

India's Number 1 Education App

MATHS

BOOKS - SAI MATHS (TELUGU ENGLISH)

MOCK TEST 2

Maths

1. If
$$f\!:\!R o R, S\!:\!R o R$$
 are defined by f(x) = 3x-4, g(x) = 5x-1 then,

$$(fog^{-1})(2) =$$

A.
$$\frac{11}{5}$$

B.
$$-\frac{11}{5}$$

c.
$$\frac{1}{5}$$

D.
$$-\frac{1}{5}$$

Answer: B

2. The range of
$$y=2x^2+x+rac{2}{2x^2+x+1}$$
 is

A.
$$\left(11 - \frac{\sqrt{2}}{7}, 11 + \frac{\sqrt{2}}{7}\right)$$

$$\mathsf{B.}\left[11-\frac{\sqrt{2}}{7},11+\frac{\sqrt{2}}{7}\right]$$

C.
$$\left(-11 + \frac{\sqrt{2}}{7}, -11 - \frac{\sqrt{2}}{7}\right)$$

D.
$$\left[-11 + \frac{\sqrt{2}}{7}, -11 + \frac{\sqrt{2}}{7} \right]$$

Answer: B

3.
$$\sum \left(\frac{1^2 + 2^2 + 3^2 + \ldots + n^2}{1 + 2 + 3 + \ldots + n} \right)$$

$$\mathsf{A.}\,n^2+\frac{11}{12}n$$

B.
$$n^2-2rac{n}{6}$$

c. $\frac{n^2 + 2n}{3}$

D. None

Answer: C

4. If A =
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 then A^3 =

A.
$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 3 & 3 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$$

A.
$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 3 & 3 & 1 \end{bmatrix}$$
B.
$$\begin{bmatrix} 1 & 0 & 3 \\ 3 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
C.
$$\begin{bmatrix} 3 & 3 & 1 \\ 1 & 3 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
D.
$$\begin{bmatrix} 3 & 1 & 0 \\ 3 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Answer: A

5. If
$$\displaystyle rac{1}{a}+rac{1}{b}+rac{1}{c}=0$$
 then $\left|egin{array}{cccc} 1+a&1&1\\ 1&1+b&1\\ 1&1&1+c \end{array}
ight|=$

$$A. -abc$$

$$\mathsf{C}.\,abc$$

Answer: C

$$\lambda x+3y+z=0,$$
 $4x+\lambda y+3z=0,$ $2x+3y+\lambda z=0$ has non-trival

solution, then
$$\lambda=$$

B. 3

C. 2

D. None

Answer: D

View Text Solution

7. If z_1,z_2,z_3 are collinear and $z_3-\dfrac{z_1}{z_2-z_1}$ is purely real, then

 $argigg(z_3-rac{z_1}{z_2-z_1}igg)$

A. 0

C. 2

B. 1

D. 3

Answer: A

8. If
$$\omega, \omega^2$$
 are cube root of unity then, $\frac{\omega}{1} + \omega^2 + \frac{\omega}{1} + \omega =$

A.
$$-2\omega^2$$

$${\rm B.}-2\omega$$

Answer: D

View Text Solution

9. If z = 3 + 3i then, $z^2 + z + 15 =$

Watch Video Solution

10. If the area of the triangle on the complex plane formed by the points z

,iz and z+iz is 50 sq. units then |z| is

- A. 15 B. 10 C. 5 D. None **Answer: B** View Text Solution 11. If A,B and C are the angles of a triangle such that cosA+cosB+cosC=0=sinA+sinB+sinC, then sin3A+sin3B+sin3C = A. 1 B. 2 C. 0 D. 3
- Answer: C

12. If
$$x^2 + 3x + 2 = 0$$
, $x^2 + 6x + k = 0$ have a common root then p=

- A. 10 (or) 16
- B. 11 (or) 15
- C. 8 (or) 4
- D. 5 (or) 8

Answer: D

- **13.** If x is real , then the maximum value of $\frac{x^2+14x+9}{x^2+2x+3}$ is
 - A. 6
 - B. 8
 - C. 4

Answer: C

Watch Video Solution

14. The condition that the roots of $x^3+3px^2+3qx+r=0$ may be in

A.P is

A.
$$2q^3+r^2=3pqr$$

$$\mathtt{B.}\,2p^3+r=3pq$$

$$\mathsf{C.}\, p^3 r = q^3$$

D. None

Answer: B

15. The roots of $2x^5 + x^4 - 12x^3 - 12x^2 + x + 2 = 0$ are

A.
$$-1, -2, -\frac{1}{2}, 3 \pm \frac{\sqrt{5}}{2}$$

B.
$$2\pm\sqrt{3},3\pm\sqrt{2}$$

$$\mathsf{C}.\,2,\,rac{1}{2},\,3,\,rac{1}{3},\,1$$

D.
$$1, 2, rac{1}{2}, 5 \pm \sqrt{11} rac{i}{6}$$

Answer: A

- 16. How many numbers can be made with digit 3,4,5,6,7,8 lying between
- 3000 and 4000 which are divisible by 5 without repetition
 - A. 120
 - B. 60
 - C. 24
 - D. 12

Answer: D

Watch Video Solution

- **17.** If $n_{p_r}=840,\,n_{c_r}=35$, then n is equal to
 - A. 1
 - B. 7
 - C. 4
 - D. 10

Answer: B

- **18.** The co-efficient of x^{11} in the expansion of $\left(1+3x+2x^2\right)^6$ is
 - A. 216

B. 144

C. 576

D. 288

Answer: C

Watch Video Solution

19.
$$1 + \frac{1}{3}x + \frac{1.4}{3.6}x^2 + \frac{1.4.7}{3.6.9}x^3 + \dots =$$

A.
$$(1+x)^{rac{1}{3}}$$

B.
$$(1-x)^{\frac{1}{3}}$$

C.
$$(1-x)^{-rac{1}{3}}$$

D. x

Answer: C

20. The partial fractions of $\frac{1}{x^3(x+2)} =$

A.
$$\frac{1}{8}x + \frac{1}{4}x^2 + \frac{1}{2}x^3 - \frac{1}{8(x+2)}$$

B.
$$\frac{1}{8}x - \frac{1}{4}x^2 + \frac{1}{2}x^3 - \frac{1}{8(x+2)}$$

C.
$$\frac{1}{8}x + \frac{1}{4}x^2 + \frac{1}{2}x^3 + \frac{1}{8(x+2)}$$

D.
$$rac{1}{8}x - rac{1}{4}x^2 - rac{1}{2}x^3 + rac{1}{8(x+2)}$$

Answer: B

Watch Video Solution

21. If $70\sin^2\theta + 3\cos^2\theta = 4$, then $\tan\theta$

A.
$$\pm \frac{1}{\sqrt{3}}$$

B.
$$\frac{1}{3}$$

$$\mathsf{C}.\pm\sqrt{3}$$

D.
$$\pm 1$$

Watch Video Solution

22. If
$$\begin{vmatrix} 1+\sin^2\theta & \cos^2\theta & 4\sin 4\theta \\ \sin^2\theta & 1+\cos^2\theta & 4\sin 4\theta \\ \sin^2\theta & \cos^2\theta & 1+4\sin 4\theta \end{vmatrix} = 0$$
, then the value of θ is

A.
$$7\frac{\pi}{24}$$
 or $11\frac{\pi}{24}$

B.
$$\frac{\pi}{24}$$

$$\mathsf{C.}\,5\frac{\pi}{24}$$

D. None

Answer: A

23.
$$\tan \left[\frac{1}{2} \sin^{-1} \frac{2a}{1+a^2} + \frac{1}{2} \cos^{-1} \frac{1-a^2}{1+a^2} \right] =$$

$$\mathsf{B.}\cos^2 x$$

Watch Video Solution

24. If $\sin x \cosh y = \cos \theta$, $\cos x \sinh y = \sin \theta$ then $\sinh^2 y =$

A. $1-rac{a^2}{1+a^2}$

 $\operatorname{B.}2\frac{a}{1+a^2}$

C. $\frac{1+a^2}{1-a^2}$

 $\mathrm{D.}\,2\frac{a}{1}-a^2$

Answer: D

D.
$$\cosh^2 x$$

Answer: B

 $\mathsf{C}.\sec^2 x$

A. $\cosh^2 y$

25. If
$$m \cdot \tan(\theta - 30^\circ) = n \cdot \tan(\theta + 120^\circ)$$
, then $\cos 2\theta =$

A. $\sin 2\theta$

B. $\cos 2\theta$

C. $2\sin 2\theta$

D. $2\cos 2\theta$

Answer: D

26. If
$$an\!\left(B-rac{C}{2}
ight)=xrac{\cot A}{2}$$
 ,then x =

A.
$$a-rac{b}{a+b}$$

B.
$$b-rac{c}{b+c}$$

$$\mathsf{C.}\,c-rac{a}{c+a}$$

Answer: B

View Text Solution

27. If P_1,P_2,P_3 are altitudes of ΔABC from the vertices A,B,C and Δ is the area of triangle then, $\frac{1}{P_1^2}+\frac{1}{P_2^2}+\frac{1}{P_2^2}=$

