

MATHS

BOOKS - SAI MATHS (TELUGU ENGLISH)

PAIR OF STRAIGHT LINES

Problem

1. The combined equation of the straight lines passing through the point (4,3) and each line making intercepts on the coordinate axes whose sum is -1 is

A.
$$(3x - 2y - 6)(x - 2y + 2) = 0$$

B.
$$(3x - 2y + 6)(x - 2y + 2) = 0$$

C.
$$(3x - 2y - 6)(x - 2y - 2) = 0$$

D.
$$(3x-2y+6)(x-2y-2)=0$$

Answer: A

2. The line x+y=k meets the pair of straight lines $x^2+y^2-2x-4y+2=0$ in two points of

A and B . If O is the origin and $\angle AOB = 90^{\circ}$ then the value of k > 1 is ,

B. 4

A. 5

D. 2

C. 3

Answer: D

3. Two pairs of straight lines with combined equations xy + 4x - 3y - 12 = 0 and xy - 3y + 4y - 12 = 0 form a square . Then the combined equation of its diagonals is

A.
$$x^2 - 2xy + y^2 + x - y = 0$$

B.
$$x^2 - 2xy + y^2 + x + y = 0$$

C.
$$x^2 - y^2 + x - y = 0$$

D.
$$x^2 - y^2 + x + y = 0$$

Answer: C

4. The angle between the straight lines represented by

$$\left(x^2+y^2
ight)\sin^2lpha=\left(x\coslpha-y\sinlpha
ight)^2$$
 is

A.
$$\frac{\alpha}{2}$$

B.
$$\alpha$$

$$\mathsf{C}.\,2\alpha$$

D.
$$\frac{\pi}{2}$$

Answer: C

5. If the slope of one of the lines represented by

 $ax^2-6xy+y^2=0$ is the square of the other ,

then the value of a is

A. -24 or 8

B.-3 or 2

 $\mathsf{C.}-64 \mathsf{\ or\ } \mathsf{27}$

D.-4 or 3

Answer: A

6. The area (in sq. units) of the triangle formed by

the lines $x^2-3xy+y^2=0$ and x+y+1=0 ,

is

A.
$$\frac{2}{\sqrt{3}}$$
B. $\frac{\sqrt{3}}{2}$

B.
$$\frac{\sqrt{3}}{2}$$

$$\mathsf{C.}\,5\sqrt{2}$$

$$\mathrm{D.} \; \frac{1}{2\sqrt{5}}$$

Answer: D

7. If $x^2+\alpha y^2+By=a^2$ represents a pair of perpendicular lines , then β equals to ,

A. 4a

B.a

 $\mathsf{C.}\,2a$

D. 3a

Answer: B

8. The equation of the pair of lines passing through the origin whose sum and product of slopes are respectively the arithmetic mean and geometric mean of 4 and 9 is

$$A. 12x^2 - 13xy + 2y^2 = 0$$

$$B. 12x^2 + 13xy + 2y^2 = 0$$

$$\mathsf{C.}\, 12x^2 - 15xy + 2y^2 = 0$$

$$\mathsf{D.}\, 12x^2 + 15xy - 2y^2 = 0$$

Answer: A

 $x^2-5xy+py^2+3x-8y+2=0$ represents a pair of straight lines . If heta is the angle between them , then sin θ is equal to

A.
$$\frac{1}{\sqrt{50}}$$
B.
$$\frac{1}{7}$$

3.
$$\frac{1}{7}$$

c.
$$\frac{1}{5}$$

$$\text{D.}\ \frac{1}{\sqrt{10}}$$

Answer: A

If

10.

If the equation

represents a pair of straight lines , then the square of the distance of their point of

 $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

intersection from the origin is

A.
$$rac{c(a+b)-af^2-bg^2}{ab-h^2}$$

B.
$$\frac{c(a+b)+f^2+g^2}{ab-h^2}$$

C.
$$rac{c(a+b)-f^2-g^2}{ab-h^2}$$

D.
$$\dfrac{c(a+b)-f^2-g^2}{\left(ab-h^2
ight)^2}$$

Answer: C

11. The distance between the parallel lines given

by
$$(x+7y)^2+4\sqrt{2}(x+7y)-42=0$$
 is

A.
$$\frac{4}{5}$$

B.
$$4\sqrt{2}$$

$$\mathsf{C.}\,2$$

D.
$$10\sqrt{2}$$

Answer: C

12. If the area of the triangle formed by the pair of

lines $8x^2-6xy+y^2=0$ and the line 2x + 3y = a is 7 , then a is equal to

- A. 14
- B. $14\sqrt{2}$
- $\mathsf{C.}\ 28\sqrt{2}$
- D. 28

Answer: D

13. If the pair of lines given by

$$ig(x^2+y^2ig)\cos^2 heta=(x\cos heta+y\sin heta)^2$$
 are

pendicular to each other , then heta is equal to

$$\mathsf{B.}\;\frac{\pi}{4}$$

$$\mathsf{C.}\,\frac{\pi}{3}$$

D.
$$\frac{3\pi}{4}$$

Answer: B

14. If one of the lines in the pair of straight lines given by $4x^2+6xy+ky^2=0$ bisects the angle between the coordinate axes , then k $\,\in\,$

