- A. 0.4
- B. 0.35
- C. 0.25
- D. 0.3

Answer: B

Watch Video Solution

40. A bag contains 6 white and 4 black balls. A fair die is rolled and a number of balls equal to that appearing on the die is chosen from the bag at random. The probability that all the balls selected are white is

B.
$$\frac{1}{10}$$
C. $\frac{1}{15}$
D. $\frac{1}{20}$

p=

 $D. \frac{1}{20}$

A. $\frac{1}{3}$

Answer: A

A. $\frac{1}{7}$

 $\mathsf{B.}\;\frac{1}{5}$

c. $\frac{1}{8}$

D. $\frac{1}{6}$

Answer: B

41. For a binomial variate X if n=5, and P(X=1)=2P(X=3), then

42. The locus of a point P such that area of ΔPAB is 9 sq. units where

$$A=\left(2,3
ight)$$
 and $B(\,-4,5)$ is

A.
$$3x + y - 2 = 0$$

$$\mathsf{B.}\,x-3y-2=0$$

C.
$$x + 3y - 2 = 0$$

D.
$$x - 3y + 2 = 0$$

Answer: C

Watch Video Solution

43. If the axes are rotated through an angle 60° then the cpprdinates of a point $\left(2,\;-4\sqrt{3}\right)$ in the old system are

A.
$$\left(5\sqrt{3}, \ -7\right)$$

B.
$$(7, -\sqrt{3})$$

C.
$$(3\sqrt{3}, -5)$$

D.
$$(-1, -5)$$

Answer: B

Watch Video Solution

44. Area of the triangle formed by the line passing through the points

(1,2),(-3,4) with the coordinate axes is

A.
$$\frac{25}{4}$$
 sq. units

B.
$$\frac{50}{3}$$
 sq. $Units$

C.
$$\frac{25}{2}$$
 sq. units

D. 25 sq. units

Answer: A

View Text Solution

45. For $a \neq b \neq c$ if the lines x + 2ay + a = 0 , x + 3by + b = 0 and x + 4cy + c = 0 ar concurrent , then a , b, c are in

A. A.G.P

B. G. P

C. A.P

D. H.P

Answer: D

Watch Video Solution

46. The equations of the lines passing through (4, 5) and making equal angles with the lines 3x=4y+7, 5y=12x+6 are

A.
$$9x - 7y - 1 = 0$$
, $7x + 9y - 73 = 0$

B.
$$y + 2 = 0$$
, $\sqrt{3}x - y - (2 + 3\sqrt{3}) = 0$

C.
$$3x + y = 4$$
, $x - 3y = -2$

D. none of the above

Answer: A

Watch Video Solution

- **47.** If the slope of one of the lines $2x^2+3xy+\lambda y^2=0$ is 2 then the angle between the lines is
 - A. $\frac{\pi}{3}$
 - B. $\frac{\pi}{6}$
 - $\mathsf{C.}\ \frac{\pi}{2}$
 - D. $\frac{\pi}{4}$

