

MATHS

BOOKS - SAI MATHS (TELUGU ENGLISH)

PARABOLA, ELLIPSE AND HYPERBOLA

Problems

1. If P is a point on the parabola $y^2 = 8x$ and A is the point (1,0) then the locus of the mid point of the line segment AP is

A.
$$y^2=4ig(x-rac{1}{2}ig)$$

B.
$$y^2=2(2x+1)$$

C. $y^2=x-rac{1}{2}$

D.
$$y^2=2x+1$$

Answer: A

2. The equation of the parabola with focus (1,-1) and directrix x+y+3=0 is

A.
$$x^2 + y^2 - 10x - 2y - 2xy - 5 = 0$$

B.
$$x^2 + y^2 + 10x - 2y - 2xy - 5 = 0$$

C. $x^2 + y^2 + 10x + 2y - 2xy - 5 = 0$

D.
$$x^2 + y^2 + 10x + 2y + 2xy - 5 = 0$$

Answer: A

D. (1,2)

Answer: D

4. For the ellipse
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
 a list of lines given in
List I are to be matched with their equations given in
Lisht II.

The correct match is:

A.		i	ii	iii
	a	b	a	e
B.		i	ii	iii
	b	f	a	С
C.		i	ii	iii
	С	b	d	С
D.		i	ii	iii
	d	f	a	e

Answer: B

5. The product of lenghts of perpendicular from any point on the hyperbola $x^2 - y^2 = 16$ to its asymptotes, is

A. 2

B. 4

C. 8

D. 16

Answer: C

6. An equilateral triangle is inscribed in the parabola $y^2 = 8x$, with one of its vertices is the vertex of the parabola, Then, the length of the side of that triangle is

A. $24\sqrt{3}$ B. $16\sqrt{3}$ C. $8\sqrt{3}$

D. $4\sqrt{3}$

7. The point (3,4) is the focus and 2x-3y+5=0 is the directrix of a parabola . Its latusrectum is

A.
$$\frac{2}{\sqrt{13}}$$

B. $\frac{4}{\sqrt{13}}$
C. $\frac{1}{\sqrt{13}}$
D. $3\sqrt{13}$

Answer: A

8. The radius of the circle passing throught the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and having its center at (0,3) is

- A. 6
- B. 4
- C. 3
- D. 2

9. The values that can take so that straight line y=4x+n

touches the curve $x^2 + 4y^2 = 4$ is

A. ± 45 B. $\pm \sqrt{60}$ C. $\pm \sqrt{65}$

 $\mathrm{D.}\pm\sqrt{72}$

Answer: C

10. The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbla $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then, the value of b^2 is

A. 5

B. 7

C. 9

D. 1

11. If a normal chord at a point t on the parabola $y^2 = 4ax$ subtends a right angle at the vertex, then t equals to

A. 1

B. $\sqrt{2}$

C. 2

D. $\sqrt{3}$

12. The slopes of the focal chords of the parabola $y^2=32x,\,\,$ which are tangents to the circle $x^2+y^2=4\,$ are

A.
$$\frac{1}{2}, \frac{-1}{2}$$

B. $\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$
C. $\frac{1}{\sqrt{15}}, \frac{-1}{\sqrt{15}}$
D. $\frac{2}{\sqrt{5}}, \frac{-2}{\sqrt{5}}$

Answer: C

13. If tangent are drawn from any point on the circle $x^2 + y^2 = 25$ to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, then the angle between the tangents is,

A.
$$\frac{2\pi}{3}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

14. An ellipse passing through $(4\sqrt{2}, 2\sqrt{6})$ has foci at (-4,0) and (4,0). Then, its eccentricity is

A.
$$\sqrt{2}$$

B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

15. A hyperbola passing through a focus of the ellipse $\frac{x^2}{169} + \frac{y^2}{25} = 1$. Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse. The product of eccentricities is 1. Then, the equation of the hyperbola is,

A.
$$rac{x^2}{144} - rac{y^2}{9} = 1$$

B. $rac{x^2}{169} - rac{y^2}{25} = 1$
C. $rac{x^2}{144} - rac{y^2}{25} = 1$
D. $rac{x^2}{25} - rac{y^2}{9} = 1$

Answer: C

16. A circle of radiu 4, drawn on a chord of the parabola $y^2 = 8x$ as dimater, touches the axis of the parabola. Then, the slope of the chord is