A.
$$a^2+b^2+rac{c^2}{4}\Delta^2$$

B.
$$a^2-b^2-rac{c^2}{\Delta^2}$$

$$\mathsf{C.}\,a + b + rac{c}{\Delta}$$

D.
$$a^2+b^2+rac{c^2}{\Lambda^2}$$

Answer: A

28. From the top of a mast of 60 m height, the angle of depression of an object is 45° .The distance of the object from the ship is

B. 80 m

C. 60 m

D. 90 m

Answer: C

29. If the position vector of A,B,C are 2i+3j+4k, i+2j, j+2k and $\overrightarrow{AB}=\overrightarrow{PAC}$ then P=

A.
$$-\frac{1}{2}$$

$$\cdot \frac{1}{4}$$

c.
$$\frac{1}{2}$$

$$D. - \frac{1}{2}$$

Answer: C

View Text Solution

- **30.** If the position vectors of A, B are 2a 3b, 3a + 2b respectively then the position of vector of C in AB produced such that AC = 2 AB is
 - A. 4a+7b
 - B. 5b-2a
 - C. 3a+2b
 - D. 3b-2a

Answer: A

31. The vector equation of the linepassing through the point i+j-k and parallel to the vector 2i+3j-k is

A.
$$r=(i+j-k)+t(2i+3j-k)$$

B.
$$r=(i-j+k)+t(2i-3j-k)$$

Answer: A

View Text Solution

32. The length of projection of i+2j+3k in the direction of 3i-4j+5k is

$$\cdot \sqrt{2}$$

A.
$$\sqrt{2}$$

Answer: A

Watch Video Solution

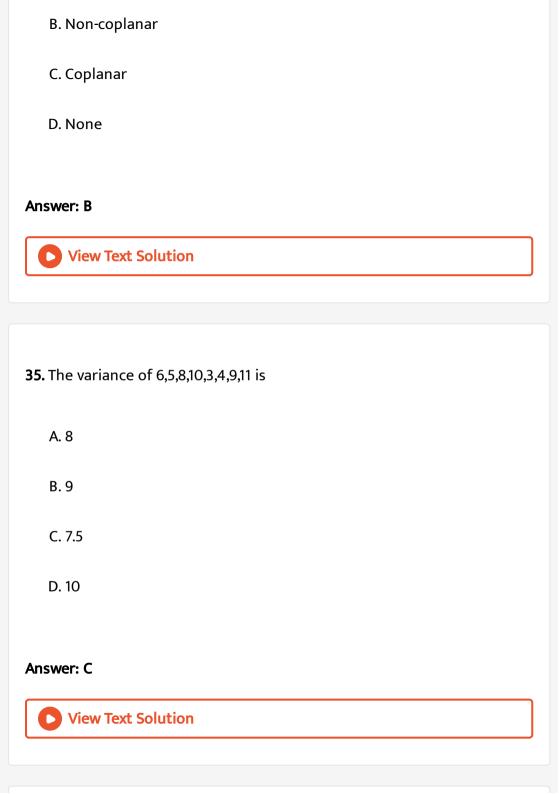
33. A unit vector perpendicular to each of the vector 3i+2j+4k and 2i+j-k is,

A.
$$\pm 6i + 8j + \frac{k}{\sqrt{101}}$$

$$\texttt{B.} \pm 6i - 8j + \frac{k}{\sqrt{104}}$$

$$\mathsf{C.} \pm 6i - 8j - \frac{k}{\sqrt{101}}$$

D.
$$\pm 6i-8j-4rac{k}{\sqrt{101}}$$


Answer: A

View Text Solution

34. The vector i+j+k, i+2j+3k, 2i+3j+k are

A. Collinear

36. If 6 cards are drawn at random, from a pack of cards, then the probability to get 3 red and 3 black cards is

A.
$$\frac{^{28}C_3 \times ^{28}C_3}{^{56}C_6}$$

B. None

C.
$$\frac{^{16}C_3 imes ^{16}C_3}{^{32}C_6}$$
D. $\frac{^{26}C_3 imes ^{26}C_3}{^{52}C_6}$

Answer: D

,then,

Watch Video Solution

37. Let A,B,C three such that events are

 $P(A) = 0.2, P(B) = 0.5, P(C) = 0.6, P(A \cap B) = 0.15, P(A \cap C) = 0.2$

A. $0.05 < P(B \cap C) < 0.5$

B. $0.03 < P(B \cap C) < 0.38$

 $\mathsf{C.}\,0.06 < P(B \cap C) < 0.24$

 $\mathsf{D.}\,0.04 \leq P(B\cap C) \leq 0.22$

Answer: C

View Text Solution

38. In a class, 40% students study botany, 25% Zoology and 15% bith Botany and Zoology. A student from the class is selected at random. The probability that he studies Botany, if it is known that he studies Zoology is

- A. $\frac{1}{8}$
- B. $\frac{2}{5}$
- C. $\frac{3}{8}$
- D. $\frac{3}{5}$

Answer: D

39. There are 2 red, 4 green balls in bag A, bag B, there are 5 red and 7 green balls. If one ball is randomly replaced from A into B and a ball is drawn from B then the probability for the ball to be red is

- A. $\frac{17}{40}$
- B. $\frac{14}{40}$
- c. $\frac{19}{45}$
- D. $\frac{16}{39}$

Answer: D

View Text Solution

40. If X is random variable with distribution given below

x:1234

P(X=x):k k 2k 3k

The value of k and its mean are

41. If X is a poisson distribution such that
$$P(X=1)=P(X=2)$$
 then, $P(X=4)=$

A.
$$\frac{1}{3}e^2$$

$$\operatorname{B.} \frac{2}{3}e^2$$

C.
$$\frac{4}{3}e^2$$

D. none

Answer: B

View Text Solution

42. A(2, 1) and B(2, 3) are two points.If Pis a point such that PA + PB - 2,

then the locus of P is

A.
$$4x^2 - 12y^2 - 16x + 124y - 69 = 0$$

$$\mathsf{B.}\,4x^2+12y^2-16x-124y+69=0$$

$$\mathsf{C.}\,4x^2 + 12y^2 + 16x - 124y + 69 = 0$$

$$\mathsf{D.}\,4x^2 + 12y^2 + 16x + 124y - 69 = 0$$

Answer: A

View Text Solution

43. The transformed equation of xy + 2x - 5y - 11 = 0 when the origin is shifted to the point (2, 3) is,

A.
$$xy-5x-3y + 16 = 0$$

B.
$$xy+5x+3y-16=0$$

C.
$$xy+5x-3y-16=0$$

D.
$$xy-5x+3y + 16 = 0$$

Answer: C

44. The area of the triangle formed by the line $\frac{x}{5} + \frac{y}{4} = 1$ with the coordinate axes is

- A. 20 sq.units
- B. 15 sq.units
- C. 5 sq.units
- D. 10 sq.units

Answer: D

- **45.** The perpendicular distance of the straight line 3x + 4y 8 = 0 from the point of intersection of the lines 3x + 2y + 4 = 0, 2x + 5y 1 = 0 is
 - A. $\frac{11}{5}$ units
 - $\text{B.}\ \frac{12}{5} \text{units}$
 - C. $\frac{8}{5}$ units

D. 2units

Answer: D

Watch Video Solution

- **46.** The diagonal of a square is 8x- 15y =0 and one vertex of the square is (1, 2). The equations to the sides of the square passing through this vertex are
 - A. 23x+7y = 9, 7x-23y=52
 - B. 23x+7y = 9, 7x-23y=53
 - C. 22x + 8y=9, 22x-8y=52
 - D. None

Answer: B

47. The area of the triangle formed by the pair of lines

$$3x^2+8xy-3y^2=0$$
 and the line 3x + 4y - 5 =0 is,

- A. $\frac{3}{5}$ sq. units
- B. $\frac{5}{3}$ sq. units
- C. $\frac{4}{5}$ sq. units
- D. $\frac{5}{4}$ sq. units

Answer: B

Watch Video Solution

48. If $x^2-10xy+4y^2+6x+2y+k=0$ represents a pair of straight

lines then, k=

- A. $-\frac{1}{3}$
 - $\mathsf{B.}\,\frac{2}{3}$
 - $\mathsf{C.}-\frac{2}{3}$

D. None

Answer: A

Watch Video Solution

49. The equation of the circle concentric with

 $x^2+y^2-2x+8y-23=0$ and passing through (2, 3) is

A.
$$x^2 + y^2 - 2x - 8y - 33 = 0$$

$$B. x^2 + y^2 + 6x - 4y - 12 = 0$$

C.
$$x^2 + y^2 + x + 8y + 33 = 0$$

D.
$$x^2 + y^2 - 6x + 4y - 12 = 0$$

Answer: A

50. If the tangent to the circle $x^2+y^2=5$ at (1,-2) also touches the circle

$$x^2+y^2-8x+6y+20=0$$
 then the point of contac tis

- A. (-1, 0)
- B. (1, 0)
- C.(3,-1)
- D. (5, 2).