Answer: C

48. The point of intersection of the pair of lines represented by

xy+2x+2y+4=0 is

A. (-2, 2)

B. (-2, -2)

C. (2, -2)

D. (2, 2)

Answer: B

Watch Video Solution

49. The ratio in which the line segment joining the points

 $A(\,-3,\,-2,\,-1),\,B(1,2,1)$ is divided by the xz-plane is

A. 3:1

B.2:1

C. 1: 2

Answer: D

Watch Video Solution

50. If the d.r.'s of two lines are (1,0,0) and (0,1,0) then the angle between those two lines is,

- A. $\frac{\pi}{6}$
 - B. $\frac{\pi}{2}$
- C. $\frac{\pi}{4}$

D. none

Answer: B

51. The perpendicular distance from the origin to the plane

$$x+y+Z+3=0$$
 is

A.
$$\sqrt{3}$$

B.
$$\sqrt{2}$$

Answer: A

Watch Video Solution

52. $Lt_{x \to 0} \frac{\sqrt{4+x} - \sqrt[3]{8+3x}}{x} =$

$$A.-3$$

$$\mathsf{C.}\,\frac{-1}{2}$$

D.
$$\frac{1}{2}$$

Answer: B

Watch Video Solution

53. If f(x)=x for x<0 then $Lt_{x\, ightarrow\,0}f(x)$ =

$$=0f \text{ or } x=x0$$

$$= x^2 f \text{ or } x > 0$$

$$B. -1$$

C. 0

D. 2

Answer: C

View Text Solution

54. Let
$$f(x)=rac{x+x^2+...+x^n-n}{x-1}, x
eq 1$$
 , the value of f (1)

A.
$$\frac{n+1}{2}$$

B.
$$\frac{n(n-1)}{2}$$

C. n

D.
$$\frac{n(n+1)}{2}$$

Answer: D

55.
$$\frac{d}{dx} \left\{ \frac{a - b \cos x}{a + b \cos x} \right\} =$$

A.
$$\frac{2ab\sin x}{\left(a-b\cos x\right)^2}$$

$$rac{(a-b\cos x)^2}{2ab\sin x}$$

B.
$$\dfrac{2ab\sin x}{\left(a+b\cos x\right)^2}$$
 $ab\sin x$

$$\mathsf{C.} \, \frac{ab \sin x}{\left(a - b \cos x\right)^2}$$

D.
$$\frac{ab\sin x}{\left(a-b\cos x\right)^2}$$

Answer: B

Watch Video Solution

- **56.** $\frac{d}{dx} [\cos^{-1}(4x^3 3x)] =$
 - A. $\frac{4}{\sqrt{1-x^2}}$
 - $B. \frac{1}{\sqrt{1-x^2}}$
 - $\mathsf{C.}\,\frac{2}{\sqrt{1-x^2}}$
 - D. $\frac{3}{\sqrt{1-x^2}}$

Answer: D

- **57.** If $ax^2+2hxy+by^2=1$ then $(hx+by)^3y_2=$
 - A. $h^2 ab$

B. 0

 $\mathsf{C}.\,ab-h^2$

 $D. ab - h^3$

Answer: A

Watch Video Solution

58. If there is an error of 0.02 cm, while measuring the side of an equilateral triangle as 2 cm, then the percentage error in area is

A. 1

B. 3

C. 2

D. 4

Answer: C

59. The length of the subtangent of the curve $x^2+3xy+2y^2=0$ at (1,2)

is

- A. $\frac{4}{11}$
- $\mathsf{B.}\;\frac{3}{11}$
- $\mathsf{C.}\,\frac{11}{2}$
- D. $\frac{11}{4}$

Answer: D

Watch Video Solution

60. A particle moves on a line according to the law $s=at^2+bt+c$. If the displacement after one second is 16 cm, the velocity after 2 second is 24 cm/sec and the acceleration is 8 cm/sec², then (a,b,c)=