A.
$$\{-2, -10\}$$

B.
$$\{-2, 10\}$$

$$\mathsf{C}.\,\{\,-\,10,\,2\}$$

D.
$$\{2, 10\}$$

Answer: C

15. If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

represents a pair of parallel lines , then

$$\sqrt{rac{g^2-ac}{f^2-bc}}$$
 , is equal to

A.
$$\frac{a}{b}$$

B.
$$\sqrt{\frac{a}{b}}$$

C.
$$\sqrt{rac{b}{a}}$$

D.
$$\frac{b}{a}$$

Answer: B

16. If s and p are respectively the sum and the product of the slopes of the lines $3x^2-2xy-15y^2=0$ then s : p is equal to

- A. 4:3
- B. 2:3
- C. 3:5
- D. 3:4

Answer: B

17. The distance between the two lines

represented by

$$8x^2 - 24xy + 18y^2 - 6x + 9y - 5 = 0$$
 is

A.0

$$\text{B.}\ \frac{3}{4\sqrt{13}}$$

$$\mathsf{C.} \; \frac{6}{\sqrt{13}}$$

D.
$$\frac{7}{2\sqrt{13}}$$

Answer: C

18. A pair of perpendicular lines passes through the origin and also through the points of intersection of the curve $x^2+y^2=4$ with x+y=a , where a>0 . Then a is equal to

- A. 2
- B. 3
- C. 4
- D. 5

Answer: A

19. If $3x^2 - 11xy + 10y^2 - 7x + 13y + k = 0$

denotes a pair of straight lines, then the point of intersection of the lines is

- A. (1, 3)
- B.(3,1)
- C. (-3, 1)
- D. (1, -3)

Answer: B

20. If m_1 and m_2 are the roots of the equation $x^2+\left(\sqrt{3}+2\right)x+\left(\sqrt{3}-1\right)$ = 0 then the area of the triangle formed by the lines x = $m_1x, y=m_2x$ and y=c, is

A.
$$\left(rac{\sqrt{33}-\sqrt{11}}{4}
ight)c^2$$

B.
$$\left(rac{\sqrt{33}+\sqrt{11}}{4}
ight)c^2$$

C.
$$\left(rac{\sqrt{11}-\sqrt{33}}{2}
ight)c^2$$

D.
$$\frac{\sqrt{33}}{2}c^2$$

Answer: B

21. The value of λ with $|\lambda| < 16$ such that

$$2x^2 - 10xy + 12y^2 + 5x + \lambda y - 3 = 0$$

represents a pair of straight lines, is

A. - 10

B. - 9

C. 10

D. 9

Answer: B

22. The area (in square unit) of the triangle formed by x + y + 1 = 0 and the pair of straight lines $x^2 - 3xy + 2y^2 = 0$ is

A.
$$\frac{7}{12}$$

B.
$$\frac{5}{12}$$

c.
$$\frac{1}{12}$$

D.
$$\frac{1}{6}$$

Answer: C

23. The pairs of straight line $x^2-3xy+2y^2=0$ and $x^2-3xy+2y^2+x-2=0$ form a

A. square but not rhombus

B. rhombus

C. parallelogram

D. rectangle but not a square

Answer: C

24. The value of λ such that

$$\lambda x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0$$

represents a pair of straight lines, is

A. 1

B. - 1

C. 2

D.-2

Answer: C

25. A pair of perpendicular straight lines passes through the origin and also through the point of intersection of the curve $x^2+y^2=4$ and x + y = a . The set containing the value of a is

A.
$$\{\,-2,2\}$$

B.
$$\{-3, 3\}$$

$$C. \{ -4, 4 \}$$

D.
$$\{-5, 5\}$$

Answer: A

26. In order to eliminate the first degree terms

from the equation

$$2x^2 + 4xy + 5y^2 - 4x - 22y + 7 = 0$$

The point to which origin is to be shifted is

A. (1, -3)

B.(2,3)

C. (-2, 3)

D.(1,3)

Answer: C

27. The angle between the pair of straight lines formed by joining the points of intersection of $x^2+y^2=4$ and y=3x+c to the origin is a right angle . Then , c^2 is equal to

- A. 20
- B. 13
- C.1/5
- D. 5

Answer: A

28.