Answer: C

Watch Video Solution

51. If the circles $x^2 + y^2 - 6x - 8y + c = 0$ and $x^2 + y^2 = 9$ have three common tangent then c=

- A. 17
- B. 19
- C. 21

Answer: C

View Text Solution

52. The equation of the circle which cuts orthogonally the circle $x^2+y^2-4x+2y-7=0$ and having centre at (2, 3) is,

A.
$$3x^2 - 3y^2 + 2x - 12y + 2 = 0$$

$$B. x^2 + y^2 + 6x + 4y + 19 = 0$$

C.
$$x^2 + y^2 - 2x + 4y + 2 = 0$$

D.
$$x^2 + y^2 - 4x - 6y + 9 = 0$$

Answer: D

53. If (2, 1) is limiting point of coaxial system of which $x^2+y^2-6x-4y-3=0$ is a member, then the other limiting point is

- B. (-2,-3)
- C. (3,2)
- D. (5,6)

Answer: A

54. The locus of the point of intersection of tangents to parabola $y^2=4(x+1)$ and $y^2=8(x+2)$ which are perpendicular to each other is

- A. x-3=0
- B. x+3=0

Answer: B

View Text Solution

55. If the normals at the points $t_1 \,$ and $\, t_2 \,$ on $\, y^2 = 4ax$ at the point $t_3 \,$ on the parabola, the t_1t_2 =

, , ,

A. 4

B. 3

C. 2

D. $2t_3$

Answer: C

56. The eccentricity of the ellipse $9x^2 + 16y^2 = 144$ is

A.
$$\frac{7}{4}$$

$$\mathsf{B.}\;\frac{7}{2}$$

$$\mathsf{C.}\,\frac{\sqrt{7}}{2}$$

D.
$$\frac{\sqrt{7}}{4}$$

Answer: D

Watch Video Solution

57. The condition that the line $x\cos\alpha+y\sin\alpha=P$ may be a normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

A.
$$\dfrac{a^2}{\cos^2 lpha}-\dfrac{b^2}{\sin^2 lpha}=\left(a^2-\dfrac{b^2}{P^2}
ight)^2$$

B.
$$\frac{a^2}{\cos^2 \alpha} - \frac{b^2}{\sin^2 \alpha} = \left(a^2 + \frac{b^2}{P^2}\right)^2$$

C.
$$rac{a^2}{\cos^2lpha}+rac{b^2}{\sin^2lpha}=\left(a^2-rac{b^2}{P^2}
ight)^2$$
D. $rac{a^2}{\cos^2lpha}+rac{b^2}{\sin^2lpha}=\left(a^2+rac{b^2}{P^2}
ight)^2$

Answer: C

View Text Solution

58. The distance between the foci is $4\sqrt{13}$ and the length of conjugate axis is 8 then, the eccentricity of the hyperbola is

- A. $\frac{\sqrt{15}}{4}$
- B. $\frac{\sqrt{13}}{4}$
- $\mathsf{C.}\ \frac{\sqrt{13}}{3}$
- D. $\frac{\sqrt{13}}{2}$

Answer: C

Watch Video Solution

59. If the d.c.'s (I, m, n) of two lines are connected by the relations

l+m+n=0 and $2mn+3\ln-5lm=0$ then the angle between

the lines is

- A. $\frac{\pi}{2}$
- C. $\frac{\pi}{3}$
- D. None

Answer: A

- **60.** The plane 2x + 3y + kz 7 = 0 is parallel to the line whose d.r's are (2,-3,1) then k=
 - A. 5
 - B. 10
 - C. 15
 - D. 20

Answer: A

Watch Video Solution

61. The centroid of the triangle formed by the points (1, 2,3), (2, 3, 1), (3, 1,

2) is

A. (1,1,1)

B.(2,2,2)

C. (1,2,2)

D. (3,1,3)

Answer: B

Answer: C

A. 2

B. 3

C. -1

D. 0

Watch Video Solution

63. $Ltig(x o 2^-ig)ig\{x+(x-[x])^2ig\}$ =

A. 3

 $f(x) = \Big\{\Big(-2\sin x, f ext{ or } x \leq -rac{\pi}{2}\Big)\Big(a\sin x + b, f ext{ or } -rac{\pi}{2} < x < rac{\pi}{2}\Big)\Big\}$

If

everywhere then the ordered pair(a,b) is

B. (1,1)

D. None

C.(0,0)

Answer: A

View Text Solution

A. $\cos^{-1} hx$

B. $\frac{1}{2}\log\left(x-\sqrt{1+x^2}\right)$

65. If
$$y=x{
m log}\left|x+\sqrt{1+x^2}\right|-\sqrt{1+x^2}$$
 then $\displaystyle \frac{dy}{dx}=$

 $C.\cos ec^{-1}hx$

 $D.\sin^{-1}hx$

Answer: D

Watch Video Solution

66. The derivative of $e^{\sin^{-1}x}$ w.r.t logx is

A.
$$rac{e^{\sin^{-1}x}}{\sqrt{1+x^2}}$$

B.
$$x \frac{c}{\sqrt{1+x^2}}$$

B.
$$x \frac{e^{\sin^{-1}x}}{\sqrt{1+x^2}}$$
C. $\frac{e^{\sin^{-1}x}}{\sqrt{1+x^2}}$

D.
$$x \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}$$

Answer: D

67. If
$$y = ae^{nx} + be^{-nx}$$
 then $y_2 =$

A.
$$-n^2y$$

B. ny

C. n^2y

D.-ny

Answer: C

68. Equation of the tangent to the curve $y^2=4ax$ at $\left(at^2,2at ight)$ is

$$A. xt + y - 2at - at^3 = 0$$

 $B. x + yt = at^2$

$$\mathsf{C.}\,x-yt+at^2=0$$

 $\operatorname{D.} xt - y - 2at - at^3 = 0$

Answer: C

Watch Video Solution

69. the side of a square is equal to the diameter of a circle. If the side and radius change at the same rate then the ratio of the change of their areas is

- A. $2:\pi$
- B.1:1
- $\mathsf{C}.\,\pi:2$
- D. $1:\pi$

Answer: A

A2
B. 1
C1
D. 0
Answer: A
Watch Video Solution
71. Show that when the curved surface of a is right circular cylinder
inscribed in a sphere of radius R is maximum , then the height of the
cylinder is $\sqrt{2R}$.
A. $\sqrt{3}R$
A. \sqrt{sn}
B. $\sqrt{2}R$
C. 2R
D. R

Answer: B

Watch Video Solution

72. $\int \left(\sin 2\frac{x}{a\cos^2 x} + b\sin^2 x\right) dx =$

A.
$$rac{1}{b}-a\log ig|a\cos^2 x-b\sin^2 xig|+c$$

B.
$$\frac{1}{b} - a \log \left| a \cos^2 x + b \sin^2 x \right| + c$$

C.
$$\frac{1}{b} + a \log \left| a \cos^2 x + b \sin^2 x \right| + c$$

D.
$$\frac{1}{b} + a \log |a \cos^2 x - b \sin^2 x| + c$$

Answer: B

View Text Solution

73. $\int \frac{3x-4}{\sqrt{2x^2+4x+5}} dx =$

A.
$$rac{3}{2}\sqrt{2x^2+4x+5}-rac{7}{\sqrt{2}}\sin^{-1}\!\left(\sqrt{2}rac{x-1}{\sqrt{3}}
ight)+c$$

D.
$$rac{3}{2}\sqrt{2x^2+4x+5}+rac{7}{\sqrt{2}}\sin^{-1}higg(\sqrt{2}rac{x-1}{\sqrt{3}}igg)+c$$

Watch Video Solution

74. $\int \frac{1}{2\cos x + 3\sin x + 4} dx =$

B. $\frac{3}{2}\sqrt{2x^2+4x+5}+\frac{7}{\sqrt{2}}\sin^{-1}h\left(\sqrt{2}\frac{x+1}{\sqrt{3}}\right)+c$

C. $\frac{3}{2}\sqrt{2x^2+4x+5}-\frac{7}{\sqrt{2}}\sin^{-1}h\left(\sqrt{2}\frac{x+1}{\sqrt{3}}\right)+c$

A.
$$\dfrac{2}{\sqrt{3}} an^{-1}\left[\dfrac{1}{\sqrt{3}}\left(2\dfrac{ an x}{2}+3\right)
ight]+c$$
B. $\dfrac{2}{\sqrt{3}} an^{-1}\left[\dfrac{1}{\sqrt{3}}\left(2\dfrac{ an x}{2}-3\right)
ight]+c$
C. $\dfrac{1}{\sqrt{3}} an^{-1}\left[\dfrac{1}{\sqrt{3}}\left(2\dfrac{ an x}{2}+3\right)
ight]+c$