A. (8,4,4)

B. (4,8,4)

C. (8,8,4)

D. (4,4,8)

Answer: B

Watch Video Solution

$f(x) = 2\sin x + \sin 2x \mathrm{in}[0,\pi]$ is

constant c of Lagrange's mean value theorem

for

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{6}$

C. $\frac{\pi}{2}$

D. $\frac{\pi}{4}$

Answer: A

$$x^2+y^2-4x-6y+3=0$$
 that is perpendicular $2x+5y-6=0$ is

$$\mathsf{A.}\,5x-2y=4$$

B.
$$5x + 2y = 4$$

C.
$$5x - 2y = -4$$

D.
$$5x + 2y = -4$$

Answer: A

63. The equation of the circle touching both axes, lying in the first quadrant and having the radius 3 is

A.
$$x^2 + y^2 + 6x + 6y + 9 + 0$$

$$B. x^2 + y^2 - 6x - 6y + 9 = 0$$

C.
$$x^2 + y^2 - 6x - 6y - 9 = 0$$

D.
$$x^2 + y^2 + 6x - 6y + 0$$

Answer: B

Watch Video Solution

$$x^2 + y^2 + 4x - 6y - 12 = 0$$
 then k

A.
$$\frac{2}{3}$$

 $\mathsf{B.}\,\frac{5}{4}$

C. 1

D.-3

Answer: B

65. The radical axis of the circles $x^2+y^2+2x-3y-5=0$ is

A.
$$4x - 7y - 20 = 0$$

B.
$$4x + 7y - 20 = 0$$

C.
$$4x + 7y + 20 = 0$$

D.
$$4x - 7y + 20 = 0$$

Answer: C

View Text Solution

66. The condition that the circle $x^2+y^2+2gx+2fy+c=0$ to bisect the circumference of the circle $x^2+y^2+2g^1x+2f^1y+c^1=0$ is

A.
$$g(g-g^1)+f(f-f^1)=c-c^1$$

B.
$$g^1ig(g-g^1ig)+f^1ig(f-f^1ig)=c-c^1$$

$$\mathsf{C.}\,2g^1\big(g-g^1\big)+2f^1\big(f-f^1\big)=c-c^1$$

D.
$$2gig(g-g^1ig)+2fig(f-f^1ig)=c-c^1$$

Answer: C

Watch Video Solution

67. The equation of the parabola having focus (1,2) and directrix x+2y+6=0 is

A.
$$4x^2 + 4xy + y^2 + 22x - 44y - 11 = 0$$

B.
$$4x^2 - 4xy + y^2 - 22x + 44y - 11 = 0$$

$$\mathsf{C.}\,4x^2+4xy+y^2+22x+54y+11=0$$

D.
$$4x^2 - 4xy + y^2 - 22x - 44y - 11 = 0$$

Answer: D

Watch Video Solution

68. If the points (2,4) ,(k,6) are conjugate with respect to the parabola $y^2=4x$ then k =

$$A. - 12$$

$$B.-2$$

c.
$$\frac{7}{2}$$

Answer: D

Watch Video Solution

69. The condition that the line lx+my+n=0 to be a normal to the

ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 is

A.
$$rac{a^2}{l^2} - rac{b^2}{m^2} = rac{\left(a^2 - b^2
ight)^2}{n^2}$$

B.
$$rac{a^2}{l^2} + rac{b^2}{m^2} = rac{ig(a^2 - b^2ig)^2}{n^2}$$

C.
$$rac{a^2}{l^2} + rac{b^2}{m^2} = rac{ig(a^2 + b^2ig)^2}{n^2}$$

D.
$$rac{a^2}{l^2} - rac{b^2}{m^2} = rac{\left(a^2 + b^2
ight)^2}{n^2}$$

Answer: B

Watch Video Solution

70. The length of the latus - rectum of the ellipse $9x^2 + 25y^2 - 18x - 100y - 116 = 0$ is

A.
$$9/2$$

B.8/5

C.8/3

D. 18/5

Answer: B

Watch Video Solution

71. The foci of the ellipse $\dfrac{x^2}{16}+\dfrac{y^2}{b^2}=1$ and the hyperbla $rac{x^2}{144}-rac{y^2}{81}=rac{1}{25}$ coincide. Then, the value of b^2 is

- B. 1
- C. 9
- D. 5

Answer: A

Watch Video Solution

72.
$$\int \frac{1+\sin^2 x}{1+\cos 2x} dx =$$

- A. $\tan x + \frac{x}{2} + c$
 - $\mathsf{B.}\,2\tan x \frac{x}{2} + c$
 - $\mathsf{C}.\tan x \frac{x}{2} + c$
- $\mathsf{D.}\,2\tan x \frac{x}{2} + c$