A.
$$\frac{1}{1}$$

B. $\frac{3}{4}$

Answer: C

17. The mid point of a chord of the ellipse $x^2 + 4y^2 - 2x + 20y = 0$ is (2,-4). The equation of the chord is

A. x-6y=26

B. x+6y=26

C. 6x-y=26

D. 6x+y=26

Answer: A

View Text Solution

18. If the focii of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and the hyperbola $\frac{x^2}{4} - \frac{y^2}{b^2} = 1$ coincide, then b^2 is equal to

A. 4

B. 5

C. 8

D. 9

19. If x=9 is a chord of contact of the hyperbola $x^2 - y^2 = 9$, then the equation of the tangent at one of the points of contact is

A.
$$x+\sqrt{3}y+2=0$$

B. $3x - 2\sqrt{2}y - 3 = 0$

C.
$$3x-\sqrt{2}y+6=0$$

D.
$$x-\sqrt{3}y+2=0$$

Answer: B

View Text Solution

20. Let x+y=k be a normal to the parabola $y^2 = 12x$. If p is length of the perpendicular from the focus of the parabola onto this normal, then $4k - 2p^2$ is equal to

A. 1

B. 0

C. -1

D. 2

21. If the line 2x+5y=12 intersect the ellipse $4x^2 + 5y^2 = 20$ in two distinct point A and B, then mid-point of AB is,

A. (0,1)

B. (1,2)

C. (1,0)

D. (2,1)

Answer: B

View Text Solution

22. Equation of one of the tangent passing through (2,8) to the hyperbola $5x^2 - y^2 = 5$ is

A. 3x+y-14=0

B. 3x-y+2=0

C. x+y+3=0

D. x-y+6=0

23. The area (in sq. units) of the equilateral triangle formed by the tangnet at $(\sqrt{3}, 0)$ to the hyperbola $x^2 - 3y^2 = 3$ with the pair of asymptotes of the hyperbola is

A.
$$\sqrt{2}$$

B. $\sqrt{3}$

C.
$$\overline{\sqrt{3}}$$

D.
$$2\sqrt{3}$$

Answer: B

View Text Solution

24. If a chord of the parabola $y^2 = 4x$ passes through its focus and makes an angle heta with the X-axis, then its length is

A. $4\cos^2 heta$

B. $4\sin^2\theta$

C. 4 $\operatorname{cosec}^2 \theta$

D. $4 \sec^2 \theta$

Answer: C

25. If the straight line y=mx+c is parallel ot the axis of the parabola $y^2 = lx$ and intersects the parabola at (c^(2)/8,c)`, then the length of the latusrectum is

A. 2

- B. 3
- C. 4
- D. 8

Answer: D

26. The eccentricity of the ellipse

$$x^{2} + 4y^{2} + 2x + 16y + 13 = 0$$
 is
A. $\frac{\sqrt{3}}{2}$
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{\sqrt{2}}$

Answer: A

27. The angle between the asymptotes of the hyperbola $x^2 - 3y^2 = 3$ is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

28. Let M be the foot of the perpendicular from a point P on the parabola $y^2 = 8(x - 3)$ onto its directrix and let S be the foucs of the parabola. If $\triangle SPM$ is an equilateral triangle, then P is equal to

A. $(4\sqrt{3}, 8)$ B. $(8, 4\sqrt{3})$ C. $(9, 4\sqrt{3})$ D. $(4\sqrt{3}, 9)$

Answer: C

View Text Solution

29. If the lines 2x+3y+12=0, x-y+k=0 are conjugate with respect to the parabola $y^2 = 8$ then k is equal to

A. 10

$$\mathsf{B}.\,\frac{7}{2}$$

- C. 12
- D.-2

Answer: C

30. Find the equation to the parabola, whose axis is parallel to the y-axis and which passes through the

points (0,4), (1,9) and (4,5) is

A.
$$y = -x^2 + x + 4$$

B. $y = -x^2 + x + 1$
C. $y = \frac{-19}{2}x^2 + \frac{79}{12}x + 4$
D. $y = \frac{-19}{12}x^2 + \frac{89}{12} + 1$

Answer: C

31. The equation of the hyperbola which passes through the point (2,3) and has the asymptotes 4x+3y-7=0 and x-2y-1=0 is

A.
$$4x^2 + 5xy - 6y^2 - 11x + 11y + 50 = 0$$

B. $4x^2 + 5xy - 6y^2 - 11x + 11y - 43 = 0$
C. $4x^2 - 5xy - 6y^2 - 11x + 11y + 57 = 0$
D. $x^2 - 5xy - y^2 - 11x + 11y - 43 = 0$