lf

the

lines

 $x^2 + 2xy - 35y^2 - 4x + 44y - 12 = 0$

and

 $5x+\lambda y-8=0$ are concurrent , then the value of λ is ,

A. 0

B. 1

 $\mathsf{C.}-1$

D. 2

Answer: D

29. The lines represented by the equation

$$x^2 - y^2 - x + 3y - 2 = 0$$
 are

A.
$$x + y = 1 = 0, x - y + 2 = 0$$

B.
$$x - y - 2 = 0$$
, $x + y + 1 = 0$

C.
$$x + y + 2 = 0, x - y - 1 = 0$$

D.
$$x - y + 1 = 0, x + y - 2 = 0$$

Answer: D

30. The centroid of the triangle formed by the pair of striaght lines $12x^2-20xy+7y^2=0$ and the line 2x-3y+4=0 , is

A.
$$\left(-\frac{7}{3}, \frac{7}{3}\right)$$

$$\mathsf{B.}\left(\,-\,\frac{8}{3},\frac{8}{3}\right)$$

$$\mathsf{C.}\left(\frac{8}{3},\frac{8}{3}\right)$$

$$D.\left(\frac{4}{3},\frac{4}{3}\right)$$

Answer: C

31. If the bisectors of the angles of the lines represented by $3x^2-4xy+5y^2=0$ and $5x^2+4xy+3y^2=0$ are same , then the angle made by the lines represented by first with the second , is

- A. 30°
- B. 60°
- C. 45°
- D. 90°

Answer: D

32. The product of the perpendicular distances from the origin on the pair of straight lines $12x^2+25xy+12y^2+10x+11y+2=0$, is

A.
$$\frac{1}{25}$$

$$\mathsf{B.}\;\frac{2}{25}$$

$$\mathsf{C.}\;\frac{3}{25}$$

D.
$$\frac{4}{25}$$

Answer: B

33. The angle between the lines represented by

$$y^2\sin^2 heta-xy\sin^2 heta+x^2ig(\cos^2 heta-1ig)=0$$
 , is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{4}$$

$$\operatorname{C.}\frac{\pi}{6}$$

D.
$$\frac{\pi}{2}$$

Answer: D

34. Area of the triangle formed by the lines

$$3x^2-4xy+y^2=0, 2x-y=6$$
 is ,

- A. 16 sq unit
- B. 25 sq unit
- C. 36 sq unit
- D. 49 sq unit

Answer: C

35. If the pair of straight lines given by $Ax^2+2Hxy+By^2=0\big(H^2>AB\big)$ forms an equilateral triangle with line ax+by+c=0 then (A+3B)(3A+B) is equal to

A. H^2

 $B.-H^2$

 $\mathsf{C}.\,2H^2$

 $D.4H^2$

Answer: D

36. The area (in square units) of the quadrilateral

formed by two pairs of lines

$$\lambda^2 x^2 - m^2 y^2 - n(\lambda x + m y) = 0$$
 and

$$\lambda^2 x^2 - m^2 y^2 + n(\lambda x + m y) = 0$$
 , is

A.
$$\frac{n^2}{2|\lambda m|}$$

B.
$$rac{n^2}{|\lambda m|}$$

C.
$$\frac{n}{2|\lambda m|}$$

D.
$$\frac{n^2}{4|\lambda m|}$$

Answer: A

37. If the coordinate axes are the bisectors of the angle between the pairs of lines $ax^2+2hxy+by^2=0$, where $h^2>ab$ and $a\neq b$, then

A.
$$a + b = 0$$

$$B. h = 0$$

C.
$$h \neq 0, a + b = 0$$

D.
$$a+b \neq 0$$

Answer: B

38. If the angle 2θ is acute then the acute angle

$$x^2(\cos heta-\sin heta)+2xy\cos heta+y^2(\cos heta+\sin heta)=0$$
is

A.
$$2\theta$$

$$\cdot \, rac{ heta}{2}$$

B.
$$\frac{\theta}{2}$$

D.
$$\theta$$

Answer: D

39. If the pair of straight lines xy - y - y + 1 = 0 and the line ax + 2y - 3a = 0 are concurrent, then a equal to

- A. 0
- B. 1
- C. -1
- D. 3

Answer: B

40. The orthocentre of triangle formed by the

lines x+3y=10 and $6x^2+xy-y^2=0$ is

- A. (1, 3)
- B.(3,1)
- C. (-1, 3)
- D. (1, -3)

Answer: A

41. If one of the lines of pair of straight lines $ax^2+2hxy+by^2=0$ bisects the angle between the coordinate axes , then

A.
$$a^2 + b^2 = h^2$$

B.
$$(a+b)^2 = 4h^2$$

C.
$$a^2 + b^2 = 4h^2$$

D.
$$(a + b)^2 = h^2$$

Answer: B

42. If the slope of one line is twice the slope of other in the pair of straight lines $ax^2+2hxy+by^2=0$ then $8h^2$ is equal to

$$A. -9ab$$

$$\mathsf{C.}-7ab$$

D. 7a b

Answer: B