Answer: A

D. None

75.
$$\int e^x \left(rac{2+\sin 2x}{1+\cos 2x} dx
ight. =$$

A. $e^x \cos 2x + c$

B. $e^x \cot x + c$

 $\mathsf{C.}\, 2e^x \sec^2 x + c$

D. $e^x \tan x + c$

Answer: D

76.
$$\int_0^\pi \sin^3 x \cos^4 x dx =$$

$$J_0$$
 A. $\frac{2}{35}$

B.
$$\frac{4}{35}$$

c.
$$\frac{4}{30}$$

$$\mathsf{D.}\;\frac{2}{30}$$

Answer: B

Watch Video Solution

77. $Lt_{n o \infty} \left[rac{1}{3n+1} + rac{1}{3n+2} + + rac{1}{3n+n}
ight] =$

A.
$$\log\left(\frac{4}{3}\right)$$

$$\mathsf{B.}\log\!\left(\frac{1}{3}\right)$$

$$\mathsf{C.}\log\!\left(rac{3}{2}
ight)$$

D. 0

Answer: A

Watch Video Solution

78. The area of the region bounded by the curves

$$y = |x - 1|$$
 and $y = 3 - |x|$ is

- B. 2
- C. 3
 - D. 4

Answer: D

Watch Video Solution

- **79.** The degree of the differential equation $\left[5+rac{d^2y}{dx^2}
 ight]^{rac{3}{2}}=rac{dy}{dx}$
 - A. 1
 - B. 2
 - C. 3
 - D. None

Answer: C

attii video Solution

80. The solution of
$$\dfrac{dy}{dx}=\dfrac{x-2y+3}{2x-y+5}$$
 is

A.
$$x^2 + 4xy - y^2 - 6x + 10y = c$$

$$B. x^2 + 4xy + y^2 - 6x - 10y = c$$

C.
$$x^2 - 4xy - y^2 - 6x + 10y = c$$

D.
$$x^2 - 4xy + y^2 + 6x - 10y = c$$

Answer: D

81. If
$$f\colon R\to R, S\colon R\to R$$
 are defined by f(x) = 3x-4, g(x) = 5x-1 then,

$$(fog^{-1})(2) =$$

A.
$$\frac{11}{5}$$

B.
$$-\frac{11}{5}$$

c.
$$\frac{1}{5}$$

$$D. - \frac{1}{5}$$

Answer: B

Watch Video Solution

82. The range of $y=2x^2+x+rac{2}{2x^2+x+1}$ is

A.
$$\left(11 - \frac{\sqrt{2}}{7}, 11 + \frac{\sqrt{2}}{7}\right)$$

B.
$$\left[11 - \frac{\sqrt{2}}{7}, 11 + \frac{\sqrt{2}}{7} \right]$$

C.
$$\left(-11 + \frac{\sqrt{2}}{7}, -11 - \frac{\sqrt{2}}{7}\right)$$

D.
$$\left[-11 + \frac{\sqrt{2}}{7}, -11 + \frac{\sqrt{2}}{7} \right]$$

Answer: B

83.
$$\sum \left(\frac{1^2 + 2^2 + 3^2 + \ldots + n^2}{1 + 2 + 3 + \ldots + n} \right)$$
A. $n^2 + \frac{11}{12}n$

B.
$$n^2-2rac{n}{6}$$

$$\mathsf{C.}\,n^2+2rac{n}{3}$$

Answer: C

84. If
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 then $A^3 = \begin{bmatrix} 1 & 3 & 0 \end{bmatrix}$

A.
$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 3 & 3 & 1 \end{bmatrix}$$
B.
$$\begin{bmatrix} 1 & 0 & 3 \\ 3 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

D.
$$\begin{bmatrix} 3 & 1 & 0 \\ 3 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Answer: A

Watch Video Solution

85. If
$$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0$$
 then $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix}=$

A.
$$-abc$$

 $\mathsf{C}.\,abc$

B. 0

Answer: C

D. None

solution, then $\lambda =$

If the system of equations

87. If z_1,z_2,z_3 are collinear and $z_3-\frac{z_1}{z_2-z_1}$ is purely real, then

 $\lambda x + 3y + z = 0, 4x + \lambda y + 3z = 0, 2x + 3y + \lambda z = 0$ has non-trival

86.

A. 6

C. 2

B. 3

D. None

Answer: D

Watch Video Solution

A. 0

 $arg\bigg(z_3-rac{z_1}{z_2-z_1}\bigg)$

B. 1

C. 2

D. 3

Answer: A

View Text Solution

88. If ω, ω^2 are cube root of unity then, $\frac{\omega}{1} + \omega^2 + \frac{\omega}{1} + \omega =$

A.
$$-2\omega^2$$

$${\rm B.}-2\omega$$

C. 2

D. -2

Answer: D

89. If z = 3 + 3i then, $z^2 + z + 15 =$

A. 12+3i

B. 12-3i

C. -12 - 3i

D. -12 + 3i

Answer: A

z ,iz and z+iz is 50 sq. units then |z| is

90. If the area of the triangle on the complex plane formed by the points

A. 15

B. 10

C. 5

D. None

Answer: B

View Text Solution

91. If A,B and C are the angles of a triangle such that cosA+cosB+cosC=0=sinA+sinB+sinC, then sin3A+sin3B+sin3C =

- A. 1
- B. 2
- C. 0
- D. 3

Answer: C

View Text Solution

92. If $x^2 + 3x - 2 = 0$, $x^2 + 6x + k = 0$ have a common root then p=

B. 8 C. 4

View Text Solution

93. If x is real , then the maximum value of $\dfrac{x^2+14x+9}{x^2+2x+3}$ is

A. 10 (or) 16

B. 11 (or) 15

C. 8 (or) 4

D. 5 (or) 8

Answer: D

A. 6

Answer: C

D. 2

94. The condition that the roots of $x^3+3px^2+3qx+r=0$ may be in

A.P is

A.
$$2q^3+r^2=3pqr$$

B.
$$2p^3+r=3pq$$

C.
$$p^3r=q^3$$

D. None

Answer: B

Watch Video Solution

95. The roots of $2x^5 + x^4 - 12x^3 - 12x^2 + x + 2 = 0$ are

A.
$$-1, \ -2, \ -\frac{1}{2}, 3\pm\frac{\sqrt{5}}{2}$$

B.
$$2\pm\sqrt{3}, 3\pm\sqrt{2}$$

$$\mathsf{C.}\,2,\,\frac{1}{2},\,3,\,\frac{1}{3},\,1$$

D.
$$1, 2, rac{1}{2}, 5 \pm \sqrt{11} rac{i}{6}$$

Answer: A

Watch Video Solution

- **96.** How many numbers can be made with digit 3,4,5,6,7,8 lying between

3000 and 4000 which are divisible by 5 without repetition

- A. 120
- B. 60
 - C. 24
- D. 12

Answer: D

97. IF $^{n}P_{r}=840,\,^{n}C_{r}=35$ then n=

A. 1

B. 7

C. 4

D. 10

Answer: B

Watch Video Solution

98. The co-efficient of x^{11} in the expansion of $\left(1+3x+2x^2\right)^6$ is

- - A. 216
 - B. 144
 - C. 576
 - D. 288

Answer: C

Watch Video Solution

99.
$$1 + \frac{1}{3}x + \frac{1.4}{3.6}x^2 + \frac{1.4.7}{3.6.9}x^3 + \dots =$$

A.
$$(1+x)^{\frac{1}{3}}$$

B.
$$(1-x)^{\frac{1}{3}}$$

C.
$$(1-x)^{-\frac{1}{3}}$$

D. x

Answer: C

100. The partial fractions of
$$\frac{1}{x^3(x+2)} =$$

A.
$$rac{1}{8}x + rac{1}{4}x^2 + rac{1}{2}x^3 - rac{1}{8(x+2)}$$

D.
$$rac{1}{8}x - rac{1}{4}x^2 - rac{1}{2}x^3 + rac{1}{8(x+2)}$$

Watch Video Solution

101. If
$$7\sin^2\theta + 3\cos^2\theta = 4$$
, then $\tan\theta$

B. $\frac{1}{8}x - \frac{1}{4}x^2 + \frac{1}{2}x^3 - \frac{1}{8(x+2)}$

C. $\frac{1}{8}x + \frac{1}{4}x^2 + \frac{1}{2}x^3 + \frac{1}{8(x+2)}$

A.
$$\pm \frac{1}{\sqrt{3}}$$

C.
$$\pm\sqrt{3}$$

B. $\frac{1}{3}$

D.
$$\pm 1$$

Answer: A

102. If
$$\begin{vmatrix} 1+\sin^2\theta & \cos^2\theta & 4\sin 4\theta \\ \sin^2\theta & 1+\cos^2\theta & 4\sin 4\theta \\ \sin^2\theta & \cos^2\theta & 1+4\sin 4\theta \end{vmatrix} = 0$$
, then the value of θ is