Answer: C

32. The product of the perpendicular distances from any point of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ to its asymptotes is

A.
$$rac{a^2b^2}{a^2-b^2}$$

B.
$$rac{a^2b^2}{a^2+b^2}$$

C. $rac{a^2+b^2}{a^2b^2}$
D. $rac{a^2-b^2}{a^2b^2}$

Answer: B

33. The number of normals drawn to the parabola

 $y^2=4x$ from the point (1,0) is

A. 0

B. 1

C. 2

D. 3

Answer: B

O View Text Solution

34. If the distance between the foci of an ellipse is 6 and the length of the minor axis is 8, then the ecentricity is

A.
$$\frac{1}{\sqrt{5}}$$

B. $\frac{1}{2}$
C. $\frac{3}{5}$
D. $\frac{4}{5}$

Answer: C

Answer: D

36. If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points (x_1, y_1) for i = 1, 2, 3 and 4 then $y_1 + y_2 + y_3 + y_4$ equals

A. 0

B.c

C. a

D. c^4

Answer: A

37. The mid point of the chord 4x-3y=5 of the hyperbola $2x^2 - 3y^2 = 12$ is

A.
$$\left(0, -\frac{5}{3}\right)$$

B. (2,1)

$$\mathsf{C.}\left(\frac{5}{4},0\right)$$
$$\mathsf{D.}\left(\frac{11}{4},2\right)$$

38. If 2x+3y+12=0 and $x - y + 4\lambda = 0$ are conjugate lines with respect to the parabola $y^2 = 8x$, then λ is equal to

A. 2

 $\mathsf{B.}-2$

C. 3

 $\mathsf{D.}-3$

Answer: D

39. For an ellipse with eccentricity $\frac{1}{2}$ the centre is at the origin, if one directrix is x=4, then the equation of the ellipse is

A.
$$3x^2 + 4y^2 = 1$$

B. $3x^2 + 4y^2 = 12$
C. $4x^2 + 34y^2 = 1$

D.
$$4x^2 + 3y^2 = 12$$

Answer: B

View Text Solution

40. The distance between the foci of the hyperbola $x^2 - 3y^2 - 4x - 6y - 11 = 0$ is A. 4 B. 6 C. 8 D. 10 Answer: C

41. For the parabola $y^2 + 6y - 2x + 5 = 0$ Statement I The vertex is (-2,-3) Statement II The directrix is y+3=0 Which of the following is correct?

A. Both I and II are true

B. I is true, II is false

C. I is false, II is true

D. Both I and II are false

42. The value of k, if (1,2) (k,-1) are conjugate point with respect to the ellipse $2x^2 + 3y^2 = 6$ is

A. 2

B. 4

C. 6

D. 8

Answer: C

View Text Solution

43. If the line lx+my=1 is a normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ then $\frac{a^2}{l^2} - \frac{b^2}{m^2}$ is equal to

A.
$$a^2 - b^2$$

B. $a^2 + b^2$
C. $\left(a^2 + b^2\right)^2$
D. $\left(a^2 - b^2\right)^2$

Answer: C

44. Let O be the origin and A be a point on the curve $y^2 = 4x$. Then th locus of the mid point of OA is

A.
$$x^2=4y$$

 $\mathsf{B.}\,x^2=2y$

$$C. y^2 = 16x$$

 $\mathsf{D}.\,y^2=2x$

Answer: D

View Text Solution

45. If b and c are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the semilatusrectum is

A.
$$\frac{bc}{b+c}$$

B. $\sqrt{b}c$
C. $\frac{b+c}{2}$

D.
$$\frac{2bc}{b+c}$$

Answer: D

46. Equation of the latusrectum of the ellipse

$$9x^2 + 4y^2 - 18x - 8y - 23 = 0$$
 are
A. $y = \pm \sqrt{5}$
B. $x = \pm \sqrt{5}$
C. $y = 1 \pm \sqrt{5}$
D. $x = -1 \pm \sqrt{5}$

47. If the ecentricity of a hyperbola is srqt3 then the eccentricity of its conjugate hyperbola is

A.
$$\sqrt{2}$$

B. $\sqrt{3}$
C. $\sqrt{\frac{3}{2}}$
D. $2\sqrt{3}$

Answer: C

48. If a point P moves such that its distances from the point A(1,1) and the line x+y+2=0 are equal, then the locus of P is