Answer: C

73.
$$\int \frac{1}{\sqrt{x} + x} dx = 0$$

A.
$$2\log(1+\sqrt{x})+c$$

$$\mathsf{B.}\log\bigl(x+\sqrt{x}\bigr)+c$$

$$\mathsf{C.}\,2\log(x+\sqrt{x})+c$$

D.
$$\log(1+\sqrt{x})+c$$

Answer: A

74.
$$\int \frac{1}{(1+x^2)\sqrt{1-x^2}} dx =$$

A.
$$\dfrac{-1}{\sqrt{2}} an^{-1}\Biggl(\dfrac{\sqrt{1+x^2}}{\sqrt{2}x}\Biggr)+c$$

B.
$$\frac{1}{\sqrt{2}} an^{-1}\left(\frac{\sqrt{1+x^2}}{\sqrt{2}x}\right)+c$$

C.
$$\dfrac{-1}{\sqrt{2}} an^{-1}\Biggl(\dfrac{\sqrt{1-x^2}}{\sqrt{2}x}\Biggr)+c$$

D. none

Answer: C

Watch Video Solution

75.
$$\int \frac{(x+1)dx}{x(1+xe^x)} =$$

A.
$$\log(1+xe^x)xe^x+c$$

$$\mathsf{B.}\log\!\left\lceil\frac{xe^x}{1+xe^x}\right\rceil+c$$

$$\mathsf{C.}\logigg[rac{1+xe^x}{xe^x}igg]+C$$

$$\mathsf{D}.\log(1+xe^x)+C$$

Answer: D

D.
$$\frac{-1}{2}\log 2$$

A. $an^{-1}(e)-rac{\pi}{2}$

 $\mathtt{B.}\tan^{-1}(e) + \frac{\pi}{4}$

C. $an^{-1}(e) - rac{\pi}{4}$

Watch Video Solution

77. $\int_0^{\pi/4} \left[\sqrt{rac{1 - \sin 2x}{1 + \sin 2x}} dx
ight] =$

D. none

Answer: C

 $A. \log 2$

B. $\frac{1}{2}\log 2$

 $C. - \log 2$

Answer: B Watch Video Solution **78.** The area of the region bounded by the curves $y=2^x, y=2x-x^2$

and the lines $x=0,\,x=2$ is

$$\text{A.}\ \frac{3}{\log 2} - \frac{4}{3}$$

$$\operatorname{B.}\frac{3}{\log 2}+\frac{4}{3}$$

$$\mathsf{C.}\,3\log 2-\frac{4}{3}$$

D.
$$\frac{1}{\log 2} - \frac{4}{3}$$

Answer: A

Watch Video Solution

79. The solution of $e^{x-y}dx + e^{y-x}dy = 0$ is

A.
$$e^x - e^y = C$$

$$\mathsf{B.}\,e^{2x}-e^{2y}=C$$

$$\mathsf{C.}\,e^{2x}+e^{2y}=c$$

$$D. e^x + e^y = C$$

Answer: B

Watch Video Solution

- **80.** Integrating factor of $\sin x \frac{dy}{dx} + y \cos x = \sin 2x$ is
 - A. $-\sin x$
 - $B.-\cos x$
 - C. cosx
 - D. sinx

Answer: C

1. If a unit vector is represented by $0.5\hat{i} + 0.8\hat{j} + c\hat{k}$,the value of c is

A. $\sqrt{0.89}$

 $\mathsf{B.}\ 0.2$

 $\mathsf{C.}\ 0.3$

 $\mathrm{D.}\,\sqrt{0.11}$

Answer: D

Watch Video Solution

2. A thermos flask contains 250 g coffee at $90^{\circ}C$. To this 20 g of milk at $5^{\circ}C$ is added. After equilibrium is established, the temperature of the liquid is

(Assume no heat loss to the thermos bottle . Take specific heat of coffee and milk as $1.00cal\,/\,g^{\,\circ}\,C$)

A. $3.23\,^{\circ}\,C$

B.
$$3.17^{\circ}C$$

C. $83.7^{\circ}C$

D. 37.8° C

Answer: C

Watch Video Solution

3. A copper rod of length 75 cm and an iron rod of length 125cm are joined together end to end . Both are of circular cross section with diameter 2 cm . The free ends of the copper and iron are maintained at $100^{\circ}C$ and $0^{\circ}C$ respectively . The surface of the bars are insulated thermally . The temperature of the copper -iron junction is [Thermal conductivity of the copper is 386.4W/m-K and that of iron is 48.46W/m-K].