A.
$$7\frac{\pi}{24}$$
 or $11\frac{\pi}{24}$

B.
$$\frac{\pi}{24}$$

$$\mathsf{C.}\,5\frac{\pi}{24}$$

D. None

Answer: A

Watch Video Solution

103. $\tan \left[\frac{1}{2} \sin^{-1} \frac{2a}{1 + a^2} + \frac{1}{2} \cos^{-1} \frac{1 - a^2}{1 + a^2} \right] =$

$$a^2$$

A.
$$1-rac{a^2}{1+a^2}$$

B.
$$2\frac{a}{1+a^2}$$

C.
$$\frac{1+a^2}{1-a^2}$$

D.
$$2\frac{a}{1}-a^2$$

Answer: D

Watch Video Solution

104. If $\sin x \cosh y = \cos \theta$, $\cos x \sinh y = \sin \theta \th \sinh^2 y$ =

- A. $\cosh^2 y$
- $B.\cos^2 x$
- $\mathsf{C.}\,\sec^2 x$
- D. $\cosh^2 x$

Answer: B

Watch Video Solution

105. m. (an heta-30)=n(an heta+120) then, $m+rac{n}{m}-n=$

A. $\sin 2\theta$

B.
$$\cos 2\theta$$

C.
$$2\sin 2\theta$$

D.
$$2\cos 2\theta$$

Answer: D

View Text Solution

106. If
$$an\!\left(B-rac{C}{2}
ight)=xrac{\cot A}{2}$$
 ,then x =

A.
$$a-rac{b}{a+b}$$

B.
$$b-rac{c}{b+c}$$

$$C. c - \frac{a}{c+a}$$

D. None

Answer: B

107. If P_1,P_2,P_3 are altitudes of ΔABC from the vertices A,B,C and Δ is the area of triangle then, $\frac{1}{P_1^2}+\frac{1}{P_2^2}+\frac{1}{P_2^2}=$

A.
$$a^2+b^2+rac{c^2}{4}\Delta^2$$

$$\mathtt{B.}\,a^2-b^2-\frac{c^2}{\Delta^2}$$

C.
$$a+b+rac{c}{\Delta}$$

D.
$$a^2+b^2+rac{c^2}{\Lambda^2}$$

Answer: A

View Text Solution

108. From the top of a mast of 60 m height, the angle of depression of an object is $45\,^\circ$.The distance of the object from the ship is

A. 45 m

B. 80 m

C. 60 m

Answer: C

Watch Video Solution

109. If the position vector of A,B,C are $2i+3j+4k,\,i+2j,\,j+2k$ and

$$\overrightarrow{AB} = \overrightarrow{PAC}$$
 then P=

$$\mathsf{A.}-\frac{1}{2}$$

B.
$$\frac{1}{4}$$

$$\mathsf{C.}\ \frac{1}{2}$$

D.
$$-\frac{1}{4}$$

Answer: C

110. If the position vectors of A, B are 2a - 3b, 3a + 2b respectively then the position of vector of C in AB produced such that AC = 2 AB is

- A. 4a+7b
- B. 5b-2a
- C. 3a+2b
- D. 3b-2a

Answer: A

Watch Video Solution

111. The vector equation of the linepassing through the point i+j-k and parallel to the vector 2i+3j-k is

- A. r=(i+j-k)+t(2i+3j-k)
- B. r=(i-j+k)+t(2i-3j-k)
- C. r=(i-j-k)+t(2i-3j-k)

Answer: A

Watch Video Solution

- 112. The length of projection of i+2j+3k in the direction of 3i-4j+5k is
 - A. $\sqrt{2}$
 - B. $\sqrt{3}$
 - **C.** 1
 - D. 2

Answer: A

113. A unit vector perpendicular to each of the vector 3i+2j+4k and 2i+j-k is,

A.
$$\pm \frac{-6i+11j-k}{\sqrt{158}}$$

$$\texttt{B.} \pm 6i - 8j + \frac{k}{\sqrt{104}}$$

C.
$$\pm 6i-8j-rac{k}{\sqrt{101}}$$
D. $\pm 6i-8j-4rac{k}{\sqrt{101}}$

Answer: A

Watch Video Solution

114. The vector i+j+k,i+2j+3k,2i+3j+k are

A. Collinear

B. Non-coplanar

C. Coplanar

D. None

Answer: B

View Text Solution

115. The variance of 6,5,8,10,3,4,9,11 is

A. 8

B. 9

C. 7.5

D. 10

Answer: C

Watch Video Solution

116. If 6 cards are drawn at random, from a pack of cards, then the probability to get 3 red and 3 black cards is

C. $\frac{^{16}C_3 \times ^{16}C_3}{^{32}C_6}$ D. $\frac{^{26}C_3 \times ^{26}C_3}{^{52}C_6}$

Answer: D

,then,

Watch Video Solution

117. Let A,B,C are $P(A) = 0.2, P(B) = 0.5, P(C) = 0.6, P(A \cap B) = 0.15, P(A \cap C) = 0.2$

A.
$$0.05 \leq P(B \cap C) \leq 0.5$$

B.
$$0.03 \leq P(B \cap C) \leq 0.38$$

C.
$$0.06 \leq P(B \cap C) \leq 0.24$$

D.
$$0.04 \leq P(B \cap C) \leq 0.22$$

three

events

such

that

Answer: C

View Text Solution

118. In a class, 40% students study botany, 25% Zoology and 15% bith Botany and Zoology. A student from the class is selected at random. The probability that he studies Botany, if it is known that he studies Zoology is

- A. $\frac{1}{8}$
- B. $\frac{2}{5}$
- c. $\frac{3}{8}$
- D. $\frac{3}{5}$

Answer: D

View Text Solution

119. There are 2 white , 4 black balls in urn A, In urn B, there are 5 white and 7 black balls. If one ball is randomly replaced from A and B , and a ball is drawn from B then the probability for the ball to be white one is

- $\mathsf{A.}\ \frac{17}{40}$
- B. $\frac{14}{40}$
- c. $\frac{19}{45}$
- D. $\frac{16}{39}$

Answer: D

Watch Video Solution

120. If X is random variable with distribution given below

x:1234

P(X=x):k k 2k 3k

The value of k and its mean are

C.
$$\frac{4}{19}$$
, $\frac{18}{19}$
D. $\frac{5}{19}$, $\frac{15}{19}$

A. $\frac{3}{19}$, $\frac{8}{19}$

B. $\frac{1}{19}$, $\frac{21}{19}$

Answer: B

View Text Solution

121. If X is a poisson distribution such that P(X=1)=P(X=2)then,P(X=4)=

A.
$$\frac{1}{3}e^2$$

$$\operatorname{B.} \frac{2}{3} e^2$$

$$\mathsf{C.}\ \frac{4}{3}e^2$$

D. none

Answer: B

122. A(2, 1) and B(2, 3) are two points.If Pis a point such that PA + PB - 2, then the locus of P is

$$\mathsf{A.}\,4x^2-12y^2-16x+124y-69=0$$

$$\mathsf{B.}\,4x^2+12y^2-16x-124y+69=0$$

$$\mathsf{C.}\,4x^2+12y^2+16x-124y+69=0$$

$$\mathsf{D.}\,4x^2+12y^2+16x+124y-69=0$$

Answer: A

View Text Solution

123. The transformed equation of xy + 2x - 5y - 11 = 0 when the origin is shifted to the point (2, 3) is,

A.
$$xy-5x-3y + 16 = 0$$

B.
$$xy+5x+3y-16=0$$

C.
$$xy+5x-3y-16=0$$

D.
$$xy-5x+3y + 16 = 0$$

Answer: C

Watch Video Solution

124. The area of the triangle formed by the line $\frac{x}{5} + \frac{y}{4} = 1$ with the coordinate axes is

- A. 20 sq.units
- B. 15 sq.units
- C. 5 sq.units
- D. 10 sq.units

Answer: D

125. The perpendicular distance of the straight line 3x + 4y - 8 = 0 from the point of intersection of the lines 3x + 2y + 4 = 0, 2x + 5y - 1 = 0 is

- A. $\frac{11}{5}$ units
- B. $\frac{12}{5}$ units
- C. $\frac{8}{5}$ units
- D. $\frac{9}{5}$ units

Answer: D

View Text Solution

126. The diagonal of a square is 8x- 15y =0 and one vertex of the square is (1, 2). The equations to the sides of the square passing through this vertex are

A.
$$23x+7y = 9$$
, $7x-23y=52$

B.
$$23x+7y = 9$$
, $7x-23y=53$

C. 22x + 8y=9, 22x-8y=52

D. None

Answer: B

View Text Solution

127. The area of the triangle formed by the pair of lines

$$3x^2+8xy-3y^2=0$$
 and the line 3x + 4y - 5 =0 is,

A.
$$\frac{3}{5}$$
 sq. units

B.
$$\frac{5}{3}$$
 sq. units

C.
$$\frac{4}{5}$$
 sq. units

D.
$$\frac{5}{4}$$
 sq. units

Answer: B

128. If $x^2-10xy+4y^2+6x+2y+k=0$ represents a pair of straight

lines then, k=

A.
$$-\frac{1}{3}$$

$$\mathsf{B.}\;\frac{2}{3}$$

$$\mathsf{C.}-\frac{2}{3}$$

D. None

Answer: A

View Text Solution

129. The equation of the circle concentric with $x^2+y^2-2x+8y-23=0$ and passing through (2, 3) is

A.
$$x^2 + y^2 - 2x - 8y - 33 = 0$$

$$B. x^2 + y^2 + 6x - 4y - 12 = 0$$

$$\mathsf{C.}\, x^2 + y^2 + x + 8y + 33 = 0$$

D.
$$x^2 + y^2 - 6x + 4y - 12 = 0$$

Answer: A

Watch Video Solution

130. If the tangent to the circle $x^2+y^2=5$ at (1,-2) also touches the circle $x^2+y^2-8x+6y+20=0$ then the point of contact is

- A. (-1, 0)
- B. (1, 0)
- C. (3,-1)
- D. (5, 2).