A. a straight line

B. a pair of straight line

C. a parabola

D. an ellipse

Answer: C

49. The parabola with drectrix x+2y-1=0 and focus (1,0)

is

A.
$$4x^2 - 4xy + y^2 - 8x + 4y + 4 = 0$$

B.
$$4x^2 + 4xy + y^2 - 8x + 4y + 4 = 0$$

C.
$$4x^2 + 5xy + y^2 - 8x + 4y + 4 = 0$$

D. $4x^2 - 4xy + y^2 - 8x - 4y + 4 = 0$

Answer: A

50. The lines among the following which touches the

parabola
$$y^2=4ax$$
, is

A.
$$x+my+am^3=0$$

$$\mathsf{B.}\,x - my + am^2 = 0$$

$$\mathsf{C.}\,x+my-am^2=0$$

D.
$$x + my + am^2 = 0$$

51. The eccentricity of the conic
$$36x^2+144y^2-36x-96y-119=0$$
 is

A.
$$\frac{\sqrt{3}}{2}$$

B. $\frac{1}{2}$

C.
$$\frac{\sqrt{3}}{4}$$

D. $\frac{1}{\sqrt{3}}$

Answer: A

A.
$$\frac{1}{2}$$

B. $\frac{2}{3}$
C. $\frac{3}{2}$

D. 2

Answer: B

53. The product of the lengths of perpendiculars drawn from any point on the hyperbola $x^2 - 2y^2 - 2 = 0$ to its asymptotes is

A.
$$\frac{1}{2}$$

B. $\frac{2}{3}$
C. $\frac{3}{2}$

D. 2

54. The equations of the parabola with focus (0,0) and directrix x+y=4, is

0

A.
$$x^2 + y^2 - 2xy + 8x + 8y - 16 =$$

B. $x^2 + y^2 - 2xy + 8x + 8y = 0$
C. $x^2 + y^2 + 8x + 8y - 16 = 0$
D. $x^2 - y^2 + 8x + 8y - 16 = 0$

Answer: A

55. The equation of the parabola with the focus (3,0)

and the directrix x+3=0 si

A.
$$y^2=3x$$

B. $y^2=6x$
C. $y^2=12x$
D. $y^2=2x$

Answer: C

56. If e and e' are the ecentricities of the ellipse $5x^2+9y^2=45$ and the hyperboala $5x^2-4y^2=45$

respectively, then ee' is equal to

A. 1

B. 4

C. 5

D. 9

Answer: A

57. The pole of the straight line x+4y=4 with respect to

the ellipse $x^2 + 4y^2 = 4$ is

A. (1,1)

B. (1,4)

C. (4,1)

D. (4,4)

Answer: A

View Text Solution

58. Locus of the poles of focal chord of a parabola is

A. the axis

B. a focal chord

C. the directrix

D. the tangent at the vertex

Answer: C

View Text Solution

59. The equation
$$rac{1}{r}=rac{1}{8}+rac{3}{8}\cos heta$$
 represents

A. a parabola

B. an ellipse

C. a hyperbola

D. a rectangular hyperbola

Answer: C

60. The lengths of latusrectum of parabola $y^2+8x-2y+17=0$ is

A. 2

B. 4

C. 8

D. 16

Answer: C

61. If the normal to the parabola $y^2 = 4x$ at P(1,2) meets the parabola again at Q, then coordinates of Q

are

A. (-6,9)

B. (9,-6)

C. (-9,-6)

D. (-6,-9)

62. The eccentricity of ellipse $rac{x^2}{16}+rac{y^2}{9}=1$ is

A.
$$\frac{7}{16}$$

B. $\frac{5}{4}$
C. $\frac{\sqrt{7}}{4}$
D. $\frac{\sqrt{7}}{2}$

Answer: C

63. The products of lengths of perpendicuylars from anypoint of hyperbola $x^2 - y^2 = 8$ to its asymptotes,

B. 3

A. 2

C. 4

D. 8

Answer: C

64.

The

equation

 $16x^2 + y^2 + 8xy - 74x - 78y + 212 = 0$ represents

A. a circle

B. a parabola

C. an ellipse

D. a hyperbola

Answer: B

View Text Solution

65. Equation of curve in polar coordinates is $\frac{I}{r} = 2\sin^2\frac{\theta}{2}$ then it represents

A. a straight line

B. a parabola

C. a circle

D. an ellipse