A. $100\,^{\circ}\,C$

 $\mathrm{B.}\,0^{\circ}C$

C.	93°
D.	50°

Answer: C

Watch Video Solution

- 4. Total emf produd in a thermocouple does not depend on
 - A. The metals in the thermocouple
 - B. Thomson coefficients of the metals in the thermocouple
 - C. Temperature of the junctions
 - D. The duration of time for which the current is passed through thermocouple

Answer: D

5. A ball is projected vertically down with an initial velocity from a height of 20 m on to a horizontal floor. During the impact it loses 50% of the energy and rebounds to the same height, the initial velocity of its projection is

- A. $20ms^{-1}$
- B. $15ms^{-1}$
- C. $10ms^{-1}$
- D. 5 ms^{-1}

Answer: A

Watch Video Solution

6. Moment of inertia of a body about an axis is $4kg-m^2$. The body is initially at rest and a torque of 8 N-m starts along the same axis. Work done by the R, about an axis which is a tangent and parallel to its torque in 20 s, in joules, is

B. 640	
C. 2560	
D. 3200	
Answer: D	
Watch Video Solution	
7. An electrically charged particle enters into a uniform magnetic	
nduction field in a direction perpendicular to the field with a velocity v.	
Then, it travels	
A. In a straight line without acceleration	
B. With force in the direction of the field	
C. In a circular path with a radius directly proportional to $\ensuremath{v^2}$	
D. In a circular path with radius directly proportional to its velocity	

A. 40

Answer: D

Watch Video Solution

8. At a certain place, the angle of dip is 60° and the horizontal component of the earth's magnetic field (B_H) is 0.8×10^{-4} T. The earth's overall magnetic field is

A.
$$1.5 imes10^{-4}T$$

B.
$$1.6 imes 10^{-3} T$$

$$\text{C.}\,1.5 imes10^{-3}T$$

D.
$$1.6 imes 10^{-4} T$$

Answer: D

9. Wires A and B have resistivities p_A and p_B . If the diameter of the wire B is twice that of A and the Two wires have same resistance, then $\frac{L_b}{L_A}$ is

- A. 2
- B. 1
- $\mathsf{C.}\ \frac{1}{2}$
- D. $\frac{1}{4}$

Answer: A

Watch Video Solution

10. Use Lenz's law to determine the direction of induced current in the situations described by fig. a, b.

A circular loop being deformed into a narrow straight wire.

- A. Towards left
- B. In a direction opposite to change of the magnetic fleux
- C. Towards right
- D. In the direction of change of the magnetic flux

Answer: B

Watch Video Solution

11. A motor of power P_0 is used to deliver water at a certain rate through a given horizontal pipe. To increase the rate of flow of water through the

same pipe n times, the power of the moter is increased to P_1 to P_0 is

A. n:1

 $\mathsf{B.}\ n^2 \colon 1$

 $\mathsf{C.}\,n^3\!:\!1$

D. $n^4 : 1$

Answer: A

Watch Video Solution

12. A body of mass 5 kg makes an elastic collision with another body at rest and continues to move in the original direction after collision with velocity equal to $\frac{1}{10}$ th of its original velocity . Then the mass of the second body is

A. 4.09kg

 $\mathsf{B.}\ 0.5kg$

C. 5 kg

 $\mathsf{D.}\,5.09kg$

Answer: A