Answer: C

131. If the circles $x^2 + y^2 - 6x - 8y + c = 0$ and $x^2 + y^2 = 9$ have three common tangent then c=

- A. 17
- B. 19
- C. 21
- D. 20

Answer: C

Watch Video Solution

132. The equation of the circle which cuts orthogonally the circle $x^2+y^2-4x+2y-7=0$ and having centre at (2, 3) is,

A.
$$3x^2 - 3y^2 + 2x - 12y + 2 = 0$$

$$B. x^2 + y^2 + 6x + 4y + 19 = 0$$

$$\mathsf{C.}\,x^2 + y^2 - 2x + 4y + 2 = 0$$

D.
$$x^2 + y^2 - 4x - 6y + 9 = 0$$

Answer: D

View Text Solution

- **133.** If (2, 1) is limiting point of coaxial system of which $x^2+y^2-6x-4y-3=0$ is a member, then the other limiting point is
 - A. (-5,-6)
 - B. (-2,-3)
 - C. (3,2)
 - D. (5,6)

Answer: A

View Text Solution

134. The locus of the point of intersection of tangents to parabola $y^2=4(x+1)$ and $y^2=8(x+2)$ which are perpendicular to each other is

135. If the normals at the points $t_1 \, ext{ and } \, t_2 \, ext{on} \, y^2 = 4ax$ at the point t_3 on

Answer: B

the parabola, the t_1t_2 =

A. 4

B. 3

C. 2

D. $2t_3$

Answer: C

View Text Solution

136. The eccentricity of the ellipse $9x^2+16y^2=144$ is

A. $\frac{7}{4}$

 $\mathsf{B.}\,\frac{7}{2}$

C. $\frac{\sqrt{7}}{2}$ D. $\frac{\sqrt{7}}{4}$

Answer: D

View Text Solution

137. The condition that the line $x\cos lpha + y\sin lpha = P$ may be a normal to

the ellipse $\frac{x^2}{x^2} + \frac{y^2}{t^2} = 1$ is

A.
$$\dfrac{a^2}{\cos^2\alpha}-\dfrac{b^2}{\sin^2\alpha}=\left(a^2-\dfrac{b^2}{P^2}\right)^2$$

B.
$$rac{a^2}{\cos^2lpha}-rac{b^2}{\sin^2lpha}=\left(a^2+rac{b^2}{P^2}
ight)^2$$
C. $rac{a^2}{\cos^2lpha}+rac{b^2}{\sin^2lpha}=\left(a^2-rac{b^2}{P^2}
ight)^2$

D.
$$rac{a^2}{\cos^2lpha}+rac{b^2}{\sin^2lpha}=\left(a^2+rac{b^2}{P^2}
ight)^2$$

Answer: C

View Text Solution

138. The distance between the foci is $4\sqrt{13}$ and the length of conjugate axis is 8 then, the eccentricity of the hyperbola is

A.
$$\frac{\sqrt{15}}{4}$$

B.
$$\frac{\sqrt{13}}{4}$$

c.
$$\frac{\sqrt{13}}{3}$$

D.
$$\frac{\sqrt{13}}{2}$$

Answer: C

View Text Solution

139. If the d.c.'s (I, m, n) of two lines are connected by the relations l+m+n=0 and $2mn+3\ln-5lm=0$ then the angle between the lines is

- A. $\frac{\pi}{2}$
- B. $\frac{\pi}{6}$
- $\operatorname{C.}\frac{\pi}{3}$
- D. None

Answer: A

140. The plane 2x + 3y + kz - 7 = 0 is parallel to the line whose d.r's are (2,3,-1) then k=

The centroid of the triangle formed by the

points

B. 10

C. 15

A. 5

D. 20

Answer: B

- (1,2,3),(2,3,1),(3,1,2) is
 - A. (1,1,1)

141.

- B. (2,2,2)
- C. (1,2,2)

Answer: B

Watch Video Solution

142.
$$Lt_{x
ightarrow 0}igg(rac{1-2\cos x+\cos 2x}{x^2}igg)$$

A. 2

B. 3

C. -1

D. 0

Answer: C

- B. 1
- C. 2
- D. None

Answer: A

Watch Video Solution

everywhere then the ordered pair(a,b) is

If

- 144.
- $f(x) = \Big\{\Big(-2\sin x, f ext{ or } x \leq -rac{\pi}{2}\Big)\Big(a\sin x + b, f ext{ or } -rac{\pi}{2} < x < rac{\pi}{2}\Big)\Big\}$
 - A. (-1,1)
 - B. (1,1)
- C. (0,0)
 - D. None

Answer: A

View Text Solution

145. If $y=x{
m log}\left|x+\sqrt{1+x^2}\right|-\sqrt{1+x^2}$ then $\displaystyle \frac{dy}{dx}=$

A. $\cos^{-1} hx$

B. $\frac{1}{2}\log\Bigl(x-\sqrt{1+x^2}\Bigr)$

 $\mathsf{C}.\cos ec^{-1}hx$

 $\mathrm{D.}\sin^{-1}hx$

Answer: D

Watch Video Solution

146. The derivative of $e^{\sin^{-1}x}$ w.r.t logx is

A.
$$\dfrac{e^{\sin^{-x}}}{\sqrt{1+x^2}}$$

 $\mathsf{B.}\,x\frac{e^{\sin^{-1}x}}{\sqrt{1+x^2}}$ D. $x \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}$

Answer: D

Watch Video Solution

147. If $y=ae^{nx}+be^{-nx}$ then $y_2=$

 $A.-n^2y$

B. ny

 $\mathsf{C}.\,n^2y$

D.-ny

Answer: C

148. The equation of the tangent to the curve $y^2=4ax$ at $\left(at^2,2at
ight)$ is

$$\mathsf{A.}\,xt+y-2at-at^3=0$$

$$B. x + yt = at^2$$

$$\mathsf{C.}\,x-yt+at^2=0$$

$$\mathsf{D}.\,xt-y-2at-at^3=0$$

Answer: C

View Text Solution

149. The side of a square is equal to the diametre of a circle. If the side and radius change at the same rate then the ratio of the change of their areas is

A. $2:\pi$

B. 1:1

 $\mathsf{C}.\,\pi:2$

_	_		
ח	1	٠	π
LJ.		-	71

Answer: A

View Text Solution

- **150.** Verify Rolle's theorem for the function $f(x)=x(x+3)e^{-rac{x}{2}}$ in [-3,0].
 - A. -2
 - B. 1
 - C. -1
 - D. 0

Answer: A

151. Show that when the curved surface of a is right circular cylinder inscribed in a sphere of radius R is maximum, then the height of the cylinder is $\sqrt{2R}$.

A.
$$\sqrt{3}R$$

B. $\sqrt{2}R$

C. 2R

D.R

Answer: B

152.
$$\int \left(\sin 2\frac{x}{a\cos^2 x} + b\sin^2 x\right) dx =$$

A.
$$\frac{1}{b} - a \log \left| a \cos^2 x - b \sin^2 x \right| + c$$

B.
$$\frac{1}{b} - a \log \left| a \cos^2 x + b \sin^2 x \right| + c$$

C.
$$\frac{1}{h} + a \log \left| a \cos^2 x + b \sin^2 x \right| + c$$

D.
$$rac{1}{b} + a \log ig| a \cos^2 x - b \sin^2 x ig| + c$$

Answer: B

View Text Solution

153.
$$\int \frac{3x-4}{\sqrt{2x^2+4x+5}} dx =$$

A.
$$rac{3}{2}\sqrt{2x^2+4x+5}-rac{7}{\sqrt{2}}\sin^{-1}\!\left(\sqrt{2}rac{x-1}{\sqrt{3}}
ight)+c$$

B.
$$\dfrac{3}{2}\sqrt{2x^2+4x+5}+\dfrac{7}{\sqrt{2}}\sin^{-1}h{\left(\sqrt{2}\dfrac{x+1}{\sqrt{3}}\right)}+c$$

C.
$$\frac{3}{2}\sqrt{2x^2+4x+5}-\frac{7}{\sqrt{2}}\sin^{-1}h\left(\sqrt{2}\frac{x+1}{\sqrt{3}}\right)+c$$
D. $\frac{3}{2}\sqrt{2x^2+4x+5}+\frac{7}{\sqrt{2}}\sin^{-1}h\left(\sqrt{2}\frac{x-1}{\sqrt{3}}\right)+c$

Answer: C

$$\mathbf{p}$$
. \mathbf{e}^{-} tan \mathbf{a}^{-} \mathbf{e}^{-}

Watch Video Solution

155. $\int e^x \left(\frac{2 + \sin 2x}{1 + \cos 2x} dx = 0 \right)$

A. $e^x \cos 2x + c$

B. $e^x \cot x + c$

C.
$$2e^x \sec^2 x + c$$

D. None

Answer: A

D.
$$e^x \tan x + c$$

Answer: D

A. $\frac{2}{\sqrt{3}} \tan^{-1} \left| \frac{1}{\sqrt{3}} \left(2 \frac{\tan x}{2} + 3 \right) \right| + c$

B. $\frac{2}{\sqrt{3}} an^{-1}\left|\frac{1}{\sqrt{3}}\left(2\frac{ an x}{2}-3\right)
ight|+c$

C. $\frac{1}{\sqrt{3}} \tan^{-1} \left| \frac{1}{\sqrt{3}} \left(2 \frac{\tan x}{2} + 3 \right) \right| + c$

156.
$$\int_0^{\pi} \sin^3 x \cos^4 x dx =$$

A.
$$\frac{2}{35}$$

B.
$$\frac{4}{35}$$

c.
$$\frac{4}{30}$$

D.
$$\frac{2}{30}$$

Answer: B

157.
$$Lt_{n o \infty} \left[rac{1}{3n+1} + rac{1}{3n+2} + + rac{1}{3n+n}
ight] =$$

A.
$$\log\left(\frac{4}{3}\right)$$

$$\mathsf{B.}\log\!\left(\frac{1}{3}\right)$$

$$\mathsf{C.}\log\!\left(\frac{3}{2}\right)$$

D. 0

Answer: A

Watch Video Solution

- 158. The area of the region bounded by the curves y = |x - 1| and y = 3 - |x| is
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: D

159. The degree of the differential equation $\left[5+rac{d^2y}{dx^2}
ight]^{rac{3}{2}}=rac{dy}{dx}$

A. 1

B. 2

C. 3

D. None

Answer: C

160. The solution of
$$\dfrac{dy}{dx}=\dfrac{x-2y+3}{2x-y+5}$$
 is

A.
$$x^2 + 4xy - y^2 - 6x + 10y = c$$

$$\mathsf{B.}\, x^2 + 4xy + y^2 - 6x - 10y = c$$

C.
$$x^2 - 4xy - y^2 - 6x + 10y = c$$

D.
$$x^2 - 4xy + y^2 + 6x - 10y = c$$

Answer: D

Watch Video Solution

Physics

- 1. When a big drop of water is formed from n small drops of water, the energy loss is 3E, where, E is the energy of the bigger drop. If the radius of the bigger drop is R and r is the radius of the smaller drop, then number of smaller drops (n) is
 - A. $4rac{R}{r^2}$
 - $\mathsf{B.}\,4\frac{R}{r}$
 - $\mathrm{C.}\,2\frac{R^2}{r}$ $\mathrm{D.}\,4\frac{R^2}{r^2}$

Answer: C

2. Two litre glass flask contains some mercury. k is found that at all temperatures the volume of the air inside the flask remains the same. The volume of mercury inside the flask is $\left(a_g=9\times 10^{-6}~\hat{\ }(~\circ~)C^{-1}\gamma_{Hg}=1.8\times 10^{-4}~\hat{\ }(~\circ~)C^{-1}\right)$

A. 1500 CC

B. 150 CC

C. 300 CC

D. 3000 CC

Answer: B

View Text Solution

3. Two photons of energies twice and thrice the work function of a metal are incident on the metal surface .Then, the ratio of maximum velocities of the photoelectrons emitted in the two cases respectively ,is

A.
$$\sqrt{2}:1$$

$$\mathsf{B.}\,\sqrt{3}\!:\!3$$

$$\mathsf{C.}\,\sqrt{3}\!:\!\sqrt{2}$$

D. 1:
$$\sqrt{2}$$

Answer: D

Watch Video Solution

4. A gas is compressed at a constant pressure of $50N/m^2$, from a volume $10m^3$ to a volume of $4m^3$. 100 J of heat is added to the gas then its internal energy.

A. Increases by 400 J

B. Increases by 200 J

C. Decreases by 400 J

D. Decreases by 200 J

Answer: A

View Text Solution

5. An ammeter whose resistance is 180Ω shows full scale deflection when the current is 2 mA. The shunt required to convert into an ammeter reading 20mA is (in ohm)

A. 18

B. 20

C. 0.1

D. 10

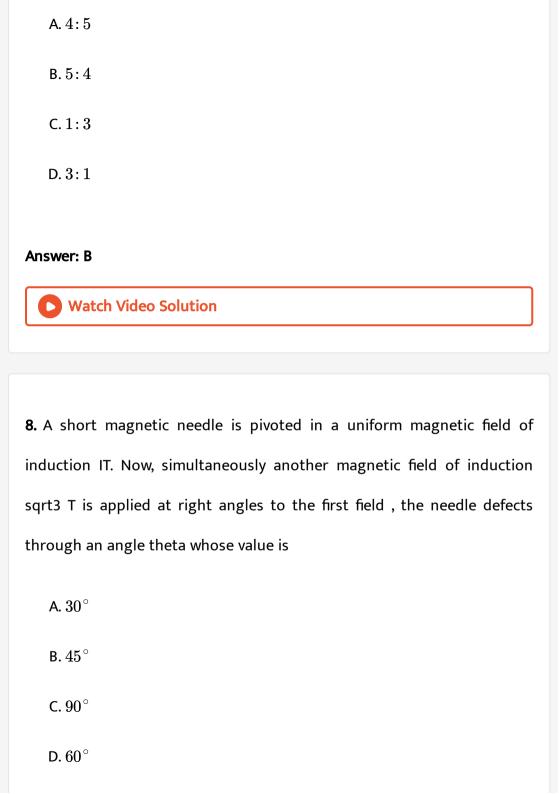
Answer: D

6. Two bodies of mass 4 kg and 5 kg are moving along East and North directions with velocities 5 m//s and 3 m//s respectively. Magnitude of the velocity of centre of mass of the system is

A.
$$\frac{25}{9}m/s$$

B.
$$\frac{9}{25}m/s$$

C.
$$\frac{41}{9}m/s$$


D.
$$\frac{16}{9}m/s$$

Answer: A

Watch Video Solution

7. The frequency of vibration in a vibration magnetometer of the combination of two bar magnets of magnetic moments M_1 and M_2 is 6 Hz when like poles are tied and it is 2 Hz when the unlike poles are tied together, then the ratio $M_1:M_2$ is

Watch Video Solution

- **9.** Two litre glass flask contains some mercury. k is found that at all temperatures the volume of the air inside the flask remains the same. The volume of mercury inside the flask is $\left(a_g=9\times 10^{-6}~\hat{\ }(~\circ~)C^{-1}\gamma_{Hg}=1.8\times 10^{-4}~\hat{\ }(~\circ~)C^{-1}\right)$
 - A. 1500 CC
 - B. 150 CC
 - C. 300 CC
 - D. 3000 CC

Answer: B

View Text Solution

10. A mass kg is suspended by a weightless string. The horizontal force required to hold the mass at 60° with the vertical is

- A. Mg
- B. $Mg\sqrt{3}$
- C. $Mg(\sqrt{3}+1)$
- D. $M \frac{g}{\sqrt{3}}$

Answer: B

11. If the equation of motion of a projectile is $y=3x-\frac{1}{8}x^2$, the range and maximum height are respectively (y and x are in metres).

- A. 18 m and 24 m
- B. 24 m and 18 m
- C. 24 m and 6 m

View Text Solution

12. If n_e and n_h are electron and hole concentrations in an extrinsic semiconductor and n_i is electron concentration in an intrinsic semiconductor then.

A.
$$\left(rac{n_e}{n_h}
ight)=n_i$$

B.
$$(n_e + n_h) = n_i$$

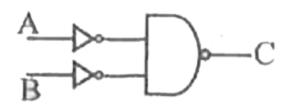
C.
$$(n_e-n_h)=n_i^2$$

D.
$$(n_e n_h) = n_i^2$$

Answer: A

View Text Solution

13. A radioactive nucleus can decay by two different processes. The half lives of the first and second decay processes are 5×10^3 and 10^5 years respectively, Then, the effective half-life of the nucleus is,


- A. $105 imes 10^5$
- B. 4762 yrs
- C. 104 yrs
- D. 47.6 yrs

Answer: A

Watch Video Solution

14. Which logic gate is represented by the following combination of logic gates

- A. OR
- B. NAND
- C. AND
- D. NOR

View Text Solution

15. The FM radio broadcasting band is,

A. 5 MHz to 30 MHz

B. 88 MHz to 108 MHz

C. 30 KHz to 300 KHz

D. 3 GHz to 30 GHz

Answer: B

View Text Solution

Chemistry

1. A metallic carbide on treatment with water gives a colourless gas which burns readily in air and gives a precipitate with ammoniacal silver nitrate solution. The gas evolved

A. CH_4

B. C_2H_6

 $\mathsf{C.}\,C_2H_4$

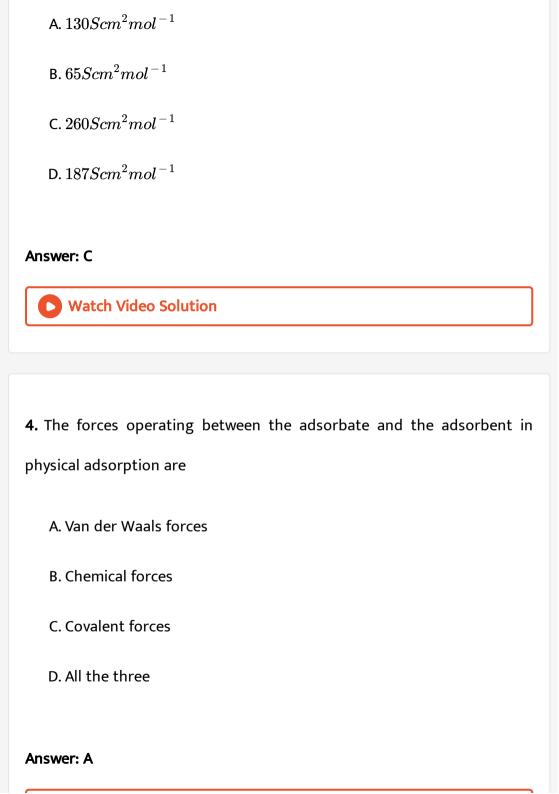
D. C_2H_2

2. Chlorination of toluene in presence of light and heat followed by treatment with aqueous NAOH gives

A. o-Cresol

B. p-Cresol

C. 2: 4 dihydroxy toluene


D. Benzoic acid

Answer: B

Watch Video Solution

3. Molar ionic conductivities of a bivalent electrolyte are 57 and 73. The molar conductivity of the solution will be

- 5. Horn silver is
 - A. Carbonate mineral
 - B. Chloride mineral
 - C. Sulphate mineral
 - D. Phosphate mineral

Answer: B

Watch Video Solution

- 6. Stainless steel does not rust because
 - A. Chromium and nickel combine with iron
 - B. Chromium forms an oxide layer and protects iron form rusting
 - C. Nickel present in it does not rust.

D. Iron forms a hard chemical compound with chromium present in it
Answer: B
Watch Video Solution
7. A polymer which is commonly used as a packaging material is
A. Polythene
B. Polypropylene
C. PVC

D. Bakelite

Watch Video Solution

Answer: D

8. Which compound/set of compounds is used in the manufacture of Nylon-6,6?

A. $HOOC(CH_2)_4COOH + H_2N(CH)_6NH_2$

 $\operatorname{B.} CH_3 = CH - C(CH_3) = CH_2$

 $\mathsf{C}.\,CH_2=CH_2$

 ${\tt D.}\, HOOCCOOH + HOCH_2 - CH_2OH$

Answer: D

9. The pH value of a solution in which a polar amino acid does not migrate under the influence of electric field is called

A. Isoelectronic point

B. Iso-electric point

C. Neutralisation point

D. None			

Answer: B

Watch Video Solution

10. The substances which affect the central nervous system and induce sleep are called

- A. Antipyretics
- B. Tranquilizers
- C. Analgesics
- D. Antibiotics

Answer: A

Watch Video Solution

11. Which is detected by carbylamine test? A. H_2NCONH_2 B. CH_3CONH_2 $\mathsf{C.}\,C_5H_5NH_2$ D. All of these **Answer: B Watch Video Solution** 12. Acid catalyzed hydration of alkenes except ethane leads to the formation of A. Primary alcohol B. Secondary or tertiary alcohol C. Mixture of primary and secondary alcohols D. Mixture of secondary and tertiary alcohols

Answer: D

Watch Video Solution

13. 2, 2-dichloro propane treated with aq.KOH gives an unstable product.

It is

- A. CH_3COCH_3
- B. $CH_3CH(OH)CH_3$
- $C. CH_3C(OH)_2CH_3$
- D. $CH_3CH(OH)CH_2CHO$

Answer: B

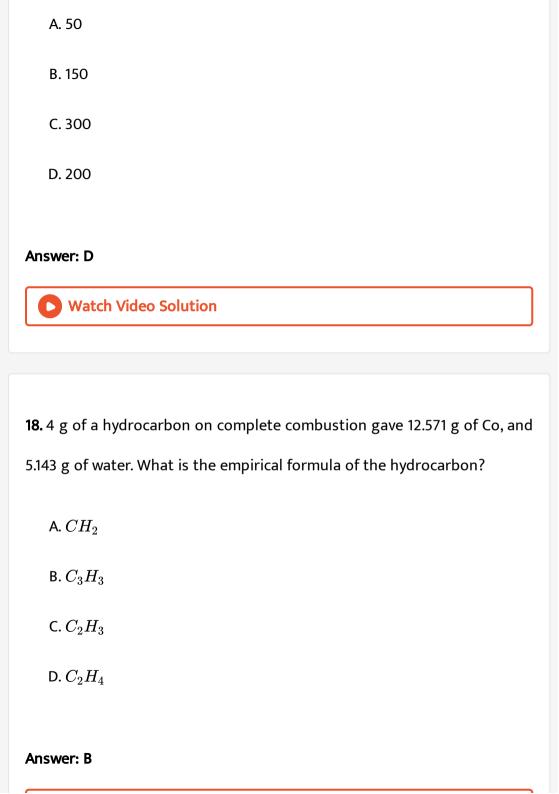
Watch Video Solution

14. The process that does not yield an amine is

A. Action of ammonia on RX B. Reduction of aldoxime with Na/alcohol C. Acid hydrolysis of alkyl cyanide D. Reduction of amide with LiA/H_4 Answer: D **Watch Video Solution** 15. Which one of the following compounds would undergo nitration with greatest ease? A. Benzene B. Phenol C. Nitrobenzene D. Benzoic acid **Answer: B**

16. In the chemical reaction,

 $CH_3CH_2NH_2+CHCl_3+3KOH o (A)+(B)+3H_2O$ the compounds (A) and (B) are respectively


- A. C_2H_5NC and 3KCI
- $B. C_2H_5CN$ and 3KCI
- $C. CH_3CH_2CONH_2$ and 3KCI
- D. C_2H_5NC and K_2CO_3

Answer: B

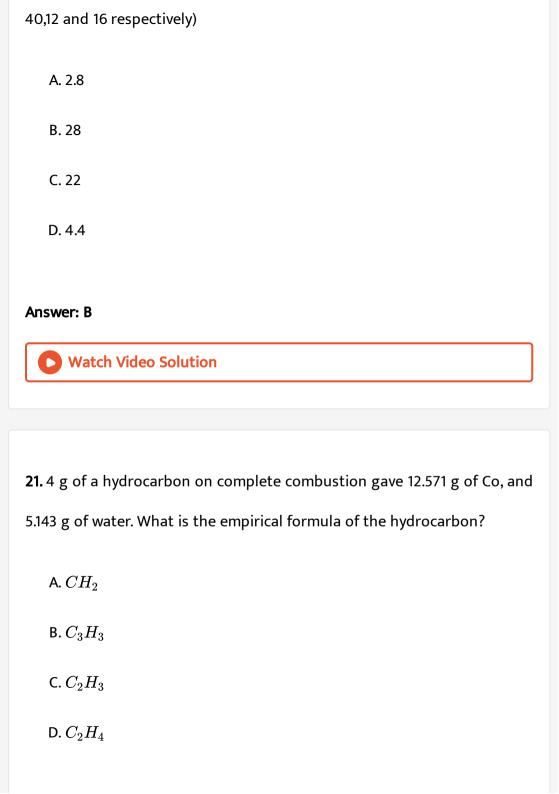
Watch Video Solution

17. X' grams of calcium carbonate was completely burnt in air. The weight of the solid residue formed is 28 g. What is the value of "X'(in grams)?

19. 10 grams of $CaCO_3$ is completely decomposed to x and CaO. 'x' is passed into an aqueous solution containing 0.1mole of sodium carbonate.

What is the number of moles of sodium bicarbonate formed? (mol. wts:

$$CaCO_3 = 100, NaCO_3 = 106, NaHCO_3 = 84$$
)


- A. 0.2
- B. 10
- C. 0.3
- D. 5

Answer: A

Watch Video Solution

20. 50 grams of calcium carbonate was completely burnt in air. What is the weight (in grams) of the residue? Atomic weights of Ca, C and O are

Answer: B

Watch Video Solution